
RECASTING RESULTS IN EQUIVARIANT GEOMETRY
AFFINE COSETS, OBSERVABLE SUBGROUPS AND EXISTENCE OF GOOD QUOTIENTS

JAROD D. ALPER AND ROBERT W. EASTON

ABSTRACT. Using the language of stacks, we recast and generalize a selection of results in
equivariant geometry.

1. INTRODUCTION

When an algebraic groupG acts on a varietyX , there is a precise dictionary between the
G-equivariant geometry of X and the geometry of the quotient stack [X/G]. This is typ-
ical of the strong interplay between equivariant geometry and algebraic stacks. Indeed,
results (as well as their proofs) in the theory of algebraic stacks are often inspired by anal-
ogous results in equivariant geometry. As the simplest stacks are quotient stacks, they are
fertile testing grounds for more general results. Conversely, algebraic stacks can be quite
useful for proving results in equivariant geometry. The purpose of the present paper is
to provide some examples of this power, reproving and generalizing several theorems in
equivariant geometry via the language of algebraic stacks.

After giving a brief overview of algebraic stacks in Section 2, we begin in Section 3
by summarizing the relationship between the equivariant geometry of a scheme and the
geometry of its corresponding quotient stack. In Section 4, we review the classical notion
of a good quotient and the more modern notion of a good moduli space, and explore the
relationship between them. As a result, we recover and generalize [BBŚ97, Thm. B]:

Theorem 1.1. Let G → S be an affine, linearly reductive group scheme acting on an algebraic
space X , and suppose X admits a G-invariant affine morphism f : X → Z to an algebraic space.
Then there exists a good quotient π : X → Y with Y an algebraic space.

Note in particular that the normality hypothesis of [BBŚ97, Thm. B] has been removed,
thereby answering [BBŚ97, Question pg. 149].

In Section 5, we quickly recover Matsushima’s theorem (see [Mat60], [BB63], [Hab78]
and [Ric77]) using tools developed in Section 4:

Theorem 1.2. Suppose G→ S is an affine, linearly reductive group scheme and H ⊆ G is a flat,
finitely presented, separated subgroup scheme. Then the following are equivalent:

(i) H → S is linearly reductive;
(ii) G/H → S is affine;

(iii) the functor F 7→ IndGHF from QCohH(S) to QCohG(S) is exact.
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This is a prototypical example of the power of algebraic stacks in the the study of equi-
variant problems. (This theorem was also proved in [Alp08, Thm. 12.15] using the same
techniques, but we include the proof again here to emphasize the convenience of the lan-
guage of stacks.)

Section 6 focuses on properties of observable subgroup schemes. When working over a
field, a subgroup scheme H ⊆ G is observable if every finite dimensional H-representation
is a sub-H-representation of a finite dimensional G-representation. We extend the defini-
tion to an arbitrary base scheme in Definition 6.4. We find the following characterization
of such subschemes:

Theorem 1.3. Let G → S be a flat, finitely presented, quasi-affine group scheme and H ⊆ G a
flat, finitely presented, quasi-affine subgroup scheme. The following are equivalent:

(i) H is observable;
(ii) for every quasi-coherentOS[H]-moduleF , the counit morphism of the adjunction, IndGHF →
F , is a surjection of OS[H]-modules;

(iii) BH → BG is quasi-affine;
(iv) G/H → S is quasi-affine.

If S is noetherian, then the above are also equivalent to:

(iv) every coherent OS[H]-module is a quotient of a coherent OS[G]-module; and
(v) for every coherent OS[H]-module F , the counit morphism of the adjunction, IndGHF → F ,

is a surjection of OS[H]-modules.

The proof of the above theorem follows directly from the observation that a representable
morphism f : X → Y of algebraic stacks is quasi-affine if and only if the adjunction
morphism f ∗f∗F → F is surjective for all quasi-coherentOX -modules F (see Proposition
6.2).

Lastly, in Section 7 we analyze the existence of good moduli spaces, ultimately recov-
ering a modified version of [BBŚ97, Thm. C]:

Theorem 1.4. Let G be a connected algebraic group acting on a scheme X of finite type over an
algebraically closed field k, and suppose that for every pair of points x, y ∈ X there exists a G-
invariant open subscheme Uxy ⊆ X that contains x and y and admits a good quotient. Then X
admits a good quotient.

Note that here we assume the groupG is connected, but not necessarily reductive. In fact,
it appears the proof of [BBŚ97, Thm. C] is incomplete, as the constructibility of certain
subsets is never verified (see Remark 7.14). It is in the verification of that constructibility
that we need to impose the connectedness hypothesis, as well as the reason we need to
work with group actions rather than more general algebraic stacks. We expect, however,
a stronger version of the above theorem (as well as of Lemma 7.13) to hold.

Remark 1.5. It is also possible to show that an analogue of [BBŚ97, Thm. A] holds using
similar—but significantly more involved—methods.
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2. ALGEBRAIC STACKS

We begin with a few words on algebraic stacks. The reader familiar with these objects
may comfortably skip to Section 3, below. For those less familiar, we offer the following
brief overview. Algebraic stacks are, at their most basic level, a generalization of schemes.
Algebraic stacks arise naturally in the context of moduli problems as they provide geo-
metric objects which represent the moduli problem.

In a moduli problem, one is generally interested in analyzing a collection of objects
of a certain type, e.g., of curves of a fixed genus g. One would like this collection to be
endowed with a structure beyond that of merely a set, but rather something closer to
that of a space, so that, for example, a curve in the space would correspond to a ”nicely
varying” (i.e., flat) family of objects over the curve. In algebraic geometry, we would
ideally prefer a moduli spaces to have the structure of a variety, so that we may then
bring to bear on them our full arsenal of algebro-geometric tools. Properties deduced
about moduli spaces are clearly of great significance, as they reveal universal facts about
the objects being parameterized.

Unfortunately, it was discovered early on that some moduli spaces could not exist as
schemes, e.g., the moduli space of elliptic curves. The culprit is the existence of automor-
phisms of some of the objects being parameterized; this prevents the representability of
the moduli functor by a scheme. In the seminal papers by Deligne and Mumford [DM69]
and Artin [Art74], the concept of an algebraic stack was introduced. Algebraic stacks have
proved to be exceptionally convenient geometric objects to study moduli problems.

