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Abstract. Let Qd
n be the vector space of forms of degree

d ≥ 3 on Cn, with n ≥ 2. The object of our study is the map Φ,
introduced in [EI], [AI1], that assigns every nondegenerate form in

Qd
n the so-called associated form, which is an element of Qn(d−2)∗

n .
We focus on two cases: those of binary quartics (n = 2, d = 4)
and ternary cubics (n = 3, d = 3). In these situations the map Φ
induces a rational equivariant involution on the projectivized space
P(Qd

n), which is in fact the only nontrivial rational equivariant in-
volution on P(Qd

n). In particular, there exists an equivariant invo-
lution on the space of elliptic curves with nonvanishing j-invariant.
In the present paper, we give a simple interpretation of this invo-
lution in terms of projective duality. Furthermore, we express it
via classical contravariants.

1. Introduction

In this paper we continue to explore new ideas in classical invariant
theory that were proposed in the recent article [EI] and further devel-
oped in [AI1], [AI2]. Let Qdn := Symd(Cn∗) be the vector space of forms
of degree d on Cn, where n ≥ 2, d ≥ 3. Assuming that the discriminant
of f ∈ Qdn does not vanish, define Mf := C[z1, . . . , zn]/(fz1 , . . . , fzn) to
be the Milnor algebra of the isolated hypersurface singularity at the
origin of the zero set of f . Let m be the maximal ideal of Mf . One
can then introduce a form defined on the n-dimensional quotient m/m2

with values in the one-dimensional socle Soc(Mf ) of Mf as follows:

m/m2 → Soc(Mf ),

x 7→ y n(d−2),

where y is any element of m that projects to x ∈ m/m2. There is
a canonical isomorphism m/m2 ∼= Cn∗ and, since the Hessian of f
generates the socle, there is also a canonical isomorphism Soc(Mf ) ∼= C.
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Hence, one obtains a form f of degree n(d− 2) on Cn∗ (i.e. an element

of Symn(d−2)(Cn)), which is called the associated form of f (see Section
2 for more detail on this definition).

It is a consequence of Corollary 3.3 in [AI1] that, upon identification
of Cn∗ with Cn, the associated form of f is a Macaulay inverse sys-
tem of the Milnor algebra Mf . Furthermore, if we identify the space

Symn(d−2)(Cn) with (Symn(d−2)(Cn∗))∗ = Qn(d−2)∗
n by means of the po-

lar pairing, then the form f coincides, up to scale, with the element of

Qn(d−2)∗
n given by

Qn(d−2)
n → C,

g 7→ 1

(2πi)n

∫
|fz1 |=ε1,...,|fzn |=εn

g dz1 ∧ · · · ∧ dzn
fz1 · · · fzn

.

For a discussion of these equivalent ways to describe the associated
form we refer the reader to [AI2].

The principal object of our study is the morphism

Φ : Xd
n → Qn(d−2)∗

n , f 7→ f

of affine algebraic varieties, where Xd
n is the variety of forms in Qdn

with nonzero discriminant. This map has a GLn-equivariance property,
and one of the reasons for our interest in Φ is the following intriguing
conjecture proposed in [AI1] (see also [EI]):

Conjecture 1.1. For every regular GLn-invariant function S on Xd
n

there exists a rational GLn-invariant function R on Qn(d−2)∗
n defined at

all points of the set Φ(Xd
n) ⊂ Qn(d−2)∗

n such that R ◦ Φ = S.

If confirmed, the conjecture would imply that the invariant theory
of forms in Qdn can be extracted, by way of the morphism Φ, from

that of forms in Qn(d−2)∗
n at least at the level of rational invariant func-

tions, or absolute invariants. In [EI], Conjecture 1.1 was shown to
hold for binary forms (i.e. for n = 2) of degrees 3 ≤ d ≤ 6, and in
[AI1] its weaker variant was established for arbitrary n and d. Fur-
thermore, in [AI2] the conjecture was confirmed for binary forms of
any degree. While Conjecture 1.1 is rather interesting from the purely
invariant-theoretic viewpoint, it has an important implication for sin-
gularity theory. Namely, as explained in detail in [AI1], [AI2], if this
conjecture is established, it will provide a solution, in the homogeneous
case, to the so-called reconstruction problem, which is the question of
finding a constructive proof of the well-known Mather-Yau theorem
(see [MY], [Sh]). Settling Conjecture 1.1 is part of our program to
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solve the reconstruction problem for quasihomogeneous isolated hyper-
surface singularities. This amounts to showing that a certain system
of invariants introduced in [EI] is complete, and Conjecture 1.1 implies
completeness in the homogeneous case.

The morphism Φ is rather natural and deserves attention regardless
of Conjecture 1.1. In fact, this map is interesting even for small values
of n and d. In the present paper, we study Φ in two situations: those
of binary quartics (n = 2, d = 4) and ternary cubics (n = 3, d = 3).
These are the only choices of n, d for which Φ preserves the form’s
degree. Curiously, as we will see in Section 3, in each of the two cases
the projectivization � of Φ induces an equivariant involution on the
image Xdn of Xd

n in the projective space P(Qdn), with one SLn(C)-orbit
removed. Furthermore, as we show in Theorem 3.2, a nontrivial ratio-
nal equivariant involution on P(Q4

2) and P(Q3
3) is unique. In particular,

� yields a unique equivariant involution on the space of elliptic curves
with nonvanishing j-invariant, which appears to have never been men-
tioned in the extensive literature on elliptic curves. Early observations
in this direction go back to article [Ea] published some 10 years ago but
so far the involution has not been understood in more explicit terms.

The main goals of the present paper are twofold. Firstly, for binary
quartics and ternary cubics we describe the equivariant involution via
projective duality. Namely, in Section 3 we prove that for f ∈ Xdn the
element �(f) ∈ P(Qd∗n ) = P(Qdn)∗ is identified with the tangent space of

the GLn(C)-orbit of f̂ at f̂ , where f̂ is any lift of f to Qdn (see Theorem
3.3). Secondly, in Section 4 we consider the contravariant defined by
Φ and relate it to classical contravariants due to Cayley and Sylvester,
which gives yet another interpretation of the equivariant involution
induced by �. This section is written in the spirit of mid-19th century
invariant theory with focus on explicit formulas and identities.

Acknowledgements. This work is supported by the Australian
Research Council. It was initiated during the third author’s visit to
the Australian National University, and significant progress was made
during the second author’s stay at the Max Planck Institute for Math-
ematics in Bonn in 2014.

2. Preliminaries

Let Qdn be the vector space of forms of degree d on Cn where n ≥ 2.
Its dimension is given by the well-known formula

(2.1) dimCQdn =

(
d+ n− 1

d

)
.
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The standard action of GLn = GLn(C) on Cn induces an action on Qdn
as follows:

(C · f)(z) := f
(
C−1 · z

)
for C ∈ GLn, f ∈ Qdn and z = (z1, . . . , zn) ∈ Cn. Two forms that lie
in the same GLn-orbit are called linearly equivalent. Below we will be
mostly concerned with the induced action of SLn = SLn(C).

To every nonzero f ∈ Qdn we associate the hypersurface

Vf := {z ∈ Cn : f(z) = 0}

and consider it as a complex space with the structure sheaf induced by
f . The singular set of Vf is then the critical set of f . In particular,
if d ≥ 2 the hypersurface Vf has a singularity at the origin. We are
interested in the situation when this singularity is isolated, or, equiva-
lently, when Vf is smooth away from 0. This occurs if and only if f is
nondegenerate, i.e. ∆(f) 6= 0, where ∆ is the discriminant (see Chapter
13 in [GKZ]).

