
Lecture 10. The Levi-Civita connection

In this lecture we will show that a Riemannian metric on a smooth manifold
induces a unique connection.

10.1 Compatibility of a connection with the metric

Let M be a smooth Riemannian manifold with metric g. A connection ∇ on
M is said to be compatible with the metric on M if for every pair of vector
fields X and Y on M , and every vector v ∈ TxM ,

v (g(X,Y )) = g (∇vX,Y ) + g (X,∇vY ) .

Here on the left hand side we are applying the vector v (as a derivation) to
the smooth function x 
→ gx(Xx, Yx). This is something which is well-defined
without reference to any connection. The right-hand side does depend on the
connection.

Example 10.1.1 Differentiation of vector fields on a vector space is compatible
with any inner product on the vector space: We have

Dv (X · Y ) = DvX · Y +X ·DvY.

Compatibility of the connection with the metric can be expressed in terms
of parallel transport: Suppose γ is a smooth curve in M , and E1 and E2 are
smooth vector fields along γ. Then

d

dt
g(E1, E2) = g(∇tE1, E2) + g(E1,∇tE2).

In the special case where E1 and E2 are parallel along γ, this implies that
d
dtg(E1, E2) = 0. Therefore vector fields which are parallel with respect to
a compatible connection have constant length (take E1 = E2) and make a
constant angle to each other. A particular consequence is that geodesics have
tangent vectors of constant length.
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Exercise 10.1.2 Show that any connection for which the lengths and an-
gles between parallel vector fields are constant must be compatible with the
metric.

In particular it is very easy to parallel transport a vector along a geodesic
for a compatible connection on a two-dimensional manifold, since there is a
unique vector at each point which makes the same angle with the tangent
vector of the geodesic.

10.2 Submanifolds

Let M be a submanifold of Euclidean space R
N , and induce on M the sub-

manifold connection (given by projecting the derivatives of vector fields onto
the tangent space of M) and the submanifold metric (where the lengths of
tangent vectors to M are given by the lengths of their image in R

N under
the inclusion map).

Proposition 10.2.1 The submanifold connection ∇ is compatible with the
induced metric g.

Proof. We compute directly:

vg(X,Y ) = v〈Xαeα, Y
βeβ〉

= 〈(DvX
α) eα, Y βeβ〉 + 〈Xαeα,

(
DvY

β
)
eβ〉

= 〈π (DvX
α) eα, Y βeβ〉 + 〈Xαeα, π

(
DvY

β
)
eβ〉

= g (∇vX,Y ) + g (X,∇vY ) .

�

10.3 The Levi-Civita Theorem

Proposition 10.3.1 Let M be a smooth Riemannian manifold with metric
g. Then there exists a unique connection ∇ on M whicj is symmetric and
compatible with g.

The connection given by this proposition is called the Levi-Civita con-
nection, or sometimes the Riemannian connection. Note that the Levi-Civita
connection on a submanifold of Euclidean space (with the metric induced by
the standard inner product) is just the submanifold connection.

Proof. First we show uniqueness: Let X, Y , and Z be three smooth vector
fields on M . Then we must have the symmetry conditions
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∇XY −∇YX = [X,Y ];
∇Y Z −∇ZY = [Y,Z];
∇ZX −∇XZ = [Z,X],

and the compatibility conditions

g(∇XY,Z) + g(Y,∇XZ) = Xg(Y,Z);
g(∇Y Z,X) + g(Z,∇YX) = Y g(Z,X);
g(∇ZX,Y ) + g(X,∇ZY ) = Zg(X,Y ).

Take the sum of the first two of the latter equations, and subtract the third.
Then apply the symmetry conditions, yielding:

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X,Y )
+ g(Z, [X,Y ]) + g(Y, [Z,X]) + g(X, [Z, Y ]).

This determines the inner product of ∇xY with any vector field Z purely in
terms of the metric, and so implicitly determines ∇xY . This completes the
proof of uniqueness. To prove existence, it is only necessary to check that the
formula above does indeed define a connection with the desired properties.

Denote the right-hand side of the formula by C(X,Y, Z). C is C∞ in X
and in Z:

C(fX, Y, hZ) = fX (hg(Y,Z)) + Y (fhg(Z,X)) − hZ (fg(X,Y ))
+ hg(Z, [fX, Y ]) + g(Y, [hZ, fX]) + fg(X, [hZ, Y ])

= fhXg(Y,Z) + fhY g(Z,X) − fhZg(X,Y )
+ f(Xh)g(Y,Z) + fY (h)g(Z,X)
+ hY (f)g(Z,X) − hZ(f)g(X,Y )
+ hfg(Z, [X,Y ]) + hfg(Y, [Z,X]) + fhg(X, [Z, Y ])
− hY (f)g(Z,X) − fX(h)g(Y,Z)
+ hZ(f)g(Y,X) − fY (h)g(X,Z)

= fhC(X,Y, Z)

It follows that the map x 
→ C(X,Y, Z)x depends only on Y and the values
Xx and Zx of the vector fields X and Z at x In the second slot we have
instead:

C(X, fY, Z) = fC(X,Y, Z) +X(f)g(Y,Z) − Z(f)g(X,Y )
+X(f)g(Z, Y ) + Z(f)g(X,Y )

= fC(X,Y, Z) + 2X(f)g(Y,Z).

