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ABSTRACT. We give a precise formulation of the modularity principle for the log canonical
models Mg(α) := Proj

⊕
d≥0 H0(Mg, d(KMg

+ αδ)). Assuming the modularity principle
holds, we develop and compare two methods for determining the critical α-values at which a
singularity or complete curve with Gm-action arises in the modular interpretation of Mg(α).
The first method involves a new invariant of curve singularities with Gm-action, constructed via
the characters of the induced Gm-action on spaces of pluricanonical forms. The second method
involves intersection theory on the variety of stable limits of a singular curve. We compute the
expected α-values for large classes of singular curves, including curves with ADE, toric, and
unibranch Gorenstein singularities, as well as for ribbons, and show that the two methods yield
identical predictions. We use these results to give a conjectural outline of the log MMP for Mg .
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1. INTRODUCTION

In an effort to understand the canonical model of M g, Hassett and Keel initiated a program
to give modular interpretations to the log canonical models

M g(α) := Proj
⊕
d≥0

H0(Mg, bd(KMg
+ αδ)c),

for all α ∈ [0, 1] ∩ Q such that KMg
+ αδ is effective; see [Has05, HH09, HH08, HL10].

The assertion that these log canonical models should admit modular interpretations, which is
implicit in the work of Hassett, Hyeon, and Keel, can be formulated precisely as follows:

2000 Mathematics Subject Classification. Primary: 14H10; Secondary: 14D23, 14H20.
1



2 ALPER, FEDORCHUK, AND SMYTH

Modularity principle for the log MMP forM g. Let Ug be the stack of all complete connected
Gorenstein curvesC of arithmetic genus g with ωC ample. For α ∈ [0, 1]∩Q such thatKMg

+αδ

is effective, there exists an open substackMg(α) ⊆ Ug, and a map φ : Mg(α)→ M g(α) such
that φ is cohomologically-affine and φ∗OMg(α) = OMg(α). Equivalently, the log canonical
model M g(α) is a good moduli space forMg(α).

We refer to [Alp08] for a discussion of the essential properties of good moduli spaces, which
may be thought of as best-possible approximations to a coarse moduli space in cases where
the existence of a coarse moduli space is precluded by non-separatedness of the moduli stack.
Hassett, Hyeon, and Lee have verified the modularity principle for the log MMP for M g for
all α when g = 2, 3 [Has05, HL10], and for α > 7

10
− ε in arbitrary genus [HH09, HH08].

In exploring possible extensions of their work, it is natural to consider the following question:
Assuming the modularity principle holds, what curves should appear in the stacksMg(α)? How
can we tell at which α-value a given singular curve should appear? In this paper, we develop
two methods for answering these questions, at least for curves with a Gm-action, and show that
the two methods give identical predictions.

To explain the first method, consider a complete curveC with a Gm-action η : Gm → Aut(C)

and an isolated singularity at a point p ∈ C. If L is a line bundle on Mg that extends to a
neighborhood of [C] in the stack of all curves, then there is an induced action of Gm on the fiber
of L over [C] given by a character χL(C, η). The key observation connecting characters with
the modularity principle is: If a curve C is to appear inMg(α) for some α, then the character of
KMg(α) + αδ = 13λ− (2− α)δ is necessarily trivial since the line bundle descends to M g(α);
this is the essence of Proposition 2.2. We compute the characters of generators of Pic(Mg) for
a large class of singular curves with Gm-action. In particular, we calculate the characters for
curves with ADE singularities, planar toric singularities, and unibranch Gorenstein singularities,
as well as for ribbons; we collect our results in Tables 1 and 2. As a consequence, we predict
the precise α-values at which curves with these singularities arise in the modular interpretations
ofMg(α); see Table 3. This is our first main result.

Our second method for predicting α-values is based on the following observation: If a locus
T ⊆Mg is covered by (KMg

+αδ)-negative curves, i.e. curves on which KMg
+αδ has nega-

tive degree, then T falls in the stable base locus of KMg
+αδ and thus is flipped by the rational

mapM g 99KM g(α). If T = TC is the variety of stable curves arising from stable reduction of a
singular curve C, then C appears in a modular interpretation ofMg(α) for those α such that TC
is covered by (KMg

+αδ)-negative curves. In Section 6, we compute these anticipated α-values
for toric singularities using degeneration and intersection theory techniques. Comparing with
Table 1, we observe that the α-values obtained by character theory and intersection theory are
the same. The fact that the two techniques yield the same α-values is not merely coincidental:
In Theorem 5.2, we prove a general theorem which provides a formal relationship between the
characters and the intersection numbers.
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Because these two heuristics give such a useful guide for defining the moduli functorsMg(α),
we expect them to play an important role in verifying the modularity principle for the log MMP
for M g for α < 7/10.

1.1. Notation. We work over an algebraically closed field k of characteristic 0. Let Ug be the
stack of all complete connected Gorenstein curves C with ωC ample. Let π : Cg → Ug be the
universal curve. Denote by ωCg/Ug the relative dualizing sheaf on Cg. The following line bundles
are defined on all of Ug:

λ = λ1 := detπ∗(ωCg/Ug),

λm := detπ∗(ω
m
Cg/Ug

).

The following divisor classes are defined on any open substack of Ug that satisfies Serre’s con-
dition S2 and whose locus of worse-than-nodal curves is of codimension at least 2:

κ = π∗(c
2
1(ωCg/Ug)),

K = the canonical divisor class,

δ0 = δirr = the divisor of irreducible singular curves,

δ = δ0 + δred = δ0 + δ1 + · · ·+ δbg/2c.

We can define K simply as K = 13λ − 2δ; see below for a more intrinsic definition. Further-
more, we have the following relations on this open substack:

(1.1)
λ2 = 13λ− δ = K + δ,

κ = 12λ− δ = −λ+ λ2 =
12

13

(
K +

11

12
δ
)
.

We define the slope of a divisor sλ− δ to be s and the α-value of a divisor K + αδ to be α. In
particular, the slope of K + αδ is 13/(2− α) and the α-value of sλ− δ is 2− 13/s.

If B →Mg is a complete curve, the slope of B is defined to be (δ ·B)/(λ ·B).

1.2. Defining the canonical divisorK. LetM be the smooth locus of Ug. Consider the cotan-
gent complex LM ofM which can be described explicitly as follows. Choose a quotient stack
presentationM = [M/G]; e.g., we may take M to be a Hilbert scheme and G to be a group of
automorphisms of a projective space. Then the cotangent complex is given by:

LM : (ΩM
α−→ g∨ ⊗OM),

where ΩM inherits its natural G-linearization and g is the adjoint representation; the morphism
α is the pullback of the natural map pr ∗2 ΩM → ΩG×M = pr ∗2 (ΩG) along the identity section.

Then the canonical line bundle is defined as

KM := detLM = KM ⊗ (g⊗OM).

Remark 1.1. One can check that the Grothendieck-Riemann-Roch calculation implies that

KM = 13λ− 2δ

whenever KM, λ and δ are all defined.
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2. α-INVARIANTS OF CURVE SINGULARITIES

To begin, recall that if [C] ∈ Ug is any point and L is a line bundle defined in a neighborhood
of [C], then the natural action of Aut(C) on the fiberL|[C] induces a character Aut(C)→ Gm. If
η : Gm → Aut(C) is any one-parameter subgroup, then there is an induced character Gm → Gm

which is necessarily of the form z 7→ zn for some integer n ∈ Z. Given a curve [C], a one-
parameter subgroup η : Gm → Aut(C), and a line bundleL, we denote this integer by χL(C, η).
If L = λm, we write simply χm(C, η). Furthermore, if Aut(C) ' Gm, then we write χL(C) or
χm(C), where the one-parameter subgroup η : Gm → Aut(C) is understood to be the identity.1

Lemma 2.1. Suppose the modularity principle for the log MMP for M g holds and thatMg(α)

is S2 and the locus of worse-than-nodal curves inMg(α) has codimension at least 2. Then for
c(α) := 13α−13

2−α , some multiple of the Q-line bundle c(α)λ1 + λ2 descends to a Q-line bundle on
M g(α).

Proof. Since λ2 = 13λ1 − δ onMg, we have KMg
+ αδ ∼ c(α)λ1 + λ2. Now consider the

commutative diagram

Mg

��

//___ Mg(α)

φ

��

M g

f
//___ M g(α)

By the definition of M g(α), the divisor class KMg
+ αδ pushes forward to a Q-Cartier divisor

class on M g(α). We claim that φ∗f∗(KMg
+ αδ) = c(α)λ1 + λ2 onMg(α). Evidently, this

equality holds onMg(α) ∩Mg. Since the complement ofMg(α) ∩Mg has codimension 2 in
Mg(α) andMg(α) is S2, equality holds over all ofMg(α).