For d ≥ 3 define

Xd
n := {f ∈ Qdn : ∆(f) 6= 0}.

Observe that GLn acts on the affine variety Xd
n and note that every

f ∈ Xd
n is stable with respect to this action, i.e. the orbit of f is closed

in Xd
n and has dimension n2 (see, e.g., Corollary 5.24 in [Mu]).

Fix f ∈ Xd
n and consider the Milnor algebra of the singularity of Vf ,

which is the complex local algebra

Mf := C[[z1, . . . , zn]]/(f1, . . . , fn),

where C[[z1, . . . , zn]] is the algebra of formal power series in z1, . . . , zn
with complex coefficients and fj := ∂f/∂zj, j = 1, . . . , n. Since the sin-
gularity of Vf is isolated, the algebra Mf is Artinian, i.e.
dimCMf <∞ (see Proposition 1.70 in [GLS]). Therefore, f1, . . . , fn is
a system of parameters in C[[z1, . . . , zn]]. Since C[[z1, . . . , zn]] is a reg-
ular local ring, f1, . . . , fn is a regular sequence in C[[z1, . . . , zn]]. This
yields that Mf is a complete intersection.

It is convenient to utilize another realization of the Milnor algebra.
Namely, we can write

Mf = C[z1, . . . , zn]/(f1, . . . , fn).

Let m denote the maximal ideal of Mf , which consists of all elements
represented by polynomials in C[z1, . . . , zn] vanishing at the origin. The
maximal ideal is nilpotent and we let ν := max{η ∈ N | mη 6= 0} be
the socle degree of Mf .
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Since Mf is a complete intersection, by [B] it is a Gorenstein algebra.
This means that the socle of Mf , defined as

Soc(Mf ) := {x ∈ m : xm = 0},

is a one-dimensional vector space over C (see, e.g., Theorem 5.3 in [Hu]).
We then have Soc(Mf ) = mν . Furthermore, Soc(Mf ) is spanned by the
element of Mf represented by the Hessian H(f) of f (see, e.g., Lemma

3.3 in [Sa]). Since H(f) is a form in Qn(d−2)
n , it follows that ν = n(d−2)

(see [AI1], [AI2] for details). Thus, the subspace

(2.2) Wf := Qn(d−2)−d+1
n f1 + · · ·+Qn(d−2)−d+1

n fn ⊂ Qn(d−2)
n

has codimension 1, with the line spanned by H(f) being complemen-
tary to it.

Let e∗1, . . . , e
∗
n be the basis in Cn∗ dual to the standard basis in Cn

and z∗1 , . . . , z
∗
n the coordinates of a vector z∗ ∈ Cn∗ (we slightly abuse

notation by writing z∗ = (z∗1 , . . . , z
∗
n)). Denote by ω : Soc(Mf ) → C

the linear isomorphism given by the condition ω(H(f)) = 1 (with H(f)
viewed as an element of Mf ). Define a form f of degree n(d − 2) on

Cn∗ (i.e. an element of Symn(d−2)(Cn)) by the formula

f(z∗) := ω
(
(z∗1z1 + · · ·+ z∗nzn)n(d−2)

)
,

where zj is the element of the algebra Mf represented by the coordinate
function zj ∈ C[z1, . . . , zn]. We call f the associated form of f .

The associated form arises from the following map:

(2.3)
m/m2 → Soc(Mf ),

x 7→ yn(d−2),

with y ∈ m being any element that projects to x ∈ m/m2. Indeed, f is
derived from this map by identifying the target with C via ω and the
source with Cn∗ by mapping the image of zj in m/m2 to e∗j , j = 1, . . . , n.

To obtain an expanded expression for f , notice that if i1, . . . , in are
nonnegative integers such that i1 + · · · + in = n(d − 2), the product
zi11 · · · zinn lies in Soc(Mf ), hence we have

(2.4) zi11 · · · zinn = µi1,...,in(f)H(f)

for some µi1,...,in(f) ∈ C. In terms of the coefficients µi1,...,in(f) the form
f is written as

(2.5) f(z∗) =
∑

i1+···+in=n(d−2)

(n(d− 2))!

i1! · · · in!
µi1,...,in(f)z∗i11 · · · z∗inn .
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Notice that each µi1,...,in is a regular function on Xd
n, therefore

(2.6) µi1,...,in =
Pi1,...,in
∆pi1,...,in

,

for some Pi1,...,in ∈ C[Qdn] and nonnegative integer pi1,...,in .
Recall that the polar pairing yields a canonical identification between

the spaces Symn(d−2)(Cn) and (Symn(d−2)(Cn∗))∗ = Qn(d−2)∗
n . Using

this identification, we can regard the associated form as an element of

Qn(d−2)∗
n and consider the morphism

Φ: Xd
n → Qn(d−2)∗

n , f 7→ f

of affine varieties. This map is rather natural; in particular, Propo-
sition 2.1 in [AI1] implies an equivariance property for Φ. Namely,

introducing an action of GLn on the dual space Qn(d−2)∗
n in the usual

way as

(C · g)(h) := g(C−1 · h), g ∈ Qn(d−2)∗
n , h ∈ Qn(d−2)

n , C ∈ GLn,

we have:

Proposition 2.1. For every f ∈ Xd
n and C ∈ GLn the following holds:

Φ(C · f) = (detC)2
(
C · Φ(f)

)
.

In particular, the morphism Φ is SLn-equivariant.

Remark 2.2. In [Ea], [AI1], [AI2] the associated form was defined as

the element of Qn(d−2)
n = Symn(d−2)(Cn∗) obtained from map (2.3) by

identifying the quotient m/m2 with Cn rather than Cn∗. Accordingly,

the morphism Φ was introduced as a map from Xd
n to Qn(d−2)

n . The
morphism so defined has the following equivariance property:

(2.7) Φ(C · f) = (detC)2
(

(C−1)T · Φ(f)
)
, f ∈ Xd

n, C ∈ GLn .

Below it will be sometimes convenient to view associated forms and
the morphism Φ in this way.

The present paper mainly concerns two situations: the case of bi-
nary quartics and ternary cubics. In the next section, we will give a
geometric description of the morphism Φ in terms of projective duality
and in Section 4 an algebraic interpretation of Φ in terms of classical
contravariants.
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3. Duality for binary quartics and ternary cubics

We will now projectivize the setup of Section 2 and replace the action
of GLn with that of SLn. Namely, let P(Qdn) be the projectivization
of Qdn, i.e. P(Qdn) := (Qdn \ {0})/C×. In what follows we often write
elements of P(Qdn) as forms meaning that they are considered up to
scale. The action of SLn on Qdn induces an SLn-action on P(Qdn), and
for f ∈ P(Qdn) we denote its orbit SLn ·f by O(f). Further, define
Xdn ⊂ P(Qdn) to be the image of Xd

n under the quotient morphism
Qdn \ {0} → P(Qdn). Clearly, for f ∈ Xdn the orbit O(f) is closed in Xdn
and has dimension n2−1. Similarly, we projectivize the space Qn(d−2)∗

n

and consider the induced action of SLn on P(Qn(d−2)∗
n ).

The map Φ descends to a morphism

� : Xdn → P(Qn(d−2)∗
n ).

By Proposition 2.1, the morphism � is equivariant:

�(C · f) = C · �(f), f ∈ Xdn, C ∈ SLn .

Hence, in the case when � maps the variety Xdn into the semistable locus

P(Qn(d−2)∗
n )ss of P(Qn(d−2)∗

n ), it gives rise to a morphism φ of good GIT
quotients for which the following diagram commutes:

Xdn
� //

��

P(Qn(d−2)∗
n )ss

��

Xdn// SLn
φ // P(Qn(d−2)∗

n )ss// SLn .