An algebraic stack is a categorical object possessing many of the excellent functorial
properties one would hope for (and need) when studying moduli problems. Its definition
also includes sufficient additional properties to tie it closely to the world of schemes (and
algebraic spaces) and make the extension of algebraic geometry to stacks possible. Most
notably, by definition every algebraic stack X admits a smooth surjection from an alge-
braic space, X → X , which ones thinks of as an atlas for the stack, much as in the world
of manifolds. Many properties of algebraic stacks are understood (or even defined) by
pulling back to the covering algebraic space X .

The precise definition of an algebraic stacks requires a fairly substantial amount of def-
initions and exposition. We direct the interested reader to the following references, which
explain stacks in greater detail and clarity than we could hope to achieve here. This list is
by no means exhaustive and should be viewed merely as a starting point in the study of
stacks. A short and friendly introduction to the theory is [Fan01]. For a more technical,
yet still concise overview, the reader might consider [Vis89, Appendix]. A very thorough
development is [LMB00]; as of this writing, it is the only currently published book on
stacks. The most exhaustive reference, and likely the best source for the most up-to-date
definitions and properties, is [spa].

3



Notation and Conventions 2.1. Throughout this paper, all schemes are assumed quasi-
separated. Let S be a scheme. Recall that an algebraic space over S is a sheaf of sets X
on the big étale site (Sch/S)Et of schemes over S such that:

(i) ∆X/S : X → X ×S X is representable by schemes and quasi-compact; and
(ii) there exists an étale, surjective map U → X with U a scheme.

An algebraic stack over S is a stack X over (Sch/S)Et such that:

(i) ∆X/S : X → X ×S X is representable, separated and quasi-compact; and
(ii) there exists a smooth, surjective map X → X with X an algebraic space.

We note that there is confusion in the literature on the definition of an algebraic stack.
Deligne-Mumford require in condition (ii) of an algebraic stack the existence of an étale
cover; such stacks are now commonly referred to as Deligne-Mumford stacks. The defi-
nition of an algebraic stack above is the same as is given in [LMB00]. In [Art74], Artin
introduces the above definition but assumes in addition that X is locally finite type over
an excellent Dedekind domain. Often in research articles authors will drop the separated
and quasi-compact condition from the diagonal in condition (i). See [spa] for a develop-
ment of the theory of algebraic stacks without any condition on the diagonal.

Given an algebraic stack X , we denote by |X | the topological space whose points corre-
spond to equivalence classes of OS-field-valued points of X (see [LMB00, Chap. 5]). Any
point x ∈ |X | has a residue field k(x), which is the coarse moduli space of the residue
gerbe Gx in X ; furthermore, there exists a representative Spec k → X of x with k/k(x)
finite (see [LMB00, Chap. 11], [Ryd10a, Thm B.2]).

3. G-EQUIVARIANT GEOMETRY OF X VS. GEOMETRY OF [X/G]

For simplicity, assume momentarily S = Spec k, with k an algebraically closed field.
If G → Spec k is a finite type, affine group scheme acting on a finite type k-scheme X ,
then we have the following dictionary between the G-equivariant geometry of X and the
geometry of [X/G]:

G-equivariant geometry of X Geometry of [X/G]

orbit of x ∈ X(k) point Spec k → [X/G]
G-invariant morphism X → Z morphism [X/G]→ Z

Γ(X,OX)G Γ([X/G],O[X/G])
quasi-coherent OX [G]-module F quasi-coherent O[X/G]-module F

Γ(X,F )G Γ([X/G],F)
G-linearization on X line bundle on [X/G]

geometric quotient X → Y coarse moduli space [X/G]→ Y
good quotient X → Y good moduli space [X/G]→ Y
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Example 3.1. Suppose X = Spec k is a point, and write BG = [Spec k/G]. Then quasi-
coherent (resp., coherent) OBG-modules correspond to G-representations (resp., of finite
dimension).

Remark 3.2.

(i) Technically, geometric quotients and coarse moduli spaces do not precisely agree
under this dictionary. For an action of G on X , a geometric quotient X → Y is not
necessarily a categorical quotient (see [Kol97, Example 2.18]) which is a prerequisite
condition for [X/G]→ Y to be a coarse moduli space. However, they do agree in the
case of proper group actions; see [Kol97, Rk. 2.20], [Ryd11, §7].

(ii) The dictionary between good quotients and good moduli spaces is made precise in
Section 4.

Returning now to the general case, suppose G → S is a flat, separated and quasi-
compact group scheme over an arbitrary base S. As usual, denote BG = [S/G]. Then
a quasi-coherent (resp., coherent) OBG-module corresponds to a quasi-coherent (resp.,
coherent) OS[G]-module. (Recall that an OS[G]-module is an OS-module F together with
a lifting of the action of G on S to an action of G on F ; see [Mum65, §1.3] for the case of
invertible sheaves.)

A morphism H → G of flat, separated and quasi-compact group schemes induces a
morphism f : BH → BG of algebraic stacks. If, in addition, H ↪→ G is a subgroup
scheme, then the diagram below is cartesian:

G/H //

��

S

��
BH

f // BG.

Using descent theory, we can therefore relate properties of the morphism f : BH → BG
to properties of the quotient G/H → S.

If G is an OS[G]-module, then f ∗G is the OS[H]-module with the same underlying OS-
module as G, but with H-action induced from the morphism H → G. If F is an OS[H]-
module, then IndGHF := f∗F is the induced OS[G]-module. There is a natural morphism
IndGHF → F , corresponding to the adjunction morphism f ∗f∗F → F .

4. GOOD QUOTIENTS VS. GOOD MODULI SPACES

Good quotients. Although the notion of a good quotient was first explicitly written down
by Seshadri in [Ses63, Definition 1.5], the idea was already implicit in Mumford’s theory
of quotients by reductive groups (see [Mum65]).

Definition 4.1. Suppose G → S is an affine group scheme acting on an algebraic space
X . We say a morphism π : X → Y to an algebraic space is a good quotient if the following
hold:

(i) π is surjective, affine and G-invariant;
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(ii) OY → π∗(OX)G is an isomorphism; and
(iii) for every morphism Y ′ → Y with base change π′ : X×Y Y ′ → Y ′, the following hold:

(a) for each closed G-invariant subspace Z ′ ⊆ X ×Y Y ′, the image π′(Z ′) ⊆ Y ′ is
closed; and

(b) for each pair of closed G-invariant disjoint subspaces Z ′1, Z ′2 ⊆ X ×Y Y ′, the
images π′(Z ′1), π′(Z ′2) are disjoint.