�

As a consequence, we obtain:

Proposition 2.2. Suppose the modularity principle for the log MMP for M g holds for α such
thatMg(α) is S2 and the locus of worse-than-nodal curves inMg(α) has codimension at least
2. Let C be a curve inMg(α). Let η : Gm → Aut(C) be any one-parameter subgroup. Then
either χm(C, η) = 0 for all m or

α =
13− 2

(
χ2(C,η)
χ1(C,η)

)
13−

(
χ2(C,η)
χ1(C,η)

) .

1Note that, in general, the integers χm(C) are only defined up to sign since the choice of isomorphism
Aut(C) ' Gm depends on a sign. The ratios χl(C)/χm(C) however are well-defined, and this is all we will
need.
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In other words, either Aut(C)◦ acts trivially on all the vector spaces
∧
H0(C, ωmC ), or else α

is uniquely determined by the characters χ1(C, η) and χ2(C, η).

Proof. Set c(α) = 13α−13
2−α . By Lemma 2.1, the line bundle c(α)λ1 + λ2 must descend from

Mg(α) to M g(α). In particular, the one-parameter subgroup η : Gm → Aut(C) must act triv-
ially on the fiber (c(α)λ1 + λ2)|[C]. Thus the character for this action, given by c(α)χ1(C, η) +

χ2(C, η), must be 0. We conclude that either χ1(C, η) = χ2(C, η) = 0, or

c(α) = −χ2(C, η)/χ1(C, η),

as desired. �

Evidently, Proposition 2.2 says nothing whatsoever concerning curves with finite automor-
phisms. At critical values of α however, the stacksMg(α) typically contain curves admitting a
Gm-action. We define the α-value of a complete curve C with a Gm-action η : Gm → Aut(C)

as

α(C, η) :=
13− 2

(
χ2(C,η)
χ1(C,η)

)
13−

(
χ2(C,η)
χ1(C,η)

) .

We note that α(C, η) = 2 − 13χλ(C, η)/χδ(C, η) as long as the deformation space of C is S2

and the locus of worse-than-nodal curves has codimension at least 2.
Proposition 2.2 implies that the α-value of any complete curve with Gm-action is the only α at

which the curve can show up inMg(α). Note also that wheneverMg(α) is constructed as a GIT
quotient, the necessary condition for [C] to be semistable is that the character of KMg(α) + αδ

is 0, as this character computes the Hilbert-Mumford index of [C] with respect to η. We discuss
a connection of the character theory with GIT in Section 7.

Next, we explain how to define and extract critical α-values for an arbitrary curve singularity
with a Gm-action. Given a curve singularity ÔC,p with n branches and δ-invariant δ(p), we may
consider a curve of the form

C = E1 ∪ . . . ∪ En ∪ C0,

where C0 is any smooth curve of genus g − δ(p) − n + 1 and E1, . . . , En are rational curves
attached to C0 nodally and meeting in a singularity analytically isomorphic to ÔC,p (see Figure
1).

E1 E2 E3

C0
y3 = x6

FIGURE 1. Rational curves E1, E2, and E3 meet in the monomial y3 = x6 singularity.

If Gm acts algebraically on ÔC,p via η, then this action extends canonically to C, which
induces a one-parameter subgroup η̃ : Gm → Aut(C). The characters χ1(C, η̃) and χ2(C, η̃)

depend only on the singularity ÔC,p and the Gm-action.
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Definition 2.3. We define the α-value of ÔC,p with respect to η, denoted by α(ÔC,p, η), as the
corresponding α-value, α(C, η̃), of the complete curve C.

Singularity type λ λ2 δ α-value slope

A2k : y2 − x2k+1 k2 5k2 − 4k + 1 8k2 + 4k − 1 3k2+8k−2
8k2+4k−1

8k2+4k−1
k2

A2k+1 : y2 − x2k+2 k2+k
2

5k2+k
2 4k2 + 6k 3k+11

8k+12
8k+12
k+1

D2k+1 : x(y2 − x2k−1) k2 5k2 − 2k 8k2 + 2k 3k+4
8k+2

8k+2
k

D2k+2 : x(y2 − x2k) k2+k
2

5k2+3k
2 4k2 + 5k 3k+7

8k+10
8k+10
k+1

E6 : y3 − x4 8 33 71 38/71 71/8

E7 : y(y2 − x3) 7 31 60 29/60 60/7

E8 : y3 − x5 14 63 119 8/17 17/2

y3 − x6 7 34 57 23/57 57/7

y3 − x7 31 152 251 99/251 251/31

y3 − x8 42 211 335 124/335 335/42

Tp,q : yp − xq See Proposition 6.6 for character values

monomial unibranch ∑
bi (2k − 1)2 +

∑
bi 12

P
bi − (2k − 1)2

11
P
bi − 2(2k − 1)2

12
P
bi − (2k − 1)2

12− (2k−1)2P
bi

with gaps {b1, . . . , bk}

Ribbon C` g
(
`− g−1

2

)
(5g − 4)(`− g−1

2
) (8g + 4)(`− g−1

2
) 3g+8

8g+4 8 + 4
g

TABLE 1. Character values of Gorenstein singular curves from Section 4

We compute the character values of all ADE, toric, and monomial unibranch Gorenstein
singularities, as well as of ribbons, in Section 4. The results are displayed in Table 1. We expect
that the α-values displayed in the table are the α-values at which the given singularity type first
appears on a curve inMg(α). There are two caveats. First, the α-value depends not only on
the analytic isomorphism type of a singularity but also on the global geometry of the curve.
This dependence is described in Section 2.1 below. Second, there is no guarantee that at the
prescribed α-values exactly the predicted singularities appear. Theorem 5.2 below is the first
step towards confirming these predictions. In addition, we note that our predictions for when A
singularities arise agree with the computations of Hyeon, who uses different heuristics [Hye10].

2.1. Dangling singularities. We now explain a variant of the above ideas applied to curves
with dangling singularities; such singular curves have not yet appeared in the work of Hassett
and Hyeon but we expect them to play an important role in the future stages of the program. We
define a collection of modified α-values associated to a multi-branch singularity. If ÔC,p is any
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curve singularity with n ≥ 2 branches, we may enumerate the branches, and for any non-empty
subset S ⊂ {1, . . . , n}, we consider a curve of the form

CS = E1 ∪ . . . ∪ En ∪ C0,

where each Ei is P1 with two distinguished points 0 and ∞, each Ei with i ∈ S meets C0

nodally at∞, and all the Ei’s are glued along singularity of type ÔC,p at 0 (see Figure 2).

E1
E3

C0

E2

FIGURE 2. Dangling D{1,2}6 -singularity.

As before, if Gm acts algebraically on ÔC,p via η, there is an induced one-parameter sub-
group η̃ : Gm → Aut(C). We define the α-value of ÔC,p with respect to S and η, denoted by
αS(ÔC,p, η), as the corresponding α-value, α(CS, η̃), of the complete curve CS . In this nota-
tion, α[n](ÔC,p) is the standard α-invariant defined above. In general, the invariants αS(ÔC,p)
will depend on the subset S, which reflects the fact that curves CS may appear in the moduli
stackMg(α) at different values of α.

C0

g = 2
P1

C0 C0

g = 2 y2 = x6

P1

FIGURE 3. Given a smoothing of a curve with a genus 2 tail attached at an
arbitrary point p, after blowing up the conjugate point of p and contracting the
genus 2 curve, one obtains a dangling P1 attached at an oscnode.

The first example of this phenomenon should occur with the oscnode (y2 = x6). As seen
in Table 2, the α-invariant of the oscnode is 17/28 reflecting the fact that we expect oscnodes
to replace genus 2 bridges attached by conjugate points. By contrast, the α-invariant of the
dangling oscnode A{1}5 is 19/29. The key point is that this is precisely the threshold α-value at
which ∆2 is covered by (K + αδ)-negative curves, and indeed one can replace arbitrary genus
2 tails by a dangling oscnode, using the blow-up/blow-down procedure pictured in Figure 3.