In the diagram, the quotient on the left is affine and geometric, and the
one on the right is projective. Furthermore, Xdn is a Zariski open subset
of the stable locus P(Qdn)s, hence the affine quotient Xdn → Xdn// SLn
is a restriction of the projective quotient P(Qdn)ss → P(Qdn)ss// SLn.
Observe that the situation n = 2, d = 3 is trivial and can be excluded
from consideration. Indeed, since all nondegenerate binary cubics are
pairwise linearly equivalent, X3

2 = P(Q3
2)ss = P(Q3

2)s is a single orbit
and X3

2// SL2 is a point. For elementary introductions to GIT quotients
and various notions of stability we refer the reader to [Mu] and Chapter
9 in [LR].

We focus on the morphism � in two cases. Indeed, notice that for
all pairs n, d (excluding the trivial situation n = 2, d = 3) one has
n(d−2) ≥ d, and the equality holds precisely for the following two pairs:
n = 2, d = 4 and n = 3, d = 3. We will explain below that in each
of these two cases � maps Xdn to P(Qd∗n )ss and induces an equivariant
involution on the variety Xdn with one orbit removed. Furthermore,
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we will see that such an involution is unique. For these purposes, in
Subsections 3.1–3.3 it will be convenient to regard associated forms as
elements of Qdn and � as a map from Xdn to P(Qdn) (see Remark 2.2 for
details).

Let us now describe the maps � and φ in each of the two cases. Some
of the facts that follow can be extracted from articles [Ea], [EI].

3.1. Binary quartics. Let n = 2, d = 4. It is a classical result that
every nondegenerate binary quartic is linearly equivalent to a quartic
of the form

(3.1) qt(z1, z2) := z4
1 + tz2

1z
2
2 + z4

2 , t 6= ±2

(see pp. 277–279 in [El]). A straightforward calculation yields that the
associated form of qt is

(3.2) qt(z1, z2) :=
1

72(t2 − 4)
(tz4

1 − 12z2
1z

2
2 + tz4

2).

For t 6= 0,±6 the quartic qt is nondegenerate, and in this case the
associated form of qt is proportional to qt, hence �2(qt) = qt. As ex-
plained below, the exceptional quartics q0, q6, q−6, are pairwise linearly
equivalent.

It is easy to show that P(Q4
2)ss is the union of X4

2 (which coincides
with P(Q4

2)s) and two orbits that consist of strictly semistable forms:
O1 := O(z2

1z
2
2), O2 := O(z2

1(z2
1 + z2

2)), of dimensions 2 and 3, respec-
tively. Notice thatO1 is closed in P(Q4

2)ss and is contained in the closure
of O2. We then observe that � maps X4

2 onto P(Q4
2)ss \(O2∪O3), where

O3 := O(q0) (as we will see shortly, O3 contains the other exceptional
quartics q6, q−6 as well). Also, notice that � maps the 3-dimensional
orbit O3 onto the 2-dimensional orbit O1 (thus the stabilizer of q0 is fi-
nite while that of �(q0) is one-dimensional). In particular, � restricts to
an equivariant involutive automorphism of X4

2 \O3, which for t 6= 0,±6
establishes a duality between the quartics C ·qt and (C−1)T ·q−12/t with
C ∈ SL2, hence between the orbits O(qt) and O(q−12/t) (see (2.7)).

In order to understand the induced map φ of GIT quotients, we
note that the algebra of invariants C[Q4

2]SL2 is generated by a pair of
elements I2, I3 (the latter invariant is called the catalecticant), where
the subscripts indicate their degrees (see, e.g., pp. 41, 101–102 in [El]).
One has

(3.3) ∆ = I3
2 − 27 I2

3 ,

and for a binary quartic of the form

f(z1, z2) = az4
1 + 6bz2

1z
2
2 + cz4

2
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the values of I2 and I3 are computed as

(3.4) I2(f) = ac+ 3b2, I3(f) = abc− b3.

It then follows that the algebra C[X4
2 ]GL2 ' C[X4

2]SL2 is generated by
the invariant

(3.5) J :=
I3

2

∆
.

Therefore, the quotient X4
2//GL2 ' X4

2// SL2 is the affine space C, and
P(Q4

2)ss// SL2 can be identified with P1, where both O1 and O2 project
to the point at infinity in P1.

Next, from formulas (3.1), (3.3), (3.4), (3.5) we calculate

(3.6) J(qt) =
(t2 + 12)3

108(t2 − 4)2
for all t 6= ±2.

Clearly, (3.6) yields

(3.7) J(q0) = J(q6) = J(q−6) = 1,

which implies that q0, q6, q−6 are indeed pairwise linearly equivalent
as claimed above and that the orbit O3 is described by the condition
J = 1.

Using (3.2), (3.6) one obtains

(3.8) J(qt) =
J(qt)

J(qt)− 1
for all t 6= 0,±6.

Furthermore, the calculations leading to (3.8) also yield the following
identities for any f ∈ X4

2 :

(3.9) I2(f) =
I2(f)

2833∆(f)
, I3(f) = − 1

21236∆(f)
, ∆(f) =

I3(f)2

22436∆(f)3
.

Hence, we observe: I3(f) 6= 0 (that is, the catalecticant of the associated
form does not vanish), I2(f) = 0 if and only if I2(f) = 0, and ∆(f) = 0
if and only if I3(f) = 0.

Formula (3.8) shows that the map φ extends to the automorphism

φ̃ of P1 given by

ζ 7→ ζ

ζ − 1
.

Clearly, one has φ̃ 2 = id, that is, φ̃ is an involution. It preserves
P1 \ {1,∞}, which corresponds to the duality between the orbits O(qt)

and O(q−12/t) for t 6= 0,±6 noted above. Further, φ̃(1) = ∞, which
agrees with (3.7) and the fact that O3 is mapped onto O1. We also

have φ̃(∞) = 1, but this identity has no interpretation at the level of
orbits. Indeed, � cannot be equivariantly extended to an involution
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P(Q4
2)ss → P(Q4

2)ss as the fiber of the quotient P(Q4
2)ss// SL2 over the

point at infinity contains O1, which cannot be mapped onto O3 since
dimO1 < dimO3.

3.2. Ternary cubics. Let n = 3, d = 3. Every nondegenerate ternary
cubic is linearly equivalent to a cubic of the form

(3.10) ct(z1, z2, z3) := z3
1 + z3

2 + z3
3 + tz1z2z3, t3 6= −27

(see, e.g., Theorem 1.3.2.16 in [Sc]). The associated form of ct is easily
found to be

(3.11) ct(z1, z2, z3) := − 1

24(t3 + 27)
(tz3

1 + tz3
2 + tz3

3 − 18z1z2z3).

For t 6= 0, t3 6= 216 the cubic ct is nondegenerate, and in this case the
associated form of ct is proportional to ct, hence �2(ct) = ct. Below we
will see that the exceptional cubics c0, c6τ , with τ 3 = 1, are pairwise
linearly equivalent.

