Lecture 10. The Levi-Civita connection

In this lecture we will show that a Riemannian metric on a smooth manifold
induces a unique connection.

10.1 Compatibility of a connection with the metric

Let M be a smooth Riemannian manifold with metric g. A connection V on
M is said to be compatible with the metric on M if for every pair of vector
fields X and Y on M, and every vector v € T, M,

v (g(va)) = g(vaa Y) +9g (X, vvy) :

Here on the left hand side we are applying the vector v (as a derivation) to
the smooth function x — g, (X, Y.). This is something which is well-defined
without reference to any connection. The right-hand side does depend on the
connection.

Ezample 10.1.1 Differentiation of vector fields on a vector space is compatible
with any inner product on the vector space: We have

Dy, (X-Y)=D,X Y +X-D,Y.

Compatibility of the connection with the metric can be expressed in terms
of parallel transport: Suppose 7 is a smooth curve in M, and F; and E5 are
smooth vector fields along . Then

d
EQ(E17E2) = g(ViE, Es) + g(E1, Vi Es).
In the special case where F; and E5 are parallel along ~y, this implies that
% g(FE1, E2) = 0. Therefore vector fields which are parallel with respect to
a compatible connection have constant length (take Fy = F5) and make a
constant angle to each other. A particular consequence is that geodesics have
tangent vectors of constant length.
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Exercise 10.1.2 Show that any connection for which the lengths and an-
gles between parallel vector fields are constant must be compatible with the
metric.

In particular it is very easy to parallel transport a vector along a geodesic
for a compatible connection on a two-dimensional manifold, since there is a
unique vector at each point which makes the same angle with the tangent
vector of the geodesic.

10.2 Submanifolds

Let M be a submanifold of Euclidean space RY, and induce on M the sub-
manifold connection (given by projecting the derivatives of vector fields onto
the tangent space of M) and the submanifold metric (where the lengths of
tangent vectors to M are given by the lengths of their image in RY under
the inclusion map).

Proposition 10.2.1 The submanifold connection V is compatible with the
induced metric g.

Proof. We compute directly:
vg(X,Y) = (X%, YPes)
= ((DyX*) ea, Y eg) + (X%ea, (D,Y") e5)
= (1 (DyX*) ea, Y eg) + (X%, m (DyY"?) €5)
g(VoX,Y) +9(X,V,Y).

10.3 The Levi-Civita Theorem

Proposition 10.3.1 Let M be a smooth Riemannian manifold with metric
g. Then there exists a unique connection V on M whicj is symmetric and
compatible with g.

The connection given by this proposition is called the Levi-Civita con-
nection, or sometimes the Riemannian connection. Note that the Levi-Civita
connection on a submanifold of Euclidean space (with the metric induced by
the standard inner product) is just the submanifold connection.

Proof. First we show uniqueness: Let X, Y, and Z be three smooth vector
fields on M. Then we must have the symmetry conditions
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VxY - VyX = [X,Y];
VyZ —V5Y =1V, 7]
V2X - VxZ=[ZX],

and the compatibility conditions

9(VxY,Z)+g(Y,VxZ) = Xg(Y, Z);
9(VzX,Y)+g(X,VzY) = Zg(X,Y).
Take the sum of the first two of the latter equations, and subtract the third.
Then apply the symmetry conditions, yielding:
29(VxY,Z) = Xg(Y,Z)+Yg(Z, X) - Zg(X,Y)
+9(Z,[X.Y]) +9(Y,[2, X]) + 9(X,[Z,Y]).
This determines the inner product of V,Y with any vector field Z purely in
terms of the metric, and so implicitly determines V,Y. This completes the
proof of uniqueness. To prove existence, it is only necessary to check that the
formula above does indeed define a connection with the desired properties.
Denote the right-hand side of the formula by C(X,Y,Z). C is C* in X
and in Z:
C(fX.Y,hzZ) = X (hg(Y,Z)) + Y (fhyg(Z, X)) = hZ (fg(X,Y))
+hg(Z,[fX,Y]) +g(Y,[nZ, fX]) + fg(X,[nZ,Y])
= [hXg(Y,Z)+ fhY g(Z,X) — fhZg(X,Y)
+ [(Xh)g(Y,Z) + fY(h)g(ZX)
+hY(f)g(Z, X) = hZ(f)g(X,Y)
o

+hf9(Z, X, D+hfg( Z, X]) + fhg(X,[Z,Y])
—hY (f)g9(Z, X) — fX(h)g(Y, Z)
+hZ(f)g(Y, X) - fY( )9(X, Z)

= fhC(X,Y, Z)

It follows that the map = — C(X,Y, Z), depends only on Y and the values
X, and Z, of the vector fields X and Z at z In the second slot we have
instead:
CX, Y, Z) = fC(X,Y, Z) + X(f)g(Y, Z) = Z(f)g(X,Y)
+X(f)9(Z2,Y)+ Z(f)g9(X.Y)
— FO(X,Y. Z) +2X()g(Y, 2).