While it would be too laborious to compute the associated αS-values even for toric planar
singularities, we will do a sample in order to given an indication. In Table 2, we list α-values
for all dangling ADE singularities. Note that since the branches of any Ak or toric singularity



8 ALPER, FEDORCHUK, AND SMYTH

Dangling type λ λ2 δ α-value slope

A
{}
2k : y2 − x2k+1 k2 5k2 − 4k 8k2 + 4k 3k2+8k

8k2+4k
8k+4

k

A
{}
2k+1 : y2 − x2k+2 k2+k

2
5k2+k−4

2 4k2 + 6k + 2 3k2+11k+8
8k2+12k+4

8k2+12k+4
k2+k

A
{1}
2k+1 : y2 − x2k+2 k2+k

2
5k2+k−2

2 4k2 + 6k + 1 3k2+11k+4
8k2+12k+2

8k2+12k+2
k2+k

D
{1}
2k+1 : x(y2 − x2k−1) k2 5k2 − 2k − 1 8k2 + 2k + 1 3k2+4k+2

8k2+2k+1
8k2+2k+1

k2

D
{1}
2k+2 : x(y2 − x2k) k2+k

2
5k2+3k−4

2 4k2 + 5k + 2 3k2+7k+8
8k2+10k+4

8k2+10k+4
k2+k

D
{1,2}
2k+2 : x(y2 − x2k) k2+k

2
5k2+3k−2

2 4k2 + 5k + 1 3k2+7k+4
8k2+10k+2

8k2+10k+2
k2+k

E
{}
6 : y3 − x4 8 32 72 5/9 9

E
{1}
7 : y(y2 − x3) 7 30 61 31/61 61/7

E
{}
8 : y3 − x5 14 62 120 29/60 60/7

Dangling chains (see 2.2) λ δ

A2i+1/2j+1
j2+j−i2−i

2 4j2 + 6j − 4i2 − 6i+ 1

A2i+1/2j j2 − ( i2+i
2 ) 8j2 + 4j − 4i2 − 6i− 1

TABLE 2. Character values for dangling ADE singularities from Section 4

are isomorphic the only relevant feature of the subset S ⊂ {1, . . . , n} is the size. For D2k+1

singularities, we use the labeling “1” for the smooth branch and “2” for the singular branch, and
for D2k+2-singularities, we use “1” for the smooth branch with unique tangent direction and
“2,3” for the tangent branches. Similarly for the E7 singularity, we use the labeling “1” for the
smooth branch and “2” for the singular branch.

2.2. Chains of dangling singularities. We also predict that in future steps in the log MMP for
M g it will be necessary to parameterize curves admitting certain chains of dangling singulari-
ties. Rather than defining a general theory of chains of dangling singularities, we will introduce
two particular sequences which we anticipate will arise before α = 5/9.

We will say that a genus g curve C has an A2i+1/2j+1-singularity (resp. A2i+1/2j-singularity)
if C is of the form

C = C0 ∪ E1 ∪ E2 ∪ E3 (resp. C = C0 ∪ E1 ∪ E2),

where C0 is a genus g− i− j curve, each Ek is a smooth rational curve, E1 meets C0 at a node,
E2 meets E1 at an A2i+1 singularity, and E3 meets E2 at an A2j+1 singularity (resp. E2 has a
monomial A2j-singularity); see Figure 4.
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A2i+1 A2i+1

A2jA2j+1

FIGURE 4. A2i+1/2j+1 and A2i+1/2j-singularities.

3. PREDICTIONS FOR THE LOG MMP FOR M g

Using heuristics provided by both intersection theory and character computations, we offer
predictions in Table 3 for modular interpretations ofMg(α) for α ≥ 5/9. (For small g these
predictions have to be modified. For example, in M3 Weierstrass genus 2 tails are also elliptic
tails and so α = 2/3 is not a threshold value, as can be seen from [HL10].)

α-value
Singularity type

Locus removed at α− ε
added at α

9/11 A2 elliptic tails attached nodally

7/10 A3 elliptic bridges attached nodally

2/3 A4 genus 2 tails attached nodally at a Weierstrass point

19/29
A
{1}
5 genus 2 tails attached nodally

A3/4 genus 2 tails attached tacnodally at a Weierstrass point

12/19 A3/5 genus 2 tails attached tacnodally

17/28 A5 genus 2 bridges attached nodally at conjugate points

49/83 A6 hyperelliptic genus 3 tails attached nodally at a Weierstrass point

32/55 A
{1}
7 hyperelliptic genus 3 tails attached nodally

42/73 A3/6 hyperelliptic genus 3 tails attached tacnodally at a Weierstrass point

5/9

D4 elliptic triboroughs attached nodally

D5 genus 2 bridges attached nodally at a Weierstrass and free point

D
{1,2}
6 genus 2 bridges attached nodally at two free points2

A3/7 hyperelliptic genus 3 tails attached tacnodally

A5/7 hyperelliptic genus 3 tails attached oscnodally

A5/6 hyperelliptic genus 3 tails attached oscnodally at a Weierstrass point

A7 hyperelliptic genus 3 bridges attached nodally at conjugate points

TABLE 3. Predictions for the log MMP for α ≥ 5/9

2Although it goes beyond the scope of this paper, the replacement of genus 2 bridges requires both D{1,2}
6

singularities and certain non-reduced double line bridges; in the case of genus 5 this is worked out explicitly in
[Fed11].
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Remark 3.1. There are in fact other singular curves with Gm-action whose characters allow
them to appear in Mg(α) for α ∈ [5/9, 1]. However, they can be excluded by geometric
considerations. Heuristically, a necessary condition for a curve to appear inMg(α) is that it is
an isotrivial specialization of curves in Mg(α + ε). For example, an A5/4-curve has α-value
9/11 but obviously is not an isotrivial specialization of any stable curve.

Giving a complete description ofMg(α) is much more subtle than generally describing the
singularities added and the loci removed. For instance, after removing elliptic tails (connected
genus 1 subcurves which are attached nodally) at α = 9/11 − ε, in each subsequent moduli
stack parameterizing curves with additional singularities, one needs to redefine what is meant
by an elliptic tail by specifying the allowed attaching singularities.

4. CHARACTER THEORY COMPUTATIONS

4.1. Computing the characters of λ and λ2. Suppose we are given a curve C and a one-
parameter subgroup η : Gm → Aut(C). Then there is an induced Gm-action on the sequence of
one-dimensional vector spaces

λm|[C] :=
∧

H0(C, ωmC ).

For many classes of singularities, the induced character χm(C, η) ∈ Z of this action can be
explicitly computed. In this section, we will calculate these characters for A2k, D2k+2 singu-
larities, elliptic m-fold points, monomial unibranch Gorenstein singularities, and ribbons. The
same procedure can be used to compute these characters for all ADE and toric singularities, and
these results are listed in Table 1.

Throughout this section, we will use the following basic result about the dualizing sheaf ωC
of a reduced singular curve C. Let ν : C̃ → C be the normalization of C and consider the
sheaf Ω eC ⊗K(C̃) of rational differentials on C̃. Then ωC ⊂ ν∗

(
Ω eC ⊗K(C̃)

)
is the subsheaf

of Rosenlicht differentials defined as follows: A differential ω ∈ ν∗
(
Ω eC ⊗K(C̃)

)
is Rosenlicht

at p ∈ C if for every function f ∈ OC,p∑
pi∈ν−1(p)

Res pi
(f ω) = 0.

See [BHPVdV04, Prop.6.2] for the proof of this fact in the analytic setting or [Ser88, Ch.IV]
for a general discussion of duality on singular curves.

Example 4.1 (A2k : y2 = x2k+1). Let C = C0 ∪ E, where E is a smooth rational curve with a
higher cusp y2 = x2k+1 at zero, attached nodally at infinity to p ∈ C0. If t is a uniformizer at
zero, then dt/t2k is a generator for ωC at the cusp, and we may write down a basis for H0(C, ωC)

as follows: (
0,
dt

t2k

)
,

(
0,

dt

t2k−2

)
, . . . ,

(
0,
dt

t2

)
, (ω1, 0), . . . , (ωg−k, 0) ,
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where ω1, . . . , ωg−k is a basis for ωC0 . This basis diagonalizes the Gm-action η : t 7→ λ−1t with
weights (2k − 1), (2k − 3), . . . , 1. Thus, the character χ1(C, η) is

χ1 =
k∑
i=1

(2i− 1) = k2.

Similarly, we may write down a basis for H0(C, ω2
C) as(

0,
(dt)2

t4k

)
,

(
0,

(dt)2

t4k−2

)
, . . . ,

(
0,

(dt)2

t2k

)
,

(
0,

(dt)2

t2k−1

)
, . . . ,

(
w0,

(dt)2

t2

)
,

(w1, 0), . . . , (w3g−3k−2, 0) ,

where w1, . . . , w3g−3k−2 is basis for H0(C0, ω
2
C0

(p)), and w0 is an appropriately chosen element
of H0(C0, ω

2
C0

(2p)) r H0(C0, ω
2
C0

(p)).
Thus, the character χ2(C, η) is given by

χ2 =
k−1∑
i=0

(2k + 2i) +
2k−2∑
i=0

i = 5k2 − 4k + 1.

Example 4.2 (D2k+2 : x(y2−x2k) = 0). Let C = C0 ∪E, where C0 is a genus g− k− 2 curve
and E = E1 ∪E2 ∪E3 is the union of three rational curves at the monomial D2k+2 singularity.
The normalization map is given by:(

x

y

)
→
(

0 t2 t3
t1 −tk2 tk3

)
.

A local generator for ωC is ω0 =

(
2dt1
t21

,
dt2

tk+1
2

,− dt3

tk+1
3

)
. If ω1, . . . , ωg−k−2 is a basis of

H0(C0, ωC0) and v1 ∈ H0(C0, ωC0(p1 + p2)), v2 ∈ H0(C0, ωC0(p1 + p2 + p3)) are appropri-
ately chosen differentials, then the basis

(ω1, 0), . . . , (ωg−k−2, 0), (0, ω0), (0, xω0), . . . , (0, x
k−1ω0), (v1, x

kω0), (v2, yω0),

of H0(C, ωC) diagonalizes the action (t1, t2, t3) 7→ (λ−kt1, λ
−1t2, λ

−1t3). Thus,

χ1 = 1 + 2 + · · ·+ k =
k(k + 1)

2
.