It is well-known (see, e.g., Theorem 1.3.2.16 in [Sc]) that P(Q3
3)ss

is the union of X3
3 (which coincides with P(Q3

3)s) and the following
three orbits that consist of strictly semistable forms: O1 := O(z1z2z3),
O2 := O(z1z2z3 + z3

3), O3 := O(z3
1 + z2

1z3 + z2
2z3) (the cubics lying in

O3 are called nodal). The dimensions of the orbits are 6, 7 and 8,
respectively. Observe that O1 is closed in P(Q3

3)ss and is contained
in the closures of each of O2, O3. We then see that � maps X3

3 onto
P(Q3

3)ss\(O2∪O3∪O4), where O4 := O(c0) (as explained below, O4 also
contains the other exceptional cubics c6τ , with τ 3 = 1). Further, note
that the 8-dimensional orbit O4 is mapped by � onto the 6-dimensional
orbit O1 (thus the morphism of the stabilizers of c0 and �(c0) is an
inclusion of a finite group into a two-dimensional group). Hence, �
restricts to an equivariant involutive automorphism of X3

3 \ O4, which
for t 6= 0, t3 6= 216 establishes a duality between the cubics C · ct and
(C−1)T · c−18/t with C ∈ SL3, therefore between the orbits O(ct) and
O(c−18/t) (see (2.7)).

To determine the induced map φ of GIT quotients, we recall that
the algebra of invariants C[Q3

3]SL3 is generated by the two Aronhold
invariants I4, I6, where, as before, the subscripts indicate the degrees
(see pp. 381–389 in [El]). One has

(3.12) ∆ = I2
6 + 64 I3

4,

and for a ternary cubic of the form

(3.13) f(z1, z2, z3) = az3
1 + bz3

2 + cz3
3 + 6dz1z2z3
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the values of I4 and I6 are calculated as

(3.14) I4(f) = abcd− d4, I6(f) = a2b2c2 − 20abcd3 − 8d6.

It then follows that the algebra C[X3
3 ]GL3 ' C[X3

3]SL3 is generated by
the invariant

(3.15) J :=
64 I3

4

∆
.

Hence, the quotient X3
3//GL3 ' X3

3// SL3 is the affine space C, and
P(Q3

3)ss// SL3 is identified with P1, where O1, O2, O3 project to the
point at infinity in P1.

Further, from formulas (3.10), (3.12), (3.14), (3.15) we find

(3.16) J(ct) = − t3(t3 − 216)3

2633(t3 + 27)3
for all t with t3 6= −27.

From identity (3.16) one obtains

(3.17) J(c0) = J(c6τ ) = 0 for τ 3 = 1,

which implies that the orbit O4 is given by the condition J = 0 and
that the four cubics c0, c6τ are indeed pairwise linearly equivalent.

Using (3.11), (3.16) we see

(3.18) J(ct) =
1

J(ct)
for all t 6= 0 with t3 6= 216.

Furthermore, the calculations leading to (3.18) also yield the following
identities for any f ∈ X3

3 :

(3.19)

I4(f) = − 1

212312∆(f)
, I6(f) = − I6(f)

215318∆(f)2
,

∆(f) = − I4(f)3

224336∆(f)4
.

Hence, we obtain: I4(f) 6= 0 (that is, the degree 4 Aronhold invariant of
the associated form does not vanish), I6(f) = 0 if and only if I6(f) = 0,
and ∆(f) = 0 if and only if I4(f) = 0.

Formula (3.18) shows that the map φ extends to the involutive au-

tomorphism φ̃ of P1 given by

ζ 7→ 1

ζ
.

This involution preserves P1 \ {0,∞}, which agrees with the duality
between the orbits O(ct) and O(c−18/t) for t 6= 0, t3 6= 216 established

above. Next, φ̃(0) = ∞, which corresponds to (3.17) and the facts
that O4 is mapped onto O1, and that I4(f) = 0 implies ∆(f) = 0.
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Also, one has φ̃(∞) = 0, but this identity cannot be illustrated by
a correspondence between orbits. Indeed, � cannot be equivariantly
extended to an involution P(Q3

3)ss → P(Q3
3)ss as the fiber of the quotient

P(Q3
3)ss// SL2 over the point at infinity contains O1, which cannot be

mapped onto O4 since dimO1 < dimO4.

Remark 3.1. We note that a cubic proportional to (3.11) previously
appeared in [Em] (see p. 405 therein) as a Macaulay inverse system for
the Milnor algebra Mct , but it has never been studied systematically. In
fact, we now know (see Corollary 3.3 in [AI1]) that the associated form
of any f ∈ Xd

n is an inverse system for Mf when regarded as an element

of Qn(d−2)
n . This result has been instrumental in our recent work on the

morphism Φ including the progress on Conjecture 1.1, and it will be
also utilized in the proof of Theorem 3.3 below (see Lemma 3.5). For
details on inverse systems we refer the reader to [Ma], [Em], [I] (the
brief survey given in [ER] is also helpful). We also note that, although
the Hessian H(f) is utilized in the definition of the associated form f
of f , it is in fact very different from f . Indeed, as shown in [DBP], for
binary quartics and ternary cubics, H(f) does not coincide with f up
to projective equivalence except in a few cases (see Propositions 4.1 an
5.1 therein). We will elaborate on this difference in Subsection 4.3.

If we regard X3
3 as the space of elliptic curves, the invariant J of

ternary cubics translates into the j-invariant, and one obtains an equi-
variant involution on the locus of elliptic curves with nonvanishing
j-invariant. It is well-known that every elliptic curve can be realized as
a double cover of P1 branched over four points (see, e.g., Exercise 22.37
and Proposition 22.38 in [Ha]). Therefore, it is not surprising that
the cases of binary quartics and ternary cubics considered above have
many similarities. What is perhaps surprising though is that the map
� for binary quartics and ternary cubics yields different involutions on
P1. It is natural to ask whether there exist any other involutions of P1

that arise from rational equivariant involutions on P(Q4
2) and P(Q3

3) as
above. The result of the next subsection provides a complete answer
to this question.

3.3. Uniqueness of rational equivariant involutions. In this sub-
section we classify rational SLn-invariant involutions

ι : P(Qdn) 99K P(Qdn)

for n = 2, d = 4 and n = 3, d = 3. Here the equivariance is understood
either as

(3.20) ι(C · f) = C · ι(f),
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or as

(3.21) ι(C · f) = (C−1)T · ι(f),

where C ∈ SLn and f lies in the domain of ι. The identity morphism
and the map � are respective examples of such involutions. The result
below asserts that there are no other possibilities.

THEOREM 3.2. For each pair n = 2, d = 4 and n = 3, d = 3 the
following holds:

(i) the identity morphism is the unique rational involution of P(Qdn)
satisfying (3.20);

(ii) the morphism � is the unique rational involution of P(Qdn) sat-
isfying (3.21).

Proof. Let n = 2, d = 4. Recall from Subsection 3.1 that every generic
binary quartic is linearly equivalent to some quartic qt = z4

1 +tz2
1z

2
2 +z4

2 ,
with t ∈ C, t 6= ±2, and that �(qt) = q−12/t if t 6= 0. Therefore, in order
to establish the theorem, it suffices to prove that in (i) (resp. (ii)) one
has ι(qt) = qt (resp. ι(qt) = q−12/t) for a generic t.

We first obtain part (i). For a generic t one can write

ι(qt) = α4,0z
4
1 + 4α3,1z

3
1z2 + 6α2,2z

2
1z

2
2 + 4α1,3z1z

3
2 + α0,4z

4
2 ,

where αi,j ∈ C[t]. Consider C =

(
0 i
i 0

)
. Since C · qt = qt for all t

and ι is equivariant, it follows that α4,0 = α0,4. Similarly, by consid-

ering C =

(
−i 0

0 i

)
, we see α3,1 = α1,3 = 0. Observe now that α4,0

does not vanish identically since otherwise ι would be a constant map.
Therefore, one can write

ι(qt) = z4
1 + αz2

1z
2
2 + z4

2 ,

with α := 6α2,2/α4,0 ∈ C(t).
As ι is a birational morphism, the assignment t 7→ α(t) extends to

an automorphism of P1, i.e. we have

(3.22) α(t) =
at+ b

ct+ d

for some

(
a b
c d

)
∈ GL2. Consider C =

(√
i 0

0 −i
√
i

)
. By observing

that C · qt = q−t for all t and using the equivariance of ι, we obtain
α(−t) = −α(t). This in turn implies that either b = c = 0 or a = d = 0.
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If b = c = 0, the fact that ι is an involution leads to a = ±d. Suppose
that a = −d hence ι(qt) = q−t. For

(3.23) C =
1√
2

(
1 1
−1 1

)
one computes

(3.24) C · qt = q−2t+12
t+2

.