Remark 4.2.

(i) In the case G → S is linearly reductive, for π : X → Y to be a good quotient it
suffices to require only that π is affine and G-invariant, and OY → π∗(OX)G is an
isomorphism (see Corollary 4.14).

(ii) As in other papers (see [BBŚ97], [BB02] and [spa, Tag 04AC]), we have removed the
assumption in [Ses63, Definition 1.5] that X and Y are schemes. We note that the
argument of [Mum65, Remark 0.5] implies only that a good quotient is universal for
G-equivariant maps to schemes. However, [Alp08, Theorem 6.6] implies that good
quotients are universal for G-equivariant maps to algebraic spaces when X is noe-
therian; see Corollary 4.15.

(iii) As in [BB02] and [spa, Tag 04AC], we require that property (iii) holds for arbitrary
base change. We note, however, that it is equivalent to restrict to flat morphisms
Y ′ → Y .

Linearly reductive groups. Let QCoh(S) denote the category of quasi-coherentOS-modules,
and QCohG(S) denote the category of quasi-coherent OS[G]-modules.

Definition 4.3. A flat, finitely presented, affine group scheme G → S is linearly reductive
if the functor F 7→ FG from QCohG(S) to QCoh(S) is exact.

Remark 4.4. It is not essential to assume G → S is affine (cf. [Alp08, Chapter 12]). It is
only made here to simplify the discussion.

The following is well known (see, for instance, [Alp08, Proposition 12.6]):

Proposition 4.5. Let G → Spec k be a finite type, affine group scheme, with k a field. The
following are equivalent:

(i) G is linearly reductive;
(ii) the functor V 7→ V G from G-representations to vector spaces is exact;

(iii) the functor V 7→ V G from finite-dimensional G-representations to vector spaces is exact;
(iv) every G-representation is completely reducible;
(v) every finite-dimensional G-representation is completely reducible; and

(vi) for every finite-dimensional G-representation V and nonzero v ∈ V G, there exists F ∈
(V ∨)G with F (v) 6= 0.

Cohomologically affine morphisms. For an algebraic stack X , let QCoh(X ) denote the
category of quasi-coherent OX -modules.

Definition 4.6. ([Alp08, Definition 3.1]) A morphism f : X → Y of algebraic stacks is
cohomologically affine if it is quasi-compact and the push-forward functor F 7→ f∗F from
QCoh(X ) to QCoh(Y) is exact.
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Remark 4.7. Cohomological affineness possesses several nice properties, such as:

(i) (Serre’s criterion) If f : X → Y is an arbitrary morphism of algebraic spaces, then f
is cohomologically affine if and only if f is affine. More generally, if f : X → Y is a
representable morphism of algebraic stacks and Y has quasi-affine diagonal, then f
is cohomologically affine if and only if f is affine.

(ii) A flat, finitely presented, affine group scheme G → S is linearly reductive if and
only if BG→ S is cohomologically affine.

(iii) Cohomologically affine morphisms are stable under composition and are local on
the target under faithfully flat morphisms.

(iv) If f : X → Y is a cohomologically affine morphism of algebraic stacks and Y has
quasi-affine diagonal, then for any morphism Y ′ → Y of algebraic stacks, the base
change X ×Y Y ′ → Y ′ is cohomologically affine.

See [Alp08, Chapter 3] for references and additional details.

We note the following interesting and well-known consequence of these properties,
which stresses the necessity of quasi-affineness of the diagonal in (iv), above:

Proposition 4.8. If G→ SpecA is a finite type, quasi-affine group scheme over an Artin ring A,
then G→ SpecA is affine.

Proof. We may assumeA = k is a field, since a scheme is affine if and only if its reduction is
affine. Observe that ifG→ Spec k is any finite type group scheme, then π : Spec k → BG is
cohomologically affine. Indeed, the push-forward by π of a k-vector space V corresponds
to the G-representation V ⊗k Γ(G,OG), where Γ(G,OG) is the left regular representation
of G, and this functor is clearly exact. If G → Spec k is quasi-affine, then BG → Spec k
has quasi-affine diagonal. Thus the base change G ∼= Spec k ×BG Spec k → Spec k is
cohomologically affine, and hence by Serre’s criterion (Remark 4.7) affine. �

Good moduli spaces.

Definition 4.9. ([Alp08, Definition 4.1]) Let X be an algebraic stack. We say a quasi-
compact morphism to an algebraic space, φ : X → Y , is a good moduli space if:

(i) φ is cohomologically affine; and
(ii) OY → φ∗OX is an isomorphism.

We summarize the basic properties of good moduli spaces:

Proposition 4.10. ([Alp08, Theorems 4.16 and 6.6],[Alp10a, Theorem 6.3.3]) Let X be an
algebraic stack and φ : X → Y a good moduli space. Then:

(i) φ is surjective, universally closed and universally submersive;
(ii) if Z1, Z2 are closed substacks of X , then

imZ1 ∩ imZ2 = im(Z1 ∩ Z2),

where the intersections and images are scheme theoretic;
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(iii) for each algebraically closed OS-field k, there is an equivalence relation defined on the set of
isomorphism classes of k-valued points [X (k)], given by x1 ∼ x2 ∈ [X (k)] when {x1} ∩
{x2} 6= ∅ in |X ×S k|, which induces a bijective map [X (k)]/∼ → Y (k);

(iv) if X is locally noetherian, then φ is universal for maps to algebraic spaces (that is, for any
morphism to an algebraic space ψ : X → Z, there exists a unique map ξ : Y → Z such that
ξ ◦ φ = ψ);

(v) if X is locally noetherian, then Y is locally noetherian and φ∗ preserves coherence;
(vi) if X is finite type over a noetherian scheme S, then Y is finite type over S; and

(vii) if Y ′ → Y is any morphism of algebraic spaces, then the base change X ×Y ′ Y → Y ′ is a
good moduli space.

Remark 4.11. The property of being a good moduli space also descends under faithfully
flat morphisms. See [Alp08, Chapter 4] for further properties and a systematic develop-
ment of the theory. We emphasize that other than (iv) and (vi), the proofs of the above
properties are quite elementary.