A generator for ω2
C is ω2

0 =

(
4(dt1)

2

t41
,
(dt2)

2

t2k+2
2

,
(dt3)

2

t2k+2
3

)
, so we write out an array of (3k + 3)

quadratic differentials with non-zero weight (2k + 1 in the first column, k + 1 in the second

column, 1 in the third):

(4(dt1)2

t41
, (dt2)2

t2k+2
2

, (dt3)2

t2k+2
3

) (4(dt1)2

t31
, (dt2)2

tk+2
2

, −(dt3)2

tk+2
3

) (4(dt1)2

t21
, (dt2)2

t22
, (dt3)2

t23
)

(0, (dt2)2

t2k+1
2

, (dt3)2

t2k+1
3

) (0, (dt2)2

tk+1
2

, −(dt3)2

tk+1
3

)
... ...
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By summing the weights, we find:

χ2 =
2k∑
i=0

i+
k∑
i=0

i = (2k + 1)(2k)/2 + (k + 1)k/2 =
5k2 + 3k

2
.

Example 4.3 (Elliptic m-fold points). Let m ≥ 3. An elliptic m-fold point E is a Gorenstein
union ofm general lines through a point in Pm−1 [Smy11]. Every such singularity is isomorphic
to the cone over points p1 = (1, 0, . . . , 0), p2 = (0, 1, . . . , 0), . . . , pm−1 = (0, 0, . . . , 1), and
pm = (1, . . . , 1), with the vertex at 0 ∈ Am−1. If (x1, . . . , xm−1) are coordinates centered at the
vertex then the normalization map from m copies of P1 to E is given by

x1

...

...
xm−1

→

t1 0 . . . 0 tm

0 t2
. . . ... tm

... . . . . . . 0
...

0 . . . 0 tm−1 tm

 .

We let C be the singular curve obtained by attaching E to a smooth curve C0 nodally at points
p1, . . . , pm. A generator for ωC in the neighborhood of the m-fold point is

ω0 =

(
dt1
t21
, . . . ,

dtm−1

t2m−1

,−dtm
t2m

)
.

In fact, ω0 spans the only weight space of H0(C, ωC) with a non-zero weight. Thus, χ1(C) = 1.
A generator for ω2

C in the neighborhood of the m-fold point is

ω2
0 =

(
(dt1)

2

t41
, . . . ,

(dtm−1)
2

t4m−1

,
(dtm)2

t4m

)
,

and the only weight spaces of H0(C, ω2
C) with non-zero weights are spanned by

(ω2
0, 0), (x1ω

2
0, 0), . . . , (xm−1ω

2
0, 0).

It follows that χ2(C) = 2 + (m− 1) = m+ 1. Thus, the α-invariant of the elliptic m-fold point
is

α =
11− 2m

12−m
.

Example 4.4 (Monomial unibranch singularities). Let C be the projective closure of the curve
Spec k[tn : n ≥ 0, n /∈ {b1, . . . , bk}]. Clearly, pa(C) = k, the normalization of C is P1, and C
has an isolated monomial singularity at t = 0. From now on we assume that C is Gorenstein.
The condition for C to be Gorenstein is that the gap sequence {b1 = 1, . . . , bk} is symmetric:

n ∈ {b1, . . . , bk} ⇔ 2k − 1− n /∈ {b1, . . . , bk}.
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In particular, bk = 2k − 1. Evidently, a generator for ωC in a neighborhood of zero is given by
dt/tbk+1. Therefore, we can write down bases

H0(C, ωC) =

〈
dt

tb1+1
,
dt

tb2+1
, . . . ,

dt

tbk+1

〉
H0(C, ω2

C) =

〈
(dt)2

t2bk+2−j : j ∈ {0, . . . , 2bk − 2}r {b1, . . . , bk}
〉

and we compute

χ1 =
k∑
i=1

bi ,(4.1)

χ2 =

2bk−2∑
j=0

(2bk − j)−
k∑
i=1

(2bk − bi) = (2k − 1)2 +
k∑
i=1

bi − 1.(4.2)

In the case when C ′ = C ∪E is the nodal union of C and a genus g− k curve attached at the
infinity, the corresponding characters of C ′ are χ1 =

∑k
i=1 bi and χ2 = (2k − 1)2 +

∑k
i=1 bi.

For the toric singularity xp = yq with p and q coprime, the local ring of the singularity is
k[tpi+qj : i, j ∈ Z≥0]. The gap sequence {b1, . . . , bk} is the set of positive integers that cannot
be expressed as pi+qj with i, j ≥ 0. The study of this sequence, e.g. finding its cardinality and
the largest element is classically known in elementary number theory as the Frobenius problem
[RA05]. It is well-known that the largest gap is bk = pq − p − q. It is also easy to see that the
gap sequence is symmetric: n is a gap if and only if pq − p− q − n is not a gap. It follows that
the genus of the singularity xp = yq is g = (p− 1)(q− 1)/2. By [BS93] (see also [Rød94]), the
sum of gaps is

(4.3)
g∑

n=1

bi = (p− 1)(q − 1)(2pq − p− q − 1)/12.

It follows from Equations (4.1)-(4.2) that

χ1 =
1

12
(p− 1)(q − 1)(2pq − p− q − 1),

χ2 = (pq − p− q)2 +
1

12
(p− 1)(q − 1)(2pq − p− q − 1)− 1.

Remarkably, intersection theory calculations of Proposition 6.6 give an independent algebro-
geometric proof of the highly nontrivial combinatorial Formula (4.3); see Section 6 below.

Example 4.5 (Non-reduced curves: A case study of ribbons). The character theory is particu-
larly suited to the study of non-reduced Gorenstein schemes. Here, we treat the case of ribbons.
Ribbons occur as certain flat limits (in the Hilbert scheme) of canonically embedded smooth
curves degenerating to hyperelliptic curves [Fon93]. Our exposition is self-contained but we
refer the reader to [BE95] for a more systematic study of ribbons.

A ribbon is a scheme obtained by gluing together two copies of A1[ε] := Spec k[x, ε]/(ε2).
Precisely, let U1 = Spec k[x, ε]/(ε2) and U2 = Spec k[y, η]/(η2), and let (U1)x and (U2)y be



14 ALPER, FEDORCHUK, AND SMYTH

the corresponding open affine subschemes. Then by [BE95, p. 733] a ribbon of genus g is given
by a gluing isomorphism ϕ : (U1)y → (U2)x defined by

x 7→ y−1 − y−2f(y)η,

ε 7→ y−g−1η,

where f(y) = f1y
−1 + · · ·+ fg−2y

−(g−2) ∈ k[y, y−1]

k[y] + y−g+1k[y−1]
.

We focus here on non-split ribbons that admit a Gm-action. There are g−2 such ribbons, each
given by f(y) = y−`, for ` ∈ {1, . . . , g − 2}. Denote the ribbon corresponding to f(y) = y−`

by C`. Then the Gm-action on C` is given by t · (x, y, ε, η) = (tx, t−1y, tg−`ε, t−`−1η).
By adjunction, the sections of ωC`

over U1 are identified with restrictions to U1 of 2-forms
f(x, ε)dx∧dε

ε2
on Spec k[x, ε], and the sections of ωC`

over U2 are identified with restrictions to
U2 of 2-forms f(y, η)dy∧dη

η2 on Spec k[y, η]. With this in mind, we can write down g linearly
independent global sections of ωC`

:

For k = 0, . . . , g − `− 2, take

ωk = xk
dx ∧ dε
ε2

= −(yg−1−k + (g − `− k − 1)yg−`−k−2η)
dy ∧ dη
η2

,

for k = g − `− 1, . . . , g − 1, take

ωk = (xk + (`+ k + 1− g)x`+k−1ε)
dx ∧ dε
ε2

= −yg−1−k dy ∧ dη
η2

.

It follows that {ωi}g−1
i=0 form the basis of H0(C`, ωC`

). Note that we recover the second part of
[BE95, Theorem 5.1], namely the identification of the sections of H0(C`, ωC`

) with functions

1, y, y2, . . . , y`, y`+1 + η, y`+2 + 2yη, . . . , yg−1 + (g − `− 1)yg−`−2η,

under a trivialization of ωC`
on U2.

We now proceed with character computations. Under the Gm-action above, we have that

t · ωk = tk−g+`+1ωk.

Summing up the weights of the Gm-action on the basis {ωi}g−1
i=0 , we obtain the character of λ:

χ1(C`) =

g−1∑
k=0

(k − g + `+ 1) = g(`+ 1− g) + g(g − 1)/2 = g

(
`− g − 1

2

)
.