The equivariance of ι then leads to a contradiction. If a = d = 0, then
utilizing matrix (3.23) with relation (3.24) once again, we conclude
b/c = −12.

Thus, we have obtained:

(3.25) either ι(qt) = qt or ι(qt) = q−12/t for a generic t ∈ C.

Since the second relation in (3.25) contradicts equivariance property
(3.20), it follows that ι is the identity morphism, and part (i) is estab-
lished.

Notice that an argument analogous to that for part (i) yields relations
(3.25) for part (ii) as well. Since the first relation in (3.25) contradicts
equivariance property (3.21), we obtain ι = �. This concludes the
proof for n = 2, d = 4.

Suppose now that n = 3, d = 3. As stated in Subsection 3.2, every
generic ternary cubic is linearly equivalent to some cubic
ct = z3

1 + z3
2 + z3

3 + tz1z2z3, with t ∈ C, t3 6= −27, and one has
�(ct) = c−18/t if t 6= 0. Thus, to prove the theorem, it suffices to
show that in (i) (resp. (ii)) one has ι(ct) = ct (resp. ι(ct) = c−18/t) for
a generic t.

We first obtain part (i). For a generic t one can write

ι(ct) = α3,0,0z
3
1 + 3α2,1,0z

2
1z2 + 3α1,2,0z1z

2
2 + α0,3,0z

3
2+

3α2,0,1z
2
1z3 + 6α1,1,1z1z2z3 + 3α0,2,1z

2
2z3+

3α1,0,2z1z
2
3 + 3α0,1,2z2z

2
3+

α0,0,3z
3
3 ,

where αi,j,k ∈ C[t]. Consider

C =

 0 −1 0
−1 0 0

0 0 −1

 .

Since C · ct = ct for all t and ι is equivariant, we immediately see
α3,0,0 = α0,3,0. A similar choice of C yields α0,3,0 = α0,0,3, thus we have
α3,0,0 = α0,3,0 = α0,0,3.
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Next, let τ 6= 1 satisfy τ 3 = 1 and consider

C =

 τ 0 0
0 τ 2 0
0 0 1

 .

Then again C · ct = ct for all t, and the equivariance of ι implies

α2,1,0 = α1,2,0 = α2,0,1 = α0,2,1 = α1,0,2 = α0,1,2 = 0.

It now follows that α3,0,0 does not vanish identically, thus one can write

(3.26) ι(ct) = z3
1 + z3

2 + z3
3 + αz1z2z3,

with α := 6α1,1,1/α3,0,0 ∈ C(t) having the form (3.22).
Further, setting

(3.27) C =

 τ 1/3 0 0
0 τ 1/3 0

0 0
1

τ 2/3


and observing that C ·ct = cτt for all t, we obtain using the equivariance
of ι that α(τt) = τα(t). This implies b = c = 0, hence a = ±d, with
the case a = d yielding that ι is the identity. Assume that a = −d,
thus ι(ct) = c−t. If

(3.28) C =
1

(3(τ 2 − τ))1/3

 1 1 1
τ τ 2 1
τ 2 τ 1

 ,

then

(3.29) C · ct = c−3t+18
t+3

,

and the equivariance of ι leads to a contradiction. This concludes the
proof for part (i).

We will now obtain part (ii). The same method leads to formula
(3.26) with α as in (3.22). Using matrix (3.27) and the equivariance
of ι, we see that in this case α(τt) = τ 2α(t), which yields a = d = 0.
Utilizing matrix (3.28) and appealing to relation (3.29), we conclude
b/c = −18. Therefore, ι(qt) = q−18/t for a generic t ∈ C. Hence ι = �,
which completes the proof of the theorem. 2

3.4. Projective duality. In this subsection we will see that for n = 2,
d = 4 and n = 3, d = 3 the map �, and therefore the orbit duality
induced by �, can be understood via projective duality. We will now
briefly recall this classical construction. For details the reader is re-
ferred to the comprehensive survey [T].



16 ALPER, ISAEV, AND KRUZHILIN

Let W be a complex vector space and P(W ) its projectivization.
The dual projective space P(W )∗ is the algebraic variety of all hyper-
planes in W , which is canonically isomorphic to P(W ∗). Let X be an
irreducible subvariety of P(W ) and Xreg the set of its regular points.

Consider the affine cone X̂ ⊂ W over X. For every x ∈ Xreg choose a

point x̂ ∈ X̂ lying over x. The cone X̂ is regular at x̂, and we consider

the tangent space Tx̂(X̂) to X̂ at x̂. Identifying Tx̂(X̂) with a subspace
of W , we now let Hx be the collection of all hyperplanes in W that

contain Tx̂(X̂) (clearly, this collection is independent of the choice of
x̂ over x). Regarding each hyperplane in Hx as a point in P(W )∗, we
obtain the subset

H :=
⋃

x∈Xreg

Hx ⊂ P(W )∗.

The Zariski closure X∗ of H in P(W )∗ is then called the variety dual to
X. Canonically identifying P(W )∗∗ with P(W ), one has the reflexivity
property X∗∗ = X. Furthermore, if X is a hypersurface, there exists a
natural map from Xreg to X∗, as follows:

ϕ : Xreg → X∗, x 7→ Tx̂(X̂) ⊂ W,

where x̂ ∈ X̂ is related to x ∈ Xreg as above.
Observe now that in each of the two cases n = 2, d = 4 and n = 3,

d = 3, for f ∈ Xdn the orbit O(f) is a smooth irreducible hypersurface in

Xdn, thus its closure O(f) in P(Qdn) is an irreducible (possibly singular)
hypersurface. Therefore, one can consider the map

(3.30) ϕf : O(f)reg → P(Qdn)∗

constructed as above. Also, recall that for n = 2, d = 4 or n = 3,
d = 3, the morphism Φ descends to the morphism

� : Xdn → P(Qd∗n ).

We are now ready to state the first main result of the paper, which
relates these two maps.

THEOREM 3.3. Let n = 2, d = 4 or n = 3, d = 3. For every
f ∈ Xdn the restrictions �

∣∣
O(f)

and ϕf
∣∣
O(f)

coincide upon the canonical

identification P(Qd∗n ) = P(Qdn)∗.

This theorem provides a clear explanation of the duality for orbits
of binary quartics and ternary cubics that we observed earlier in this
section. Indeed, let first n = 2, d = 4. Then the theorem yields that

for t 6= 0,±6 one has O(qt)
∗
' O(q−12/t) and O

∗
3 ' O1. By reflexivity

it then follows that O
∗
1 ' O3. However, since O1 is not a hypersurface,



ASSOCIATED FORMS OF BINARY QUARTICS AND TERNARY CUBICS 17

there is no natural map from O1 to its dual. This fact corresponds to
the impossibility to extend � equivariantly to O1.

Analogously, for n = 3, d = 3, the theorem implies that for t 6= 0

and t3 6= 216 we have O(ct)
∗
' O(c−18/t) and O

∗
4 ' O1. By reflexivity

one then has O
∗
1 ' O4. Again, since O1 is not a hypersurface, there is

no natural map from O1 to its dual. This agrees with the nonexistence
of an equivariant extension of � to O1.