Relationship between good quotients and good moduli spaces. We begin with:

Lemma 4.12. Let G → S be an affine, linearly reductive group scheme acting on an algebraic
spaceX , and letX → Y be aG-invariant morphism. Then the corresponding morphism [X/G]→
Y is cohomologically affine if and only if X → Y is affine.

Proof. Suppose [X/G]→ Y is cohomologically affine. SinceX → [X/G] is affine (asG→ S
is affine), the compositionX → [X/G]→ Y is cohomologically affine, and therefore affine
(by Serre’s criterion, Remark 4.7(i)). Conversely, if X → Y is affine, consider the trivial
action of G on Y . Since G → S is linearly reductive, BG → S is cohomologically affine.
Since [X/G] → Y is the composition of the affine morphism [X/G] → [Y/G] and the
cohomologically affine morphism [Y/G] → Y (the base change of BG → S by Y → S), it
is cohomologically affine. �

Proposition 4.13. LetG→ S be an affine, linearly reductive group scheme acting on an algebraic
space X . Let π : X → Y be a G-invariant morphism. Then φ : [X/G] → Y is a good moduli
space if and only if:

(i) π is affine; and
(ii) OY → π∗(OX)G is an isomorphism.

Proof. Since there is a canonical isomorphism φ∗O[X/G]
∼= π∗(OX)G, condition (ii) above is

equivalent to condition (ii) of Definition 4.9. The previous lemma shows that condition
(i) is equivalent to condition (i) of Definition 4.9. �

In particular, we can reinterpret the definition of a good quotient in the case of an action
by an affine, linearly reductive group scheme.

Corollary 4.14. If G → S is an affine, linearly reductive group scheme acting on an algebraic
space X , then π : X → Y is a good quotient if and only if:

(i) π is an affine G-invariant morphism; and
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(ii) OY → π∗(OX)G is an isomorphism.

Proof. This follows from Propositions 4.10 and 4.13. �

Of course, one can show the above corollary directly without recourse to the theory of
stacks and good moduli spaces. However, we note that Proposition 4.10(iv) implies the
uniqueness of good quotients in the category of algebraic spaces. We know of no direct
proof of this result, so the language of stacks and good moduli spaces seems quite advan-
tageous in this case.

Corollary 4.15. Let G → S be an affine, linearly reductive group scheme acting on a noetherian
algebraic space X . Suppose π : X → Y is a good quotient. Then for any G-invariant morphism
ϕ : X → Z to an algebraic space Z, there is a unique morphism Ψ : Y → Z such that ϕ =
Ψ ◦ π. �

We can also immediately deduce:

Proposition 4.16. Suppose an algebraic stack X admits a cohomologically affine morphism f :
X → Z to an algebraic space Z. Then there exists a good moduli space φ : X → Y .

Proof. Let Y = SpecZ f∗OX and φ : X → Y be the canonical morphism (hence OY →
φ∗OX is trivially an isomorphism). Consider the 2-cartesian diagram, in which the top
composition is φ:

X
(id,f)

//

{{vvvvvvvvvv
X ×Z Y

p2 //

xxqqqqqqqqqq

##HHHHHHHHH Y

��?
??

??
??

?

Y
∆ // Y ×Z Y X // Z

Since Y → Z is affine, so is Y → Y ×Z Y and hence X → X ×Z Y . Since X → Z
is cohomologically affine and Z has quasi-affine diagonal (as it is an algebraic space),
X ×Z Y → Y is cohomologically affine. Therefore, φ is cohomologically affine. �

We can now prove Theorem 1.1:

Theorem 1.1. Let G → S be an affine, linearly reductive group scheme acting on an algebraic
space X , and suppose X admits a G-invariant affine morphism f : X → Z to an algebraic space.
Then there exists a good quotient π : X → Y with Y an algebraic space.

Proof. If Y = SpecZ f∗(OX)G, then the induced morphism π : X → Y is a good quotient
by Proposition 4.16, Proposition 4.13 and Corollary 4.14. �

5. AFFINE COSETS

We are now in the position to recover Matsushima’s theorem:
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Theorem 1.2. Suppose G→ S is an affine, linearly reductive group scheme and H ⊆ G is a flat,
finitely presented, separated subgroup scheme. Then the following are equivalent:

(i) H → S is linearly reductive;
(ii) G/H → S is affine;

(iii) the functor F 7→ IndGHF from QCohH(S) to QCohG(S) is exact.

Proof. First note that, since G → S is linearly reductive, it follows that BG → S is coho-
mologically affine. Suppose H → S is linearly reductive, and so BH → S is cohomo-
logically affine. Since G is affine, G/H → BH is also affine, and hence the composition
G/H → BH → S is cohomologically affine. By Serre’s criterion (Remark 4.7(i)),G/H → S
is therefore affine. Conversely, suppose G/H → S is affine. Consider the 2-cartesian
square

G/H //

��

S

��
BH // BG.

By descent, the morphism BH → BG is affine. Therefore the composition BH → BG →
S is cohomologically affine, and so H → S is linearly reductive. This proves the equiva-
lence of (i) and (ii).

Condition (iii) is a direct translation of the condition of cohomological affineness for the
morphism BH → BG, and is thus equivalent by descent and Serre’s criterion (Remark
4.7(i)) to (ii). �

The following result was used by Białynicki-Birula ([BB63]) and Richardson ([Ric77] to
prove Matsushima’s theorem. A proof also appeared in [Lun73, p. 85]. The language of
stacks provides a quick proof relying essentially only on descent for affine morphism.

Proposition 5.1. (cf. [BB63, Lemma 1]) Let G→ S be a flat, finitely presented, separated group
scheme, and H2 ⊆ H1 be an inclusion of flat, finitely presented, separated subgroup schemes of G,
with H1 quasi-affine over S. Then H1/H2 → S is affine if and only if G/H2 → G/H1 is affine.

Proof. The 2-cartesian diagrams

H1/H2
//

��

S

��
BH2

// BH1

G/H2
//

��

G/H1
//

��

S

��
BH2

// BH1
// BG

and descent theory immediately imply the result. �

Corollary 5.2. (cf. [BB63, Corollary 1]) Let H2 ⊆ H1 ⊆ G be inclusions of group schemes as in
Proposition 5.1. If H1/H2 and G/H1 are affine over S, then so is G/H2.
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6. OBSERVABLE SUBGROUPS

For a subgroup H ⊆ G, Matsushima’s theorem provides a relationship between the re-
ductiveness of H and the affineness of G/H (see Theorem 1.2). In this section, we analyze
the relationship between the observability of H (i.e., whether every H-representation is a
subrepresentation of a G-representation) and the quasi-affineness of G/H . Our approach
is in the same spirit as the proof of Theorem 1.2: we interpret the quasi-affineness of
G/H in terms of functorial properties of BH → BG. We first prove a characterization of
quasi-affine morphisms generalizing [Gro67, II.5.1.2 and IV.5.1.2].