It remains to compute the weights of the Gm-action on a basis of H0(C`, ω
2
C`

) and the corre-
sponding character χ2(C`). Since h0(C`, ω

2
C`

) = 3g − 3, it suffices to exhibit 3g − 3 linearly
independent sections. One such choice is presented by

1, y, y2, . . . , y2`,y2`+1 + y`η, . . . , y`+g−1 + (g − `− 1)yg−2η,

y`+g + (g − `)yg−1, . . . , y2g−2 + (2g − 2`− 2)y2g−`−3, η, yη, . . . , yg−3η.
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In particular, taking into account that the weight of dy∧dη
η2 is 2`, we see that the weights of the

Gm-action on H0(C`, ω
2
C`

) are

2`, 2`− 1, . . . , 2`− (2g − 2), `− 1, . . . , `− g + 2.

Summing up these weights, we obtain the character of λ2:

χ2(C`) = 2(2g − 1)`− (g − 1)(2g − 1) + (g − 2)`− (g − 2)(g − 1)/2

= (5g − 4)(`− g − 1

2
) = (5g − 4)χ1(C`).

By Equation (1.1), the character of δ is χδ(C`) = (8g + 4)(` − g−1
2

). In particular, if ` 6=
(g − 1)/2, then all three characters χ1(C`), χ2(C`), χδ(C`) are non-zero, and we have

χδ(C`)

χλ(C`)
=

8g + 4

g
.

Remark 4.6. Generalizing the computations of Example 4.5 above, Anand Deopurkar recently
computed characters of Gorenstein n-ribbons3 with Gm-action and verified that always

χδ =
12(2g + n− 1)n

n2 + (4g − 3)n+ 2− 2g
χλ.

This recovers the ratio 8g+4
g

for 2-ribbons, gives the ratio 36(g+1)
5g+1

for 3-ribbons (see Corollary
5.4 and the subsequent discussion for the significance of this slope), and more generally gives
the same ratio χδ/χλ as that of the toric singularity yn = x2g/(n−1)+1 computed in Corollary 6.7
(note that the arithmetic genus of an n-ribbon always satisfies n− 1 | 2g).

4.2. Computing the characters of δi. In this section, we illustrate how the characters of line
bundles δi can be computed. If C is a curve with a Gm-action such that the discriminant locus
inside Def(C) is Cartier, then line bundles δi can be defined in a neighborhood of [C] in Ug.
The following proposition shows that the character of δi is precisely minus the weighted degree
of the discriminant.

Proposition 4.7. Let C be a complete curve with miniversal deformation space Spf A and a
Gm-action η : Gm → Aut(C). Let D be a Cartier divisor defined on a neighborhood Ug in the
stack of all complete genus g curves. Suppose that there is a cartesian diagram

V (f) //

��

Spf A

��
D // V

such that f 7→ λdf under the induced action of Gm = Spec k[λ, λ−1] on Spf A. Then

χL(D)(C, η) = −d.

3An n-ribbon is a non-reduced scheme supported on P1 and locally isomorphic to U × Spec k[ε]/(εn), where
U ⊂ P1 is affine.
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Proof. Denote by σ : A → k[λ, λ−1]⊗̂A the dual action of Gm on Spf A. The exact sequence
0→ L(−D)→ OUg → OD → 0 restricted to Spf A corresponds to the exact sequence

0→ Aη
f−→ A→ A/f → 0

where Aη is the Gm-A-module corresponding to the character Gm
d−→ Gm; that is, Aη is A as

an A-module with coaction a 7→ λdσ(a). Therefore L(−D)|BGm corresponds to the character
Gm

d−→ Gm and χL(−D)(C, η) = d. �

We include the computation of the character of δi only for certain curves with A2k and D2k+2

singularities but the same approach can be applied to a large class of curves; sampling of our
computations is given in column four of Table 1.

The characters of δi will depend on the global geometry of the curve. For instance, if an
A2k+1-singularity lies on a connected component intersecting the rest of the curve at two nodes,
the character of δ0 will depend on whether the component is separating or not. Furthermore, if
an A2k+1-singularity lies on a rational curve attached to the rest of the curve at one point, which
we refer to as a “dangling” singularity (see Section 2.1), the value of δ0 will be different from
the non-dangling case.

Example 4.8 (A2k+1-singularity: non-separating case). Let C = C0 ∪E, where C0 is a smooth
curve of genus g − k, E = E1 ∪E2 is the union of two rational curves at the monomial4 A2k+1

singularity at p, and Ei intersects C0 at infinity in the node qi. The versal deformation space of
C can be written as

Def(C) = Def(C0, q1, q2)× Cr(ÔC,p)×Def(ÔC,p)×Def(ÔC,q1)×Def(ÔC,q2),

where Cr(ÔC,p) denotes the “crimping” deformations (see [ASvdW10] for more details); the
Gm-action on Cr(ÔC,p) can be explicitly determined but doesn’t affect this calculation. We
choose coordinates a0, . . . , a2k on Def(ÔC,p) so that miniversal deformation of ÔC,p is

y2 = x2k+2 + a2kx
2k + · · ·+ a1x+ a0,

and ni on Def(ÔC,qi) so that the miniversal deformation of ÔC,qi is zw+ni = 0, where z = 1/x

in the neighborhood of∞ on Ei. We have a one-parameter subgroup η : Gm → Aut(C) such
that Gm acts by λ · (x, y) = (λ−1x, λ−k−1y), ai 7→ λi−2k−2ai, and ni 7→ λni. The discriminant
∆ ⊂ Def(ÔC,p) is given by the vanishing locus of the discriminant of the polynomial x2k+2 +

a2kx
2k + · · · + a0. Thus it has weighted degree −(2k + 1)(2k + 2). The discriminant inside

Def(ÔC,qi) is {ni = 0} and has weighted degree 1. Since δ0 = V (∆) ∪ V (n1) ∪ V (n2), we
conclude:

χδ0 = (2k + 1)(2k + 2)− 2, and χδi = 0 for i > 0.

Example 4.9 (A2k+1-singularity: separating case). LetC = C0∪E be a curve as in the previous
example with the exception thatC0 is now a disconnected curve with two connected components

4This simply means that E1 ∪ E2 is the projective closure of the affine curve y2 = x2k+2.
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C1 and C2 of genera h1 and h2, respectively. (Clearly, g = h1 + h2 + k.) Using the calculation
of the previous example, we conclude from δ0 = V (∆) and δhi

= V (ni) that

χδ0 = (2k + 1)(2k + 2), χδh1
= χδh2

= −1, χδi = 0 for i 6= 0, h1, h2.

Example 4.10 (A{1}2k+1-singularity: dangling case). Let C = C0 ∪ E, where C0 is a smooth
curve of genus g − k , E = E1 ∪ E2 is the union of two rational curves at the monomial A2k+1

singularity, and E1 intersects C0 at a node. Then

χδ0 = (2k + 1)(2k + 2), χδk = −1, χδi = 0 for i 6= 0, k.

Example 4.11 (A{}2k+1-singularity: isolated case). Let C = E1∪E2 be the union of two rational
curves at the monomial A2k+1 singularity. Then

χδ0 = (2k + 1)(2k + 2), χδi = 0 for i > 0.

Example 4.12 (D2k+2-singularity: non-separating case). Let C = C0 ∪E, where C0 is a genus
g − k curve, E = E1 ∪ E2 ∪ E3 is the union of three rational curves at the monomial D2k+2

singularity at p ∈ E, with E2 and E3 tangent, and each Ei intersects C0 at a node qi. We write

Def(C) = Def(C0, q1, q2, q3)× Cr(ÔC,p)×Def(ÔC,p)×
3∏
i=1

Def(ÔC,qi).

We can choose coordinates so that

Def(ÔC,p) = {xy2 = x2k+1 + a2k−1x
2k−1 + · · ·+ a1x+ a0 + by},

Def(ÔC,qi) = {ziwi + ni = 0},

where z1 = 1/y and z2 = z3 = 1/x near ∞ on E1, and E2, E3, respectively. We have a
one-parameter subgroup η : Gm → Aut(C) such that Gm acts via λ · (x, y) = (λ−1x, λ−ky),
and

ai 7→ λi−2k−1ai b 7→ λ−k−1b n1 7→ λkn1 n2 7→ λn2 n3 7→ λn3

The discriminant ∆ ⊂ Def(ÔC,p) has weight (2k + 1)(2k + 2), so we conclude that

χδ0 = (2k + 1)(2k + 2)− (k + 2), χδi = 0 for i > 0.

Example 4.13 (D{1,2}2k+2-singularity). Let C = C0 ∪ E, where C0 is a genus g − k curve, E =

E1 ∪ E2 ∪ E3 is the union of three rational curves at the monomial D2k+2 singularity, with E2

and E3 tangent, and E1 and E2 meet C0 in nodes. Using the calculation above, we conclude
that χδ0 = (2k + 1)(2k + 2)− (k + 1) and χδi = 0 for i 6= 0.