Therefore if we define ∇XY by requiring that g(∇XY,Z) = 1
2C(X,Y, Z),

then (∇XY )x depends only on Xx and Y , and

g(∇X(fY ), Z) = fg(∇XY,Z) +X(f)g(Y,Z) = g(f∇XY +X(f)Y,Z),
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so ∇ satisfies the Leibniz rule and defines a connection. �

In working with the Levi-Civita connection, it is often convenient to look
at the formula which defines it in terms of a local coordinate tangent basis:
Choose a local chart ϕ : U → V for M . Then the formula above, applied
with X, Y , and Z given by coordinate tangent vector fields ∂i, ∂j and ∂k,
gives the following expression for the connection coefficients:

Γij
k =

1
2
gkl (∂igjl + ∂jgil − ∂lgij) ,

where we denote by gij the inverse of the metric gij .

Exercise 10.3.1 Suppose M is a smooth manifold, and N is a smooth Rie-
mannian manifold with metric h. Let F : M → N be an immersion. Then h
induces on M a metric g. For each x ∈ M let πx : TF (x)N → TxM be the
map given by orthogonal projection onto DxF (TxM), followed by application
of (DxF )−1. Define

∇vX = πx

(
∇(h)

DF (v)DF (X)
)
,

where ∇(h) is the Levi-Civita connection of the metric h on N . Show that this
is well-defined (i.e. makes sense even though DF (X) is only defined on the
image F (M) ⊂ N) and defines a connection on M , which is the Levi-Civita
connection on M .

As we have already observed, the geodesics of the Levi-Civita connection
have tangent vectors of constant speed, and parallel transport along any curve
preserves inner products between parallel vector fields.

10.4 Left-invariant metrics

Let G be a Lie group. Then we have a connection on G defined by taking the
left-invariant vector fields to be parallel. We have seen that this connection
does not give a symmetric connection, and so does not give the Levi-Civita
connection for a left-invariant metric. However, this connection is compatible
with any left-invariant metric.

Applying the formula above in the case of a left-invariant metric, we have
the following expression for the Levi-Civita connection: Let {E1, . . . , En} be
left-invariant vector fields which are orthonormal for the metric. Then by
assumption the inner products g(Ei, Ej) are constant, and the first three
terms become zero. This gives

∇Ei
Ej =

1
2

n∑

k=1

(cijk + ckij + ckji)Ek,
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where the structure constants of G are defined by

[Ei, Ej ] =
n∑

k=1

cijkEk.

In contrast the left-invariant connection would have ∇EiEj = 0.

10.5 Exponential normal coordinates

It is often convenient to use the exponential map of the Levi-Civita connection
to produce a chart for a Riemannian manifold.

Proposition 10.5.1 Let (M, g) be a smooth Riemannian manifold, and
∇ the Levi-Civita connection. Fix x ∈ M . Choose an orthonormal basis
{e1, . . . , en} for TxM , and define a chart ϕ on a neighbourhood U of x by

ϕ−1
(
x1, . . . , xn

)
= expx

(
xjej

)
.

In these coordinates (called exponential normal coordinates) we have

gij(0) = δij ;

and
Γij

k(0) = 0.

Proof. Recall that the derivative of the exponential map at the origin is just
the identity map. Therefore

gij(0) = g(∂i, ∂j) = g(D0 expx(ei), D0 expx(ej)) = δij

since the {ei} were chosen to be orthonormal.
We also have

∇ai∂i

(
aj∂j

)
= 0

at the origin for any constants a1, . . . , an, since ai∂i is the tangent vector to
the geodesic through 0 in that direction. By symmetry we have at the origin

0 = ∇∂i+∂j
(∂i + ∂j)

= ∇∂i
∂i + ∇∂j

∂j + ∇∂i
∂j + ∇∂j

∂i

= 2∇∂i
∂j .

for every i and j. Therefore all the connection coefficients vanish at the origin.
�

Remark. By the same proof, the connection coefficients at the origin vanish
with respect to exponential coordinates for a connection (not necessarily a
Levi-Civita connection) if and only if the connection is symmetric. This gives
another interpretation of the torsion of a connection.