Consider the following property for a morphism f : X → Y of algebraic stacks:

(?) For any quasi-coherent OX -module F , the adjunction morphism f ∗f∗F → F is surjective.

Lemma 6.1. Let f : X → Y be a quasi-compact (and quasi-separated) representable morphism of
algebraic stacks and g : Y ′ → Y a morphism of algebraic stacks. Consider the 2-cartesian product

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

Then the following hold:

(i) (Descent) if f ′ satisfies (?) and g is faithfully flat, then f satisfies (?); and
(ii) (Base change) if f satisfies (?) and Y has quasi-affine diagonal, then f ′ satisfies (?).

Proof. For (i), let F be a quasi-coherent OX -module and α : f ∗f∗F → F be the adjunction
morphism. Consider the commutative diagram

g′∗f ∗f∗F
g′∗α // g′∗F

f ′∗g∗f∗F
f ′∗ψ // f ′∗f ′∗g

′∗F

α′

OO

where ψ : g∗f∗F → f ′∗g
′∗F and α′ : f ′∗f ′∗(g′∗F)→ g′∗F are the natural adjunction maps. By

flat base change, ψ is an isomorphism and hence f ′∗ψ surjective. Since α′ is also surjective,
it follows that the composition α′ ◦ f ′∗ψ = g′∗α is surjective. Since g′ is faithfully flat, we
thus conclude α is surjective.

For (ii), we first show that the statement is true if either (a) g is a quasi-compact open
immersion, or (b) g is an affine morphism. In case (a), we first note that since g and g′

are open immersions, the adjunction morphisms of functors g∗g∗ → id and g′∗g′∗ → id
are natural isomorphisms. Let F ′ be a quasi-coherent OX ′-module. Then since f satisfies
property (?), f ∗f∗g′∗F ′ → g′∗F ′ is surjective and therefore so is f ′∗g∗g∗f ′∗F ′ ∼= g′∗f ∗f∗g

′
∗F ′ →

g′∗g′∗F . Since the adjunction morphisms are natural isomorphisms, this last morphism is
canonically identified with the adjunction map f ′∗f ′∗F ′ → F ′. In case (b), since g′ is affine,
f ∗f∗F → F is surjective if and only g′∗f ∗f∗F → g′∗F is surjective. Since f satisfies property

11



(?), f ∗f∗g′∗F ′ → g′∗F ′ is surjective, but this factors as f ∗f∗g′∗F ′ ∼= f ∗g∗f
′
∗F ′ → g′∗f

′∗f ′∗F ′ →
g′∗F ′. We thus conclude g′∗f ∗f∗F → g′∗F is surjective.

Therefore, property (?) is always stable under quasi-affine base change. We now prove
the statement for arbitrary g (when δY/S : Y → Y ×S Y is quasi-affine). Since the question
is Zariski-local, we may assume the base scheme S is affine and that Y and Y ′ are quasi-
compact. Let p : Y → Y be a smooth presentation with Y affine. Since ∆Y/S is quasi-affine,
Y ×YY ∼= Y×Y×SY (Y ×SY ) is quasi-affine and p : Y → Y is a quasi-affine morphism. After
base changing by p : Y → Y and choosing a smooth presentation Z → Y ′Y := Y ′ ×Y Y
with Z an affine scheme, we have the 2-cartesian diagram:

Z

��

h′′ // Z

��
X ′Y

h′ //

��

~~||
||

||
|

Y ′Y

��

~~}}
}}

}}

X ′
f ′ //

g′

��

Y ′

g

��

XY
h //

}}{{
{{

{{
{

Y

p}}||
||

||
|

X
f // Y

Since f satisfies property (?) and p is a quasi-affine morphism, by our above argument
h satisfies property (?). The morphism Z → Y is affine which implies that h′′ satisfies
property (?). Since the composition Z → Y ′Y → Y ′ is smooth and surjective, it follows by
descent that f ′ satisfies property (?). �

Proposition 6.2. Let f : X → Y be a quasi-compact (and quasi-separated) representable mor-
phism of algebraic stacks, with Y having quasi-affine diagonal. Then the following are equivalent:

(i) f is quasi-affine;
(ii) for any quasi-coherent OX -module F , the adjunction morphism f ∗f∗F → F is surjective;

and
(iii) for any quasi-coherent OX -module F , there exists a quasi-coherent OY-module G and a sur-

jection f ∗G → F ;

If, in addition, X and Y are locally noetherian, then the above conditions are also equivalent to:

(iv) for any coherent OX -module F , the adjunction morphism f ∗f∗F → F is surjective; and
(v) for any coherentOX -moduleF , there exists a coherentOY-module G and a surjection f ∗G →
F .

Proof. First, it is clear (ii) implies (iii). To see (iii) implies (ii), suppose G is a quasi-coherent
OY-module and f ∗G → F is a surjection. The counit of the adjunction then gives a factor-
ization f ∗G → f ∗f∗F → F , and hence f ∗f∗F → F is also surjective.

We next show (i) is equivalent to (ii). Note that the property of being quasi-affine is
stable under composition and base change and descends under faithfully flat morphisms
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on the target. By Lemma 6.1, for a quasi-compact (and quasi-separated) representable
morphism of algebraic stacks, property (ii) is also stable under composition and descends
under faithfully flat morphisms on the target. Therefore, in showing the equivalence
between (i) and (ii), we can reduce to the case where f : X → Y is a quasi-compact
(and quasi-separated) morphism of algebraic spaces with Y an affine scheme. As open
immersions and affine morphisms satisfy property (ii), quasi-affine morphisms also do.
Thus, (i) implies (ii).

To see that (ii) implies (i) we may suppose that f : X → Y = Spec Γ(X,OX). If I ⊆ OX
is a sheaf of ideals, then f∗I ⊆ f∗OX = OY is a sheaf of ideals. It follows that for a closed
subset Z ⊆ X , that f−1(f(Z)) = Z. In particular, f is injective.