3.5. Proof of Theorem 3.3. First, let n ≥ 2 and d ≥ 3 be arbitrary.
For a complex vector space W , let Gr(k,W ) denote the Grassmannian
of k-dimensional subspaces of W . Notice that Gr(dimCW − 1,W )
coincides with P(W )∗. It follows, for instance, from Corollary 3.3 in
[St] (see also the proof of Lemma 3.4 below), that for any f ∈ Xdn
the dimension of the subspace of Qdn spanned by the forms zifj, with
i, j = 1, . . . , n, is equal to n2.

We then define two maps from Xdn to Gr(n2,Qdn) as

(3.31) ψ1 : f 7→ Q1
nf1 + · · ·+Q1

nfn ⊂ Qdn
and

(3.32) ψ2 : f 7→ Tf (GLn ·f),

where in the right-hand sides the element f of Xdn is regarded as a form
in Xd

n and Tf (GLn ·f) as a subspace of Qdn. We will now show that
these two maps are in fact equal.

Lemma 3.4. One has ψ1 = ψ2.

Proof. For f ∈ Xd
n let σf : GLn → Qdn be the morphism defined by

σf (C) = C · f . Then the tangent space Tf (GLn ·f) is the image of the
differential dσf (e) of σf at the identity element e ∈ GLn.

Let {Eij} be the standard basis in the Lie algebra gln of GLn, where
Eij is the matrix whose (i, j)th element is 1 and all other elements are
zero. Then, if we regard dσf (e) as a linear transformation from gln to
Qdn, it is easy to compute that it maps Eij to −zjfi. This shows that
ψ1 and ψ2 indeed coincide as required. 2

Next, consider the map

(3.33) 	 : Xdn → P(Qn(d−2)
n )∗, f 7→ Wf ,

where Wf is the hyperplane in Qn(d−2)
n defined in (2.2). We will now

relate the morphism � to this map.

Lemma 3.5. The morphisms

� : Xdn → P(Qn(d−2)∗
n ) and 	 : Xdn → P(Qn(d−2)

n )∗
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coincide upon the canonical identification P(Qn(d−2)∗
n ) = P(Qn(d−2)

n )∗.

Proof. By formula (2.5), for f ∈ Xdn we see that �(f) is the hyperplane

in Qn(d−2)
n that consists of all forms

(3.34) g =
∑

i1+···+in=n(d−2)

(n(d− 2))!

i1! . . . in!
ai1,...,inz

i1
1 . . . z

in
n

satisfying the condition

(3.35)
∑

i1+···+in=n(d−2)

1

i1! . . . in!
µi1,...,in(f)ai1,...,in = 0,

where f is regarded as an element of Xd
n and µi1,...,in(f) are the coeffi-

cients from (2.5).
On the other hand, by Corollary 3.3 of [AI1], considering f as a form

in Xd
n and Φ(f) as an element of Qn(d−2)

n (see Remark 2.2), we have
that Φ(f) is a Macaulay inverse system for the Milnor algebra Mf .
This means that the ideal (f1, . . . , fn) in C[z1, . . . , zn] coincides with
Ann(Φ(f)), where for any polynomial h ∈ C[z1, . . . , zn] the annihilator
Ann(h) of h is defined as

Ann(h) :=

{
p ∈ C[z1, . . . , zn] | p

(
∂

∂z1

, . . . ,
∂

∂zn

)
(h) = 0

}
.

Therefore, Wf = Ann(Φ(f))∩Qn(d−2)
n , which immediately implies that

Wf consists of all forms g ∈ Qn(d−2)
n as in (3.34) satisfying (3.35). This

shows � = 	. 2

Proof of Theorem 3.3. In the cases n = 2, d = 4 and n = 3, d = 3
we have Gr(n2,Qdn) = P(Qdn)∗, and Lemma 3.4 shows that the two
morphisms ψ1, ψ2 : Xdn → P(Qdn)∗ defined in (3.31) and (3.32) are
equal. Further, ψ1 = 	 by (3.31) and (3.33), hence Lemma 3.5 implies
ψ1 = �, which yields ψ2 = �. Moreover, for every f ∈ Xdn the map
ϕf
∣∣
O(f)

from (3.30) is identical to ψ2

∣∣
O(f)

. It then follows that �
∣∣
O(f)

and ϕf
∣∣
O(f)

coincide for all f ∈ Xdn, which establishes the theorem. 2

4. The contravariants defined by Φ

In this section, we give an algebraic description of the map � for
binary quartics and ternary cubics, which utilizes classical covariants
and contravariants. Such descriptions can be produced in other situ-
ations as well, and, in order to further illustrate our method, we also
discuss the case of binary quintics.
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4.1. Covariants and contravariants. Recall that a polynomial
Γ ∈ C[Qdn × Cn] is said to be a covariant of forms in Qdn if for all
f ∈ Qdn, z ∈ Cn and C ∈ GLn the following holds:

Γ(f, z) = (detC)k Γ(C · f, C · z),

where k is an integer called the weight of Γ. Every homogeneous
component of Γ with respect to z is automatically homogeneous with
respect to f and is also a covariant. Such covariants are called homo-
geneous and their degrees with respect to f and z are called the degree
and order, respectively.

We may consider a homogenous covariant Γ of degree K and order
D as the SLn-equivariant morphism

Qdn → QDn ,
f 7→ (z 7→ Γ(f, z))

of degree K with respect to f , which maps a form f ∈ Qdn to the form
in QDn whose evaluation at z is Γ(f, z). We will abuse notation by
using the same symbol to denote both an element in C[Qdn × Cn] and
the corresponding morphism Qdn → QDn . Also, we write Γ(f) for the
form z 7→ Γ(f, z).

Covariants independent of z (i.e. of order 0) are called relative invari-
ants. For example, the pairs of functions I2, I3 and I4, I6 introduced in
Section 3 are relative invariants of binary quartics and ternary cubics,
respectively. Also, note that the discriminant ∆ is a relative invariant
of forms in Qdn of weight d(d− 1)n−1 (see Chapter 13 in [GKZ]).

Analogously, a polynomial Λ ∈ C[Qdn × Cn∗] is said to be a con-
travariant of forms in Qdn if for all f ∈ Qdn, z∗ = (z∗1 , . . . , z

∗
n) ∈ Cn∗ and

C ∈ GLn one has

Λ(f, z∗) = (detC)k Λ(C · f, C · z∗),

where k is a (nonnegative) integer called the weight of Λ and

C · z∗ := (z∗1 , . . . , z
∗
n)C−1.

Again, every contravariant splits into a sum of homogeneous ones, and
for a homogeneous contravariant its degrees with respect to f and z∗

are called the degree and class, respectively.
We may consider a homogenous contravariant Λ of degree K and

class D as the SLn-equivariant morphism

Qdn → SymD(Cn),

f 7→ (z∗ 7→ Λ(f, z∗))
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of degree K with respect to f . Upon the standard identification
SymD(Cn) = (SymD Cn∗)∗ = QD∗n induced by the polar pairing, this
morphism can be regarded as a map from Qdn to QD∗n . As above, we will
abuse notation by using the same symbol to denote both an element
in C[Qdn × Cn∗] and the corresponding morphisms Qdn → SymD(Cn),
Qdn → QD∗n . Also, we write Λ(f) for both the element of SymD(Cn)
and the element of QD∗n arising from f and Λ.