Example 4.14 (D{1,2}2k+2-singularity). Let C be a curve as in the previous example except that
only the branch E1 intersects C0. Then χδ0 = (2k + 1)(2k + 2)− k and χδi = 0 for i 6= 0.
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4.3. Computing the characters of K.

Lemma 4.15. Let C be a curve with a smooth deformation space and Aut(C)◦ abelian. Let
η : Gm → Aut(C) be a one-parameter subgroup. The character χK(C, η) is the character of
the determinant of T 1(C) given by the natural Gm-action.

Proof. With the notation from Section 1.2, choose a presentationM = [Hilb /PGLN+1]. Fix a
closed immersionC ↪→ PN ; this determines an element x = [C ↪→ PN ] of Hilb. By considering
the dual of the cotangent complex LM, we arrive at an exact sequence

0→ H0(L∨M)→ g⊗OHilb → THilb → H1(L∨M)→ 0

of sheaves on Hilb. By restricting this sequence to x, we obtain an exact sequence

0→ gx → g→ H0(C,NC/PN )→ T 1(C)→ 0

of Gx-representations. The morphism g → H0(C,NC/PN ) is obtained by differentiating the
map G→ Hilb, g 7→ g · x. Since the adjoint action on gx is trivial, we obtain the result. �

We will use the above lemma to compute the character of K in one particular example. Other
examples can be computed similarly.

Example 4.16 (A2k-singularity). Let C = C0 ∪ E, where E is a smooth rational curve with
a higher cusp y2 = x2k+1 at p = 0, and a nodal attachment to C0 at q = ∞. The first order
deformation space can be written as

T 1(C) = T 1(C0, q)× Cr(ÔC,p)× T 1(ÔC,p)× T 1(ÔC,q),

where Cr(ÔC,p) denotes the “crimping” deformations (see [ASvdW10] for more details). We
can choose coordinates

T 1(ÔC,p) = {y2 − x2k+1 + a2k−1x
2k−1 + · · ·+ a1x+ a0 = 0},

T 1(ÔC,q) = {zw + n = 0},

and a one-parameter subgroup η : Gm → Aut(C) acting via λ · (x, y) = (λ−2x, λ−(2k+1)y).
Then ai 7→ λ2i−4k−2ai and n 7→ λn. Therefore, the character of T 1(ÔC,p) is

−(4 + 6 + · · ·+ (4k + 2)) = −(4k2 + 6k).

The character of T 1(ÔC,q) is 1. The character of T 1(C0, q) is trivial. For k ≥ 2, by [ASvdW10,
Proposition 3.4], the weights of the action on Cr(ÔC,p) are 1, 3, . . . , 2k − 3. Therefore, the
character of Cr(ÔC,p) is (k− 1)2. It follows that χK = −3k2 − 8k + 2. As a reality check, one
sees that indeed χK = 13χλ − 2χδ (consult Table 1 for values of χλ and χδ).
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5. CHARACTER THEORY VS INTERSECTION THEORY

Let C be a complete curve of arithmetic genus g with a Gm-action η : Gm → Aut(C). A
versal deformation space with Gm-action is a pointed affine scheme 0 ∈ Def(C) with a Gm-
action together with a smooth morphism [Def(C)/Gm]→ Vg to the stack of all complete curves
of arithmetic genus g sending 0 to [C]. If L is a line bundle defined on Vg in a neighborhood of
C and Def(C) is a versal deformation space with Gm-action, then after shrinking Def(C), we
may assume that L is defined on [Def(C)/Gm].

Remark 5.1. If ωC is ample, the versal deformation space ofC is normal, and Aut(C) is linearly
reductive, then it follows from [Alp10, Theorem 3] that there exists a versal deformation space
with Gm-action (see also [Pin74, Proposition 2.3] for the formal case).

We specialize to the case when C has an isolated singularity p ∈ C and ÔC,p is positively
graded by theGm-action. Then by Pinkham’s theory of deformations of varieties withGm-action
[Pin74, Proposition 2.2], the space of infinitesimal deformations of C has a decomposition into
the weight spaces:

T 1
C =

∞⊕
ν=−∞

T 1
C(ν).

Following Pinkham [Pin74, Section (3.1)], we define Def −(C) to be the closed subscheme of
Def(C) corresponding to negative deformations: The tangent space to Def−1(C) is

⊕
ν<0 T

1
C(ν)

and the coordinate ring of Def−(C) is positively graded. The relationship between intersection
theory on [Def −(C)/Gm] and characters is given by the following observation.

Theorem 5.2. Let C be a complete curve of arithmetic genus g and 0 ∈ Def(C) be its versal
deformation space with Gm-action. Let B be any complete curve with a non-constant map
B → [Def−(C)/Gm] and let L be a line bundle on Vg. Then

χL(C, η) = − L ·B
deg(B)

,

where deg(B) is the degree of B with respect to the naturalO(1) on [Def −(C)/Gm]. In partic-
ular, if C is Gorenstein (resp. the discriminant locus in Def(C) is Cartier), then

χλi
(C, η) = − λi ·B

deg(B)

(
resp. χδi(C, η) = − δi ·B

deg(B)

)
.

Proof. We can write Def −(C) = SpecA with A a positively graded k-algebra. The line bundle
L corresponds to a graded projective A-module which is free of rank 1 by [Eis95, Theorem
19.2]. It follows that L = Ã(d) = O(d) for some d. Therefore χL(C, η) = −d and L · B =

degB(L) = d deg(B). �

Theorem 5.2 allows us to compute characters via intersection theory on one-parameter fam-
ilies of stable curves so long as the locus of stable curves inside [Def−(C)/Gm] contains com-
plete one-parameter families. This is not an uncommon occurrence since, as Pinkham shows (in
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the case of unibranch singularities), [Def −(C)/Gm] contains an open set parameterizing smooth
curves of genus g [Pin74, Theorem 1.15].

For special classes of planar singularities even stronger statement holds. For example, if
ÔC,p is an ADE singularity, then Def −(C) = Def(C) and the locus of worse-than-nodal curves
in [Def −(C)/Gm] is of codimension two. It follows that the characters of ADE singularities
can all be computed by writing down a complete one-parameter family of stable curves in
[Def −(C)/Gm] and computing degrees of line bundles λ and δ using standard intersection the-
ory. We do so in a number of cases in Section 6.

In the other direction, Theorem 5.2 suggests a possibility of computing slopes of special loci
insideMg:

Example 5.3 (Toric singularities). Consider the planar toric singularity C : xp − yq = 0. Its
miniversal deformation is

xp = yq +
∑

aijx
iyj, 0 ≤ i ≤ p− 2, 0 ≤ j ≤ q − 2.

We have that Def−(C) = Spec k[aij : qi + pj < pq]. The resulting weighted projective
stack [(Def−(C) r 0)/Gm] is a moduli space of curves on P(q, p, 1) defined by the weighted
homogeneous equation

(5.1) xp = yq +
∑

aijx
iyjzpq−qi−pj, 0 ≤ i ≤ p− 2, 0 ≤ j ≤ q − 2, qi+ pj < pq.

Theorem 5.2 implies that for any complete family of stable curves B → [(Def−(C) r 0)/Gm],
the slope of B is (δ · B)/(λ · B) = χδ(C)/χλ(C). By considering the monomial unibranch
singularities y3 = x3k+1 and y3 = x3k+2, we recover the following result of Stankova [SF00]
(see also Remark 4.6).

Corollary 5.4. For g ≡ 0, 1 mod 3, there is a complete family B of generically smooth genus
g stable trigonal curves such that (δ ·B)/(λ ·B) = 36(g + 1)/(5g + 1).

Proof. Let C be the monomial unibranch singularity y3 = x3k+1. From Equation (5.1) the
restriction of its miniversal deformation to Def −(C) is

y3 = x3k+1 + y(a2kx
2k + · · ·+ a0) + (b3k−1x

3k−1 + · · ·+ b0).(5.2)

It follows that [(Def −(C) r 0)/Gm] ' P(2, 5, . . . , 6k + 2, 6, 9, . . . , 9k + 3) is a moduli space
of trigonal curves of genus g = 3k defined by Equation (5.2) on P(3, 3k + 1, 1).

Evidently, there is a complete familyB → [(Def −(C)r0)/Gm] of at-worst nodal irreducible
curves. Applying Theorem 5.2 to this family and using computations of Example 4.4, we find
that λ · B = χ1(C) = 2g(5g + 1)/12 and δ · B = 13χ1(C) − χ2(C) = 6g(g + 1). This gives
slope 36(g + 1)/(5g + 1).

Considering y3 = x3k+2, we obtain in an analogous fashion a complete family of trigonal
curves of genus g = 3k + 1 with slope 36(g + 1)/(5g + 1). �

We note that in contrast to a simple construction above, an extremal family achieving slope
36(g+ 1)/(5g+ 1) is obtained by a laborious construction in [SF00]. However, our methods do
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not establish a stronger result, also due to Stankova, that 36(g+1)/(5g+1) is maximal possible
among slopes of trigonal families of genus g.