We first claim that, if Y is a local scheme (i.e., Γ(X,OX)) is a local ring) in which the
unique closed point y ∈ Y is the image of a closed point x ∈ X , then X = Y . First note
that by the previous paragraph, we know that f−1(y) = {x}, and so x is the unique closed
point of X . Choose a finite surjective morphism p : U → X from a scheme U (which
exists by [LMB00, Theorem 16.6], [Ryd10b, Theorem B]). Then U is quasi-affine (by the
result for schemes, [Gro67, II.5.1.2, IV.1.7.16]) and U only has finitely many closed points.
We now claim that it follows that U is affine. Let u1, . . . , un be the closed points of U
and i : U ↪→ Z = Spec Γ(U,OU) be the open immersion. If U 6= Z, there exists a closed
point z ∈ Z \ U . Then there is a function f ∈ Γ(U,OU) such that f(z) = 0 but f(ui) 6= 0:
otherwise pz ⊆

⋃
i pui

where pz, pu1 , . . . , pun denote the prime ideals of Γ(X,OX) defined
by z, u1, . . . , un which implies that pz ⊆ pui

for some i, a contradiction. But then f is an
invertible function on U and therefore on Z, contradicting f(z) = 0. Therefore U is affine
and by Chevalley’s Theorem ([Knu71, Theorem III.4.1], [Ryd10b, Theorem 8.1]) X is also
affine and X = Y .

For general affine Y , let x ∈ X be a point and y = f(x). Consider the base change by
SpecOY,y → Y . We can write SpecOY,y = lim

←−
Yi with Yi ⊆ Y affine open subschemes. We

have a diagram

X

f

��

X ×Y Yi

��

oo X ×Y SpecOY,y

��

oo

Y Yi? _oo SpecOY,yoo

By the above case for a local scheme, we know that

X ×Y SpecOY,y = lim
←−

(X ×Y Yi)

is affine. By [Ryd10b, Theorem C], it follows that for i >> 0,X×Y Yi is affine. In particular,
x ∈ X has an open neighborhood which is a scheme. Therefore, X is a scheme and the
result follows from the schematic version of the statement.

The fact that (ii) implies (iv) is obvious. For the converse, let F be a quasi-coherent
OX -module. Using [LMB00, Theorem 15.4], we can write F = lim

−→
Fi as a filtered direct
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limit of coherent subsheaves Fi ⊆ F . For each i, there is a commutative diagram

f ∗f∗Fi //

��

Fi

��
f ∗f∗F // F

If s ∈ Γ(SpecA → X ,F) is a section of F over a smooth morphism SpecA → X , then
there exists j such that s ∈ Γ(SpecA→ X ,Fj). Since f ∗f∗Fj → Fj is surjective, s is in the
image of Γ(SpecA→ X , f ∗f∗Fj) and therefore in the image of Γ(SpecA→ X , f ∗f∗F).

The proof of the equivalence of (iv) and (v) is analogous to that of (ii) and (iii). �

Remark 6.3.

(i) By a different method, Philipp Gross has recently shown the same result. In fact, his
result is more general in that he considers non-representable morphisms f : X → Y
where the relative inertia IX/Y → X has affine fibers. Moreover, when Y does not
have a quasi-affine diagonal, he considers the more natural property that (?) holds
for all base changes. See [Gro10].

(ii) The assumption that Y have quasi-affine diagonal is necessary for (ii) to imply (i).
For example, if G → Spec k is any finite type group scheme, then Spec k → BG
satisfies (ii). Indeed, for any k-vector space V , the adjunction map corresponds to
the map V ⊗k Γ(G,OG) → V , which is surjective. However, if G → Spec k is an
abelian variety, then Spec k → G is not quasi-affine and hence does not satisfy (i).

Definition 6.4. Let G → S be a flat, finitely presented, quasi-affine group scheme. A
flat, finitely presented, quasi-affine subgroup scheme H ⊆ G is observable if every quasi-
coherent OS[H]-module is a quotient of a quasi-coherent OS[G]-module.

Remark 6.5. If S = Spec k, this is easily seen to be equivalent to the definition in [BBHM63]:
a subgroup scheme H ⊂ G is observable if every finite dimensional H-representation is a
sub-H-representation of a finite dimensional G-representation.

We can now prove:

Theorem 1.3. Let G → S be a flat, finitely presented, quasi-affine group scheme and H ⊆ G a
flat, finitely presented, quasi-affine subgroup scheme. The following are equivalent:

(i) H is observable;
(ii) for every quasi-coherentOS[H]-moduleF , the counit morphism of the adjunction, IndGHF →
F , is a surjection of OS[H]-modules;

(iii) BH → BG is quasi-affine; and
(iv) G/H → S is quasi-affine.

If S is noetherian, then the above are also equivalent to:

(iv) every coherent OS[H]-module is a quotient of a coherent OS[G]-module; and
(v) for every coherent OS[H]-module F , the counit morphism of the adjunction, IndGHF → F ,

is a surjection of OS[H]-modules.
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Proof. The equivalences follow from the definitions and Proposition 6.2. We only add
that since S → BG is faithfully flat and finitely presented and G/H ∼= BH ×BG S, descent
implies BH → BG is quasi-affine if and only if G/H → S is quasi-affine. �

7. EXISTENCE OF GOOD MODULI SPACES

Given an algebraic stack X , we would like local conditions that guarantee the existence
of a good moduli space. Recall first the following definition:

Definition 7.1. ([Alp08, Def. 6.1]) If π : X → Y is a good moduli space, an open substack
U ⊆ X is saturated for π if there is a set-theoretic equality π−1(π(U)) = U .

Saturated substacks have the following nice property (see [Alp08, Rmk. 6.2]): if an
open substack U ⊆ X is saturated for π, then π(U) is open and π|U : U → π(U) is a good
moduli space. Moreover, we have the following proposition:

Lemma 7.2. ([Alp08, Prop. 7.9]) Suppose X is a noetherian algebraic stack containing open
substacks {Ui}i∈I such that for each i there exists a good moduli space πi : Ui → Yi, with Yi a
scheme (resp., an algebraic space). Let U =

⋃
Ui. Then the following are equivalent:

(i) Ui ∩ Uj is saturated for πi for every i, j; and
(ii) there exists a good moduli space π : U → Y with Y a scheme (resp., an algebraic space), and

algebraic subspaces Ỹi ⊆ Y with Ỹi ∼= Yi and π−1(Ỹi) = Ui.