If n = 2, every homogeneous contravariant Λ yields a homogenous

covariant Λ̂ via the formula

(4.1) Λ̂(f)(z1, z2) := Λ(f)(−z2, z1), (z1, z2) ∈ C2,

where (−z2, z1) is viewed as a point in C2∗. Analogously, every homo-

geneous covariant Γ gives rise to a homogenous contravariant Γ̃ via the
formula

(4.2) Γ̃(f)(z∗1 , z
∗
2) := Γ(f)(z∗2 ,−z∗1), (z∗2 ,−z∗1) ∈ C2∗,

where (z∗2 ,−z∗1) is regarded as a point in C2. Under these correspon-
dences the degree and order of a covariant translate into the degree
and class of the corresponding contravariant and vice versa.

4.2. The contravariant defined by Φ. Recall that the morphism Φ
is a map

Φ: Xd
n → Qn(d−2)∗

n

defined on the locus Xd
n of nondegenerate forms. The coefficients

µi1,...,in that determine Φ (see (2.4), (2.5)) are elements of the coor-
dinate ring C[Xd

n] = C[Qdn]∆. Let pi1,...,in be the minimal integer such
that ∆pi1,...,in · µi1,...,in is a regular function on Qdn (see formula (2.6))
and

p = max{pi1,...,in | i1 + · · ·+ in = n(d− 2)}.
Then the product ∆pΦ defines the following morphism

∆pΦ: Qdn → Qn(d−2)∗
n , f 7→ ∆(f)pΦ(f),

which is a contravariant of weight pd(d− 1)n−1− 2 by Proposition 2.1.
Since the class of ∆pΦ is n(d− 2), it follows that its degree is equal to
np(d − 1)n−1 − n. Notice that this last formula implies p > 0 as the
degree of a contravariant is always nonnegative.

In this subsection, we show that for binary and ternary forms one has

p = 1. It then follows that for n = 2, 3 the product ∆Φ: Qdn → Q
n(d−2)∗
n

is a contravariant of degree n(d−1)n−1−n. In Subsections 4.3–4.5, we
study this contravariant explicitly for binary quartics, binary quintics
and ternary cubics in terms of well-known classical contravariants.

Proposition 4.1. If n = 2, 3 and d ≥ 3, then p = 1.
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Proof. First, let n be arbitrary. Recall that for f ∈ Xd
n the subspace

Wf introduced in (2.2) has codimension 1, and the line spanned by

the Hessian H(f) is complementary to it in the vector space Qn(d−2)
n .

Let K := dimCQn(d−2)−d+1
n and m1, . . . , mK be the standard mono-

mial basis in Qn(d−2)−d+1
n . Then Wf is spanned by the products fi mj,

i = 1, . . . , n, j = 1, . . . , K. Choose a basis ek(f) := fi
k
mj

k
in Wf , with

k = 1, . . . , N − 1, where N := dimCQn(d−2)
n . We note that the indices

ik, jk can be assumed to be independent of the form f if it varies in
some Zariski open subset U of Xd

n, and from now on we assume that

this is the case. Then for every g ∈ Qn(d−2)
n there are αk(f, g) ∈ C,

with i = 1, . . . , N − 1, and γ(f, g) ∈ C such that

(4.3) α1(f, g)e1(f) + · · ·+ αN−1(f, g)eN−1(f) + γ(f, g)H(f) = g.

Notice that γ(f, zi11 . . . z
in
n ) = µi1,...,in(f) (see (2.4)).

We now expand both sides of (4.3) with respect to the standard

monomial basis of Q2(d−2)
2 . As a result, we obtain a linear system of N

equations with the N unknowns αk(f, g), γ(f, g), k = 1, . . . , N−1. Let
A(f) be the matrix of this system and D(f) := detA(f). Clearly, the
entries of the first N − 1 columns of the matrix are linear functions of
the coefficients of the form f , whereas the entries of the Nth column are
homogeneous polynomials of degree n of these coefficients. Therefore,
D is a homogeneous polynomial of degree δ1 := N + n − 1 on Qdn.
Furthermore, since for every f and g the system has a solution, D does
not vanish on U , and the solution can be found by applying Cramer’s
rule. It then follows that the degree of the minimal denominator of
µi1,...,in does not exceed δ1.

At the same time, ∆pi1,...,in · µi1,...,in is a regular function on Qdn
(recall that pi1,...,in is the minimal integer with this property). It is
well-known that ∆ is an irreducible homogeneous polynomial of degree
δ2 := n(d − 1)n−1 on Qdn (the irreducibility of ∆ can be observed by
considering an incidence variety as on p. 169 in [Mu]). Therefore, the
degree of the minimal denominator of µi1,...,in is pi1,...,in · δ2.

We will now show that for n = 2 and n = 3 one has

(4.4) δ1 < 2δ2.

Indeed, using (2.1), we obtain

δ1 =
(n(d− 1)− 1)!

(n− 1)!(n(d− 2))!
+ n− 1,
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which yields

δ1 =


2d− 2, if n = 2,

9d2 − 27d+ 24

2
, if n = 3.

Then for n = 2 we see δ1 = δ2, and after some calculations it follows
that for n = 3 inequality (4.4) holds. This implies pi1,...,in ≤ 1, and the
proof is complete. 2

Remark 4.2. For n = 2 in the above proof one has 2K = N − 1, hence
D(f) does not vanish for all f ∈ Xd

2 . In other words,

{f ∈ Qd2 : D(f) = 0} ⊂ {f ∈ Qd2 : ∆(f) = 0}.
Furthermore, in this case δ1 = δ2 = 2d − 2. It then follows that D
and ∆ coincide up to a scalar factor. Thus, an interesting byproduct
of the proof of Proposition 4.1 is the fact that for any binary form f
the discriminant of f can be computed as the determinant of A(f) up
to scale.

Remark 4.3. It is not hard to see that inequality (4.4) also holds for
n = 4 and d ≤ 6, with n = 4, d = 7 being the first case when it fails.
In fact, arguing as in the proof of Proposition 4.1, one can derive a
certain estimate in terms of n and d on the power of ∆ that can occur
in the minimal denominator of µi1,...,in .

4.3. Binary quartics. Let n = 2, d = 4. In this case ∆Φ is a con-
travariant of weight 10, degree 4 and class 4. We have the following
identity of covariants of weight 6 (see (4.1)):

(4.5) ∆̂Φ =
1

2733
I2H −

1

24
I3id,

where H is the Hessian, I2, I3 the invariants of degrees 2, 3, respectively,
defined in Subsection 3.1, and id : f 7→ f the identity covariant. To
verify (4.5), it is sufficient to check it for the quartics qt introduced
in (3.1). For these quartics the validity of (4.5) is a consequence of
formulas (3.2)–(3.4).

Observe that formula (4.5) is not a result of mere guesswork; it
follows naturally from Proposition 4.1 and an explicit description of
the algebra of covariants of binary quartics. Indeed, this algebra is
generated by I2, I3, the Hessian H (which has degree 2 and order 4),
the identity covariant id (which has degree 1 and order 4), and one more
covariant of degree 3 and order 6 (see pp. 180–181 in [El]). Therefore

∆̂Φ, being a covariant of degree 4 and order 4 by Proposition 4.1, is
necessarily a linear combination of I2H and I3id. The coefficients in
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the linear combination can be determined by computing ∆Φ, I2H and
I3id for particular nondegenerate quartics of simple form.

Formula (4.5) yields an expression for the morphism Φ, hence �, via
I2, I3 and H. Namely, for f ∈ X4

2 we obtain

(4.6) �(f) =
1

2733
I2(f)H(f)(−z∗2 , z∗1)− 1

24
I3(f)f(−z∗2 , z∗1),

where the right-hand side is viewed as an element of P(Q4∗
2 ). One

might hope that formula (4.6) provides an extension of � beyond X4
2.