6. INTERSECTION THEORY COMPUTATIONS

In this section, we use intersection theory to find slopes of one-parameter families of curves
arising from stable reduction of certain planar singularities. Namely, we treat the cases ofA2k+1,
A
{1}
2k+1, D2k+2, D{1,2}2k+2, and toric singularities xp = yq. Our computations agree with the results

obtained in Section 4. That this should be the case follows from Theorem 5.2 after verification
that every family we write down comes from [Def−(C)/Gm] of an appropriate singular curve
C. The same techniques can be applied to other singularities. However, as singularities be-
come more complicated, the task of writing down a complete family of stable limits becomes
substantially more challenging.

6.1. Hyperelliptic tails, bridges and triboroughs.

Example 6.1 (Hyperelliptic bridges). We construct a complete one-parameter family Bk of
2-pointed stable hyperelliptic curves of genus k, with marked points conjugate under the hy-
perelliptic involution, that arises from stable reduction of A2k+1 singularity. It follows from our
construction and [Has00, Theorem 6.5] that Bk comes from [Def−1(C)/Gm] where C is the
projective closure of y2 = x2k+2. We show that Bk intersects divisors onMk,2 as follows:

λ ·Bk = (k2 + k)/2,

δ0 ·Bk = (2k + 1)(2k + 2),

ψ1 ·Bk = ψ2 ·Bk = 1,

δ1 ·Bk = · · · = δbk/2c ·Bk = 0.

If Bk → Mg is the family of hyperelliptic genus k bridges obtained by attaching a constant
genus (g − k − 1) curve to the marked sections, then (KMg

+ αδ) · Bk ≤ 0 exactly for α ≤
(3k+11)/(8k+12). This of course agrees with the character theory computation of the α-value
of A2k+1-singularity (see Table 1) due to Theorem 5.2.

To construct Bk, take a Hirzebruch surface F1 → B over B ' P1. Denote by E the unique
(−1)-section and by F the fiber. Next, choose 2k+2 general divisors S1, . . . , S2k+2 in the linear
system |E + F | (these are sections of F1 → B of self-intersection 1). The divisor

∑2k+2
i=1 Si

is divisible by 2 in Pic(F1) and so there is a cyclic degree 2 cover π : X → F1 branched
over

∑2k+2
i=1 Si. We have that π−1(E) = Σ1 + Σ2 is a disjoint union of two sections. Thus,

π : X → B is a family of at-worst nodal hyperelliptic curves of genus k with two conjugate
sections Σ1 and Σ2.

From the construction, there are
(
2k+2

2

)
nodes in the fibers of π. BecauseX hasA1 singularity

at each of these nodes, we have

δX/B = 2

(
2k + 2

2

)
= (2k + 1)(2k + 2).
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From KX/B = π∗(KF1/B + 1
2

∑2k+2
i=1 Si) we deduce that

12λX/B − δX/B = K2
X/B = 2(KF1 + 2F + (2k + 2)(E + F ))2 = 2(k2 − 1).

Finally, the self-intersection of each Σi is (−1). It follows that π : X → B is the requisite
family.

Example 6.2 (Hyperelliptic tails attached at arbitrary points). We now consider a family of
tails appearing from stable reduction of a dangling A{1}2k+1 singularity (see Section 2.1). Taking
family Bk constructed in Example 6.1 above and forgetting one marked section, we arrive at a
family Hk ⊂Mk,1 of hyperelliptic curves with a single marked section. Furthermore,

λ ·Hk = (k2 + k)/2,

δ0 ·Hk = (2k + 1)(2k + 2),

ψ ·Hk = 1,

δ1 ·Hk = · · · = δbg/2c ·Hk = 0.

In particular, the locus of curves with a hyperelliptic genus k tail falls in the base locus of
KMg

+ αδ for α < (3k2 + 11k + 4)/(8k2 + 12k + 2). For example, when k = 2, this shows
that ∆2 ⊂Mg is covered by curves on which KMg

+ (19/29)δ has degree 0.

Example 6.3 (Hyperelliptic triboroughs). Next, we construct a complete one-parameter family
Trik of 3-pointed stable hyperelliptic curves of genus k, with two marked points conjugate,
that arises from stable reduction of D2k+2 singularity. It is easy to verify that this family comes
from [Def−1(C)/Gm] where C is the projective closure of x(y2− x2k) = 0. We show that Trik
intersects divisor classes onMk,3 as follows:

λ · Trik = k2 + k,

δ0 · Trik = 2(2k + 1)(2k + 2),

ψ1 · Trik = ψ2 · Trik = 2,

ψ3 · Trik = 2k,

δ1 · Trik = · · · = δbk/2c · Trik = 0.

The construction of Trik parallels that of the family Bk above. Namely, keeping the notation
of Example 6.1, consider an additional section S0 of F1 of self-intersection 1 such that S0 is
transverse to

∑2k+2
i=1 Si. Set C := π−1(S0). Then C is a degree 2 cover of B (of genus k). Note

that C2 = 2 on X . Consider the base extension π′ : Y := X ×B C → C. The preimage of
C on Y is the union of two sections C1 and C2, intersecting transversally in 2k + 2 points. By
construction, (C1 +C2)

2 = 2C2 = 4, and so C2
1 = C2

2 = −2k. Setting Σ3 := C1, we obtain the
requisite family π′ : Y → C of hyperelliptic genus k curves with two conjugate sections (the
preimages of Σ1 and Σ2) of self-intersection (−2) and the third section Σ3 of self-intersection
(−2k).
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Example 6.4 (Hyperelliptic bridges attached at arbitrary points). We now consider a family of
tails appearing in stable reduction of a dangling D{1,2}2k+2 singularity (see Section 2.1). Taking
family Trik constructed in Example 6.3 above and forgetting one conjugate section, we arrive
at a family BHk of hyperelliptic curves with two marked points. The intersection numbers of
BHk are

λ ·BHk = k2 + k,

δ0 ·BHk = 2(2k + 1)(2k + 2),

ψ1 ·BHk = 2, ψ2 ·BHk = 2k,

δ1 ·BHk = · · · = δbk/2c ·BHk = 0.

In particular, the locus of curves with a hyperelliptic bridge of genus k attached at arbitrary
points falls in the base locus ofKMg

+αδ for α < (3k2 +7k+4)/(8k2 +10k+2). For example,
when k = 2, this shows that the locus of curves with genus 2 bridges inMg is covered by curves
on which KMg

+ (5/9)δ has degree 0.

6.2. Toric singularities. How can we write down a complete one-parameter family of stable
limits of a singularity in such a way that its intersection numbers with divisors onMg can be
computed? We give a complete answer only in the case of a planar toric singularity xp = yq,
even though our method applies more generally to any planar singularity.

Our approach is via degenerations: Begin with a complete family F1 of at-worst nodal curves
– a general pencil of plane curves of degree d � 0 will do. Now vary F1 in a one-parameter
family Fs in such a way that among curves in F0 exactly one curveC has singularity f(x, y) = 0

while the rest are at-worst nodal. Since the generic points of F0 and F1 are smooth curves of
genus g =

(
d−1
2

)
, we obtain two 1-cycles F0, F1 ∈ N1(Mg). For a line bundle L ∈ Pic(Mg)

the numbers L · F0 and L · F1 will differ. If we denote by F the total space of {Fs}, then the
discrepancy between L · F0 and L · F1 is accounted for by indeterminacy of the rational map
F 99KMg at the point [C]. In fact, if

W
h

!!B
BB

BB
BB

B
f

����
��

��
��

F //_______ Mg

is the graph of this rational map, then in N1(Mg) we have F1 = F0 + h(f−1([C])). By con-
struction, Z := h(f−1([C])) is a 1-cycle inside the variety of stable limits of f(x, y) = 0. The
slope of Z is then given by (δ · F1 − δ · F0)/(λ · F1 − λ · F0).

We now perform the necessary computations for toric planar singularities. To begin, let C
be a plane curve of degree d � 0, with an isolated singularity xpb = yqb, where p and q are
coprime. The possible stable limits of C have the following description due to Hassett:

Proposition 6.5 ([Has00, Theorem 6.5]). The stable limits of C are of the form C̃ ∪ T , where
the tail (T, p1, . . . , pb) is a b-pointed curve of arithmetic genus g = (pqb2− pb− qb− b+ 2)/2.
Moreover,
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(1) KT = (pqb− p− q − 1)(p1 + · · ·+ pb).
(2) T is qb-gonal with g1

qb given by |q(p1 + · · ·+ pb)|.

Given a two-parameter deformation of the curve C, one obtains a one-dimensional family of
stable limits. The next proposition constructs one such family and computes its intersections
with the divisor classes λ, δ, and ψ onMg,b.