It would be useful to have an intrinsic definition of saturated that does not refer to a
good moduli space, and to use this definition to find conditions that guarantee the exis-
tence of open covers by saturated substacks. Combined with the previous proposition,
this would enable us to give local conditions guaranteeing the ability to glue local good
moduli spaces. We first make the following definition:

Definition 7.3. Suppose X is an algebraic stack over a scheme S and Z ⊆ X is a closed
substack. Define FX (Z) ⊆ |X | to be the set of those points x ∈ |X | for which there is a
representative (equivalently, for all representatives; see Remark 7.4) x̄ : Spec k → X with
{x}∩(Z×S k) 6= ∅ in |X ×S k|. (Here we have abused notation by considering x ∈ |X ×S k|
as the image of Spec k → X ×S k and the closure {x} is computed in |X ×S k|.)

Remark 7.4.

(i) To verify the stated equivalence, let x̄1 : Spec k1 → X and x̄2 : Spec k2 → X be
equivalent representatives of x ∈ |X |, given by a field inclusion k1 ↪→ k2. Then
x̄2 : Spec k2 → X is isomorphic in X (k2) to the composition Spec k2 → Spec k1

x̄1−→ X .
If {x}i denotes the closure of the image of Spec ki → X ×S ki, then by flat base change
{x}2 = {x}1×k1 k2. Therefore, {x}1∩ (Z×S k1) 6= ∅ if and only if {x}2∩ (Z×S k2) 6= ∅.

(ii) Note that if FX (Z) ⊆ |X | is closed, then FX (FX (Z)) = FX (Z).

Lemma 7.5. Suppose π : X → Y is a good moduli space. Then |π−1(π(Z))| = FX (Z) for every
closed substack Z ⊆ X . In particular, FX (Z) is closed.
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Proof. Suppose x ∈ π−1(π(Z)), with representative Spec k → X . If s : Spec k → X → S
denotes the composition, then the base change πs : X ×S k → Y ×S k is a good moduli
space. It follows that πs({x}) ∩ πs(Z ×S k) 6= ∅ in Y ×S k. By [Alp08, Thm. 4.15(iii)],
this implies {x} ∩ (Z ×S k) 6= ∅ in |X ×S k|, and hence x ∈ FX (Z). Conversely, suppose
x ∈ FX (Z), with representative Spec k → X , and choose any point z ∈ {x} ∩ (Z ×S k) ⊆
|X ×S k|. Then {x} ∩ {z} 6= ∅ in |X ×S k|, and so by [Alp08, Thm. 4.15(iv)] we have
πs(x) = πs(z). It follows that x ∈ π−1(|π(Z)|). �

Lemma 7.6. Suppose π : X → Y is a good moduli space. Let U ⊆ X be an open substack with
reduced complement Z . Then the following are equivalent:

(i) U is saturated for π;
(ii) FX (Z) = Z ;

(iii) for every point u ∈ |U| and representative ū : Spec k → U of u, the closure {u} ⊆ |X ×S k|
is contained in |U ×S k|; and

(iv) for every point u ∈ |U| and representative ū : Spec k → U of u for which u ∈ |U ×S k| is
closed, u ∈ |X ×S k| is also closed.

Proof. These properties are all local on Y so we may assume that Y is quasi-compact; it
then follows from the definition of a good moduli space (Definition 4.9) that X is also
quasi-compact. First note that π−1(π(U)) = U if and only if π−1(π(Z)) = Z . By Lemma
7.5, statements (i) through (iii) are equivalent. It is clear (iii) implies (iv). To prove the
converse, suppose (by way of contradiction) there exists a closed point x0 ∈ {u} ∩ (Z ×S
k) ⊆ |X ×S k|. Let s : Spec k → U → S be the composition and πs : X ×S k → Y ×S k
be the base change. Then for any closed point u0 ∈ {u} ⊆ |U ×S k|, by [Alp08, Thm 4.15]
we have πs(u) = πs(x0) = πs(u0) and x0 ∈ {u0}. In particular, u0 ∈ |U ×S k| is closed but
u0 ∈ |X ×S k| is not closed, violating (iv). �

Remark 7.7. If X is finite type over S = Spec k with k algebraically closed, then the equiv-
alence of (i) and (iv) simply states that an open substack U ⊆ X is saturated for π if and
only if every closed point u ∈ U(k) is also closed in X , i.e., the open immersion U ↪→ X
maps closed points to closed points.

By Lemma 7.6, it is reasonable to make the following definition:

Definition 7.8. An open substack U ⊆ X is saturated if for every point u ∈ |U| and repre-
sentative ū : Spec k → U of u, the closure {u} ⊆ |X ×S k| is contained in |U ×S k|.

Remark 7.9. Note that U ⊆ X is saturated if and only if FX (Z) = |Z|, where Z = X \ U
is the reduced complement. See [Alp10b, Section 2] for more general notions of saturated
and weakly saturated morphisms, as well as their properties.

As a converse to Lemma 7.5, we have the following lemma:

Lemma 7.10. (cf. [BBŚ97, Lem. 1]) Suppose the set FX (Z) ⊆ |X | is closed for every closed
substack Z ⊆ X . Then for every open substack U ⊆ X , there exists an open substack V ⊆ U such
that:
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(i) V ⊆ X is saturated; and
(ii) for every u ∈ |U| and representative ū : Spec k → U of u with {u} ⊆ |X ×S k| contained in
|U ×S k|, one has u ∈ |V|. (In particular, any point u ∈ |U| with representative Spec k → U
which is closed in |X ×S k| is contained in |V ×S k|.)

Proof. Let Z be the reduced closed complement X \ U . Then V = X \ FX (Z) ⊆ X is a
saturated open substack contained in U with the desired property. �

Since we are interested in determining conditions guaranteeing the existence of a good
moduli space, Lemmas 7.2, 7.5 and 7.10 suggest we should establish when the sets FX (Z)
are closed for all closed substacks Z ⊆ X . We first give conditions guaranteeing the sets
FX (Z) are constructible.

Lemma 7.11. Suppose X is a noetherian algebraic stack for which there exists a locally quasi-
finite, universally submersive morphism f :W → X from an algebraic stackW admitting a good
moduli space. Then for every closed substack Z ⊆ X , the set FX (Z) ⊆ X is constructible.