Therefore if we define VxY by requiring that ¢(VxY,Z) = %C’(X,Y,Z)7
then (VxY), depends only on X, and Y, and

9(Vx(fY), Z2) = f9(VxY, 2) + X(f)9(Y, Z) = g(fVxY + X ()Y, Z),
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so V satisfies the Leibniz rule and defines a connection. O

In working with the Levi-Civita connection, it is often convenient to look
at the formula which defines it in terms of a local coordinate tangent basis:
Choose a local chart ¢ : U — V for M. Then the formula above, applied
with X, Y, and Z given by coordinate tangent vector fields 0;, 9; and O,
gives the following expression for the connection coefficients:

1
r;* = 59“ (0igji + 059a — 01945)

where we denote by g% the inverse of the metric 9ij-

Exercise 10.3.1 Suppose M is a smooth manifold, and N is a smooth Rie-
mannian manifold with metric h. Let F': M — N be an immersion. Then A
induces on M a metric g. For each « € M let 7, : Tp(x)N — T, M be the
map given by orthogonal projection onto D, F(T,, M), followed by application
of (D, F)~. Define

VX = (Vir, DF(X)),

where V(" is the Levi-Civita connection of the metric h on N. Show that this
is well-defined (i.e. makes sense even though DF(X) is only defined on the
image F'(M) C N) and defines a connection on M, which is the Levi-Civita
connection on M.

As we have already observed, the geodesics of the Levi-Civita connection
have tangent vectors of constant speed, and parallel transport along any curve
preserves inner products between parallel vector fields.

10.4 Left-invariant metrics

Let G be a Lie group. Then we have a connection on G defined by taking the
left-invariant vector fields to be parallel. We have seen that this connection
does not give a symmetric connection, and so does not give the Levi-Civita
connection for a left-invariant metric. However, this connection is compatible
with any left-invariant metric.

Applying the formula above in the case of a left-invariant metric, we have
the following expression for the Levi-Civita connection: Let {Fy, ..., E,} be
left-invariant vector fields which are orthonormal for the metric. Then by
assumption the inner products g(E;, E;) are constant, and the first three
terms become zero. This gives

n
Vi E; = Z (Cijk + crij + crji) Er,
k=1
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where the structure constants of G are defined by
n
[Ei, Bj] = cijiBg.
k=1

In contrast the left-invariant connection would have Vg, E; = 0.

10.5 Exponential normal coordinates

It is often convenient to use the exponential map of the Levi-Civita connection
to produce a chart for a Riemannian manifold.

Proposition 10.5.1 Let (M,g) be a smooth Riemannian manifold, and
V the Levi-Civita connection. Fix x € M. Choose an orthonormal basis
{e1,...,en} for T, M, and define a chart ¢ on a neighbourhood U of x by

ot (:r:l, e ,x") = exp, (xjej) .
In these coordinates (called exponential normal coordinates) we have
9i5(0) = dij;
and
I;%(0)=o0.

Proof. Recall that the derivative of the exponential map at the origin is just
the identity map. Therefore

9i5(0) = 9(8i,9;) = g(Do exp,(e:), Do exp (7)) = di;

since the {e;} were chosen to be orthonormal.
We also have ,
Vais, (a](?j) =0
at the origin for any constants a!,...,a", since a’0; is the tangent vector to
the geodesic through 0 in that direction. By symmetry we have at the origin

0= Vo, +o, (0; + ;)
= Vaiai + Vajaj + Vaiaj + Vajai
= 2V, 0;.

for every 7 and j. Therefore all the connection coefficients vanish at the origin.
|

Remark. By the same proof, the connection coefficients at the origin vanish
with respect to exponential coordinates for a connection (not necessarily a
Levi-Civita connection) if and only if the connection is symmetric. This gives
another interpretation of the torsion of a connection.