Proposition 6.6. Let (p, q) = 1. Suppose F0 is a pencil of plane curves of degree d � 0

containing a curve C with a unique singularity xpb = yqb and such that the total family over
F0 is smooth. Consider a deformation F = {Fs} of F0 such that F1 is a general pencil. If

F f←− W
h−→ M(d−1

2 ) is the graph of the rational map F 99K M(d−1
2 ), then the 1-cycle

Z := h(f−1([C])) inside Mg,b (here, g = (pqb2 − pb − qb − b + 2)/2) is irreducible and
satisfies:

λ · Z =
b

12

(
(pqb− p− q)2 + pq(pqb2 − pb− qb+ 1)− 1

)
,

δ0 · Z = pqb(pqb2 − pb− qb+ 1),

ψ · Z = b.

Proof. Without loss of generality, we can assume that the total space of the family of plane
curves over F = {Fs} has local equation xp = yq + sxy + t. Then the simultaneous stable
reduction of this family is obtained by the weighted blow-up of A2

s,t with weights w(s, t) =

(pq− p− q, pq). It follows that Z ' P(pq− p− q, pq) is irreducible. For [s : t] ∈ Z, the stable
curve over [s : t] is a curve on P(q, p, 1) defined by the weighted homogeneous equation

xp = yq + sxyzpq−p−q + tzpq = 0.

It is easy to verify that every member of this family is in fact an irreducible stable curve.
We proceed to compute the intersection numbers of Z with divisor classes λ, δ0, and ψ. Let

Xi be the total families of pencils Fi (i = 0, 1). Our first goal is to compare the degrees of δ and
κ on X0 and X1:

Since F1 is a general pencil, we have δ(X1) = δ0(X1) = 3(d − 1)2. To find the number
of singular fibers in X0 r C, we observe that the topological Euler characteristic of C is 2 −
2g(C)−(b−1), where g(C) =

(
d−1
2

)
−g−b+1 is the geometric genus of C. Since topological

Euler characteristics of X0 and X1 are the same, we have that

δ0(X0 r C) = δ0(X1)− (2g + b− 1) = δ0(X1)− (pqb2 − pb− qb+ 1).

Since X0 and X1 are two families of plane curves of degree d, we have

κ(X0) = κ(X1).

Next, to compare intersection numbers of F0 and F1 with λ and δ0, we need to write down a
family of stable curves over each Fi. There is nothing to do in the case of F1, since it is already a
general pencil of plane curves of degree d. In particular, we have λ ·F1 = (κ(X1) + δ0(X1))/12
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by Mumford’s formula. To write down a stable family over F0, we perform stable reduction of
X0 → F0 in two steps:
Base change: To begin, make a base change of order bpq to obtain the family Y with local
equation xpb − yqb = tpqb.

The numerical invariants of Y are

κ(Y) = pqbκ(X0) = pqbκ(X1), and

δ0(Y r C) = pqbδ0(X0 r C) = pqb(δ0(X1)− (pqb2 − pb− qb+ 1)).

Weighted blow-up: Let Z be the weighted blow-up of Y , centered at x = y = t = 0, with
weights w(x, y, t) = (q, p, 1). The central fiber of Z becomes C̃ ∪ T of the form described
in Proposition 6.5, with smooth T . The self-intersection of the tail T inside Z is (−b). By
intersecting both sides of KZ = π∗KY + aT with T , we find that a = p + q − pqb. It follows
that

κ(Z) = κ(Y)− b(pqb− p− q)2 = pqbκ(X1)− b(pqb− p− q)2.

The number δ0(Z r (C̃ ∪ T )) of singular fibers in Z r (C̃ ∪ T ) is the same as in Y rC and
equals to

pqbδ0(X1)− pqb(pqb2 − pb− qb+ 1).

Remembering that the central fiber of Z has exactly b nodes, we compute

δ0 · Z = pqbδ0(X1)− δ0(Z) = pqb(pqb2 − pb− qb+ 1)− b,
κ · Z = pqbκ(X1)− κ(Z) = b(pqb− p− q)2.

Using Mumford’s formula λ = (κ+ δ)/12, we obtain

λ · Z =
b

12

(
(pqb− p− q)2 + pq(pqb2 − pb− qb+ 1)− 1

)
.

We leave it as an exercise for the reader to verify that ψ · Z = b.
�

Corollary 6.7. Suppose p and q are coprime. Then for the one-parameter family Z of irre-
ducible one-pointed tails of stable limits of xp = yq, constructed in Proposition 6.6, we have

(δ − ψ) · Z
λ · Z

= 12
pq(p− 1)(q − 1)− 1

(p− 1)(q − 1)(2pq − p− q − 1)
.

Considered as a family of unpointed curves of genus g = (p− 1)(q − 1)/2, Z has slope

δ · Z
λ · Z

=
12pq

2pq − p− q − 1
.
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7. CONNECTIONS TO GIT

The α-invariant can be reinterpreted in terms of the Hilbert-Mumford index in geometric
invariant theory. Recall that for every g, n, and m, we have the Hilbert and Chow GIT quotients

Hilb
m,ss

g,n // SLN and Chow
ss

g,n// SLN

parameterizing, respectively, semistable mth Hilbert points of n-canonically embedded curves
of genus g, and semistable Chow points of n-canonically embedded curves of genus g curves,
up to projectivities. Here, N = g if n = 1, and N = (2n− 1)(g − 1) if n > 1.

Proposition 7.1. Let C be a Gorenstein n-canonically embedded genus g curve which admits a
Gm-action η : Gm → Aut(C). Consider the induced one-parameter subgroup η̃ : Gm → SLN .
Then the Hilbert-Mumford indices of the mth Hilbert point of C, respectively the Chow point of
C, with respect to η̃ are

µHilb
m
g,n([C], η̃) =

χλ + (m− 1)
[
((4g + 2)m− g + 1)χλ − gm

2
χδ
]
, if n = 1,

(m− 1)(g − 1)
[
(6mn2 − 2mn− 2n+ 1)χλ − mn2

2
χδ

]
, if n > 1,

and

µChowg,n([C], η̃) =

{
(4g + 2)χλ − g

2
χδ , if n = 1,

(g − 1)n[(6n− 2)χλ − n
2
χδ], if n > 1.

Proof. This result follows directly by computing the divisor classes of the GIT linearizations as
in [Mum77, Theorem 5.15] or [HH08, Section 5]. �

This proposition implies that if one can compute the characters of λ and δ (or equivalently
λ and λ2) with respect to one-parameter subgroups of the automorphism group, then one im-
mediately knows the Hilbert-Mumford indices for all Hilbert and Chow quotients for such one-
parameter subgroups. Moreover, if the Hilbert-Mumford index with respect to a one-parameter
subgroup of the automorphism group is non-zero, then the curve is unstable. In particular, we
recover results of [Hye10, Propositions 2 and 3].

GIT stability of ribbons. Applying Proposition 7.1, we obtain the following result as a corol-
lary of computations made in Example 4.5, whose notation we keep.

Theorem 7.2 (Hilbert stability of ribbons). Let C` be a ribbon defined by f(y) = y−` for some
` ∈ {1, . . . , g − 2}. Then C` admits a Gm-action ρ : Gm → Aut(C`) and

(1) If ` 6= (g − 1)/2, then the mth Hilbert point of the n-canonical embedding of C` is
unstable for all m ≥ 2 and n ≥ 1.

(2) If ` = (g − 1)/2, then the mth Hilbert point of the n-canonical embedding of C` is
unstable for all m ≥ 2 and n ≥ 2.

(3) If ` = (g− 1)/2, then the mth Hilbert point of the canonical embedding of C` is strictly
semistable with respect to ρ for all m ≥ 2.
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Proof. The ribbon C` is obtained by gluing Spec k[x, ε]/(ε2) and Spec k[y, η]/(η2) along open
affines Spec k[x, x−1, ε]/(ε2) and Spec k[y, y−1, η]/(η2) by

x 7→ y−1 − y−`−2η,

ε 7→ y−g−1η,

We consider the Gm-action on C` given by t · (x, y, ε, η) = (tx, t−1y, tg−`ε, t−`−1η). It induces
a one-parameter subgroup ρ : Gm → Aut(C`). By Example 4.5, the characters of C` are

χλ(C`, ρ) = g
(
`− g − 1

2

)
, χδ(C`, ρ) = (5g − 4)

(
`− g − 1

2

)
.

It follows by Proposition 7.1 that the Hilbert-Mumford index with respect to ρ of themth Hilbert
point of the canonical embedding of C` is

µHilb
m
g,1([C], ρ) = g(g +m− gm)

(
`− g − 1

2

)
.

In particular, it is 0 if and only if ` = (g − 1)/2. Similarly, we verify that the Hilbert-Mumford
index µHilb

m
g,n([C], ρ) of the mth Hilbert point of the n-canonical embedding of C` is non-zero

for every n,m ≥ 2. This finishes the proof. �

Corollary 7.3. If g is even, then every canonically embedded genus g ribbon with a Gm-action
is Hilbert unstable.
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