Remark 7.12. Étale morphisms and finite morphisms are locally quasi-finite and univer-
sally submersive.

Proof. By Lemma 7.5, FW(f−1(Z)) ⊆ |W| is closed. We claim that f(FW(f−1(Z))) =
FX (Z). The containment ⊆ is clear. Conversely, if x ∈ FX (Z) with representative x̄ :
Spec k → X , then there exists a specialization x x0 with x0 ∈ |Z ×S k|. SinceW ×S k →
Z ×S k is quasi-finite and submersive, there is a specialization w  w0 in |W ×S k|
over x  x0. Furthermore, the field extension k(x) → k(w) is finite, which implies
w ∈ FW(f−1(Z)) exactly when {w} ∩ f−1(Z) 6= ∅. Therefore, w ∈ FW(f−1(Z)) and
x ∈ f(FW(f−1(Z))). �

Lemma 7.13. LetX be an algebraic stack of finite type over an algebraically closed field k. Suppose
that:

(i) X ∼= [X/G], where X is a scheme and G is a connected algebraic group; and
(ii) stabilizers of closed points in X are linearly reductive.

Then for every closed substack Z ⊆ X , the set FX (Z) ⊆ X is constructible.

Proof. If X is smooth, the statement follows from [Alp10b, Theorem 3]) and Lemma 7.11.
We may reduce the normal case to the smooth case by applying Sumihiro’s theorem
([Sum74]) which states that there exist Zariski-local G-equivariant embeddings of X into
a projective scheme. The general case follows since normalization is finite and, in partic-
ular, quasi-finite and universally submersive. �

Remark 7.14. It appears that in the proof of [BBŚ97, Lemma 2], the constructibility of
{x ∈ X | Gx ∩ Y 6= ∅} is not verified for the action of the reductive group G on the
algebraic variety X . It is checked the set is closed under specialization, but one needs
constructibility of the set to then conclude it is closed.

Lemma 7.15. (cf. [BBŚ97, Lem. 2b]) SupposeX satisfies the hypotheses of Lemma 7.13. Suppose
further that either:
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(i) for every smooth curve C over k and morphism f : C → X , the scheme-theoretic image of f
admits a good moduli space; or

(ii) for every pair of points x, y ∈ |X |, there exists an open substack Uxy ⊆ X that contains x
and y and admits a good moduli space.

Then for every closed substack Z ⊆ X , the set FX (Z) ⊆ X is closed.

Proof. By Lemma 7.11, the sets FX (Z) are constructible, so it suffices to check that FX (Z)
is closed under specialization. First, suppose condition (i) holds. If FX (Z) is not closed
for some closed substack Z ⊆ X , then there exists a smooth pointed curve (C, p) and a
morphism f : C → X such that f(C \ p) ⊆ FX (Z) but f(p) /∈ FX (Z). By assumption, the
scheme-theoretic image Y ⊆ X of f admits a good moduli space. But then Lemma 7.5
implies FX (Z) ∩ Y = FY(Z ∩ Y) is closed, a contradiction.

Now instead suppose condition (ii) holds. If FX (Z) is not closed for some closed sub-
stack Z ⊆ X , then there exists a closed point x ∈ FX (Z) \ FX (Z) that is a specializa-
tion of x′ ∈ FX (Z). By assumption, there are finitely many points y1, . . . , yk ∈ |X | and
open substacks Uxyi

containing x and yi, such that Uxyi
admits a good moduli space and⋃

i Uxyi
= X . Note that FUxyi

(X ∩ Uxyi
) ⊆ |Uxyi

| is closed and FX (Z) =
⋃
i FUxyi

(X ∩ Uxyi
).

But x′ ∈ FUxyi
(Z ∩ Uxyi

) for some i, which contradicts x /∈ FX (Z). �

Remark 7.16. In (ii) above, if were were instead to require the weaker property that every
point have an open neighborhood admitting a good moduli space, then the conclusion
would no longer hold. Consider, for example, the stack X = [P1/Gm], where Gm acts by
multiplication. In this case, FX ({0}) = [(P1 \ {∞})/Gm] is not closed.

Proposition 7.17. Suppose X is a noetherian algebraic stack such that:

(i) every point x ∈ |X | has an open neighborhood admitting a good moduli space; and
(ii) for every closed substack Z ⊆ X , FX (Z) ⊆ |X | is closed.

Then X admits a good moduli space.

Proof. For a closed point x ∈ |X |, let Ux be an open neighborhood admitting a good mod-
uli space. By Lemma 7.10, there exists an open neighborhood Vx ⊆ Ux containing x such
that Vx ⊆ X is saturated. It follows also that Vx ⊆ Ux is saturated, and so Vx also admits a
good moduli space. For any pair of points x, y ∈ |X |, Vx ∩ Vy is saturated in Vx. Indeed,
suppose v ∈ |Vx ∩ Vy| is closed but admits a specialization v  v0 in |Vx|. Since Vy ⊆ X is
saturated, we have v0 ∈ |Vy|, so that v0 ∈ |Vx ∩ Vy| and v = v0. By Lemma 7.2, the good
moduli spaces of Vx can be glued to construct a good moduli space of X . �

The proof of the following theorem now follows directly from Lemma 7.15 and Propo-
sition 7.17.

Theorem 1.4. Let G be a connected algebraic group acting on a scheme X of finite type over
an algebraically closed field k, and suppose that for every pair of points x, y ∈ X , there exists a
G-invariant open subscheme Uxy ⊆ X that contains x and y and admits a good quotient. Then X
admits a good quotient. �
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ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathe-
matics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39,
Springer-Verlag, Berlin, 2000.

[Lun73] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–
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BOGOTÁ, 111711, COLOMBIA,

E-mail address: jarod@uniandes.edu.co

DEPARTMENT OF MATHEMATICS, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO,
CA 93407-0403,

E-mail address: rweaston@calpoly.edu

20


	1. Introduction
	Acknowledgment

	2. Algebraic Stacks
	3. G-equivariant geometry of X vs. geometry of [X/G]
	4. Good quotients vs. good moduli spaces
	Good quotients
	Linearly reductive groups
	Cohomologically affine morphisms
	Good moduli spaces
	Relationship between good quotients and good moduli spaces

	5. Affine cosets
	6. Observable subgroups
	7. Existence of good moduli spaces
	References