However, for f = z2
1z

2
2 the right-hand side of (4.6) vanishes, which

agrees with the fact, explained in Subsection 3.1, that � does not have
a natural continuation to the orbit O1 = O(z2

1z
2
2).

In the remainder of this subsection we think of Φ as a map from
X4

2 to Q4
2, hence of ∆Φ as a self-map of Q4

2 (see Remark 2.2). From
formulas (3.9) we then see

(4.7) I2 ◦ (∆Φ) =
∆I2

2833
, I3 ◦ (∆Φ) = − ∆2

21236
.

Furthermore, one can analogously compute

(4.8) (∆Φ) ◦ (∆Φ) = − I3∆2

22036
id,

which verifies the fact, observed in Subsection 3.1, that the rational
map � is an involution.

We will now derive explicit formulas for the Hessian of the associated
form of a binary quartic f and for the associated form of the Hessian
of f . In effect, we calculate the compositions H ◦ (∆Φ) and (∆Φ) ◦H.
These formulas are interesting in their own right as they provide a
better understanding of associated forms and their relation to classical
covariants. In particular, they emphasize the difference between H(f)
and the associated form of f noted in Remark 3.1.

By substituting (4.5) into (4.8) while appealing to formulas (4.7), we
obtain the identity

I2H ◦ (∆Φ) = −∆

[
I3ĩd

32
+

∆Φ

2

]
,

where the operation ˜ is defined as in (4.2). Applying (4.5) again, we
establish the relation

(4.9) H ◦ (∆Φ) = −∆H̃

2833
,
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which for every f ∈ X4
2 leads to the following expression for the Hessian

of the associated form f of f :

H(f)(z) = −H(f)(−z2, z1)

2833∆(f)
.

Further, by composing each side of formula (4.5) with H and using
the identities

I2 ◦H = 2633I2
2 , I3 ◦H = 21036I2

3 − 2933I3
2 ,

H ◦H = 21036I3id− 2633I2H,

we obtain the relation

(4.10) (∆Φ) ◦H = 2936I2
2I3ĩd− 2636I2

3H̃,

which for f ∈ Q4
2 with H(f) ∈ X4

2 yields an expression of the associated
form of H(f) via classical covariants.

Above we calculated the compositionsH◦(∆Φ) and (∆Φ)◦H in (4.9),
(4.10) from formulas (4.5), (4.7), (4.8). On the other hand, identities
(4.9), (4.10) can be also derived analogously to the relations in (3.9),
and one can then obtain (4.8) from (4.5), (4.7), (4.9).

4.4. Binary quintics. Descriptions of the map Φ in terms of standard
covariants can be also obtained for binary forms of certain degrees
higher than 4, but the computations are more involved. Here we briefly
sketch our calculations for the case of binary quintics, i.e. for n = 2,
d = 5. By Proposition 4.1, in this situation ∆Φ is a contravariant of
weight 18, degree 6 and class 6.

A generic binary quintic f ∈ Q5
2 is linearly equivalent to a quintic

given in the Sylvester canonical form

(4.11) f = aX5 + bY 5 + cZ5,

whereX, Y , Z are linear forms satisfyingX+Y+Z = 0 (see, e.g., p. 272
in [El]). The algebra of invariants of binary quintics is generated by
invariants of degrees 4, 8, 12, 18 with a relation in degree 36, and the
algebra of covariants is generated by 23 fundamental covariants (see
[Sy]), which we will write as Ci,j where i is the degree and j is the
order.
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For f ∈ Q5
2 given in the form (4.11) the covariants relevant to our

calculations are computed as follows:

C4,0(f) = a2b2 + b2c2 + a2c2 − 2abc(a+ b+ c),

C8,0(f) = a2b2c2(ab+ ac+ bc),

C5,1(f) = abc(bcX + acY + abZ),

C2,2(f) = abXY + acXZ + bcY Z,

C3,3(f) = abcXY Z,

C4,4(f) = abc(aX4 + bY 4 + cZ4),

C1,5(f) = f = aX5 + bY 5 + cZ5,

C2,6(f) =
H(f)

400
= abX3Y 3 + bcY 3Z3 + acX3Z3.

For instance, the discriminant can be written as

∆ = C2
4,0 − 128C8,0.

The vector space of covariants of degree 6 and order 6 has dimension
4 and is generated by the products

C4,0C2,6, C1,5C5,1, C2
3,3, C3

2,2, C2,2C4,4

satisfying the relation

C4,0C2,6 − C1,5C5,1 + 9C2
3,3 − C3

2,2 + 2C2,2C4,4 = 0.

One can then explicitly compute

∆̂Φ =
1

20
C4,0C2,6 −

3

50
C1,5C5,1 +

27

10
C2

3,3 −
1

10
C3

2,2.

4.5. Ternary cubics. Let n = 3, d = 3. By Proposition 4.1, in this
case ∆Φ is a contravariant of weight 10, degree 9 and class 3. Recall
that the algebra of invariants of ternary cubics is freely generated by the
invariants I4, I6 defined in Subsection 3.2, and the ring of contravariants
is generated over the algebra of invariants by the Pippian P of degree
3 and class 3, the Quippian Q of degree 5 and class 3, the Clebsch
transfer of the discriminant of degree 4 and class 6, and the Hermite
contravariant of degree 12 and class 9 (see [C], [MT]). For a ternary
cubic of the form (3.13), the Pippian and Quippian are calculated as
follows:

P(f)(z∗) = −d(bcz∗31 + acz∗32 + abz∗33 )− (abc− 4d3)z∗1z
∗
2z
∗
3 ,

Q(f)(z∗) = (abc− 10d3)(bcz∗31 + acz∗32 + abz∗33 )−
6d2(5abc+ 4d3)z∗1z

∗
2z
∗
3 .
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Since any contravariant of degree 9 and class 3 is a linear combination
of I6P and I4Q, it is easy to compute

(4.12) ∆Φ = − 1

36
I6P− 1

27
I4Q.

The above expression can be verified directly by applying it to the
cubics ct defined in (3.10) and using formulas (3.11), (3.12), (3.14).

Identity (4.12) provides an expression for Φ, therefore �, in terms of
I4, I6, P and Q. Namely, on X3

3 we have

(4.13) � = − 1

36
I6P− 1

27
I4Q,

where the right-hand side is regarded as a morphism X3
3 → P(Q3∗

3 ).
One might think that formula (4.13) yields a continuation of � beyond
X3

3. However, for f = z1z2z3 the right-hand side of (4.13) is zero, which
illustrates the obstruction to extending the morphism � to the orbit
O1 = O(z1z2z3) discussed in Subsection 3.2.

Thinking of Φ as a map from X3
3 to Q3

3, hence of ∆Φ as a self-map
of Q3

3, analogously to formula (4.8) for binary quartics we obtain

(4.14) (∆Φ) ◦ (∆Φ) = − I2
4∆6

221330
id,

which agrees with the fact, established in Subsection 3.2, that the ra-
tional map � is an involution. Formula (4.14) can be verified either
analogously to the relations in (3.19) or by using (4.12) together with
the expressions

(4.15)

I4 ◦ (∆Φ) = − ∆3

212312
, I6 ◦ (∆Φ) = − I6∆4

215318
,

P ◦ (∆Φ) =
H∆2

210312
, Q ◦ (∆Φ) = −H I6∆3

215317
− I2

4∆3id

29315
.

The first two equations in (4.15) follow from (3.19), and the remaining
two can be derived in a similar way.
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