
Lecture 18. The Gauss and Codazzi equations

In this lecture we will prove the fundamental identities which hold for the
extrinsic curvature, including the Gauss identity which relates the extrinsic
curvature defined via the second fundamental form to the intrinsic curvature
defined using the Riemann tensor.

18.1 The fundamental identities

The definitions (from the last lecture) of the connection on the normal and
tangent bundles, and the second fundamental form h and the associated
operator W, can be combined into the following two useful identities: First,
for any pair of vector fields U and V on M ,

DUDVX = −h(U, V ) +DX(∇UV ). (18.1)

This tells us how to differentiate an arbitrary tangential vector field DVX,
considered as a vector field in R

N (i.e. an N -tuple of smooth functions). Then
we have a corresponding identity which tells us how to differentiate sections of
the normal bundle, again thinking of them as N -tuples of smooth functions:
For any vector field U and section φ of NM ,

DUφ = DX(W(U, φ)) + ∇Uφ. (18.2)

Since we can think of vector fields in this way as N -tuples of smooth
functions, we can deduce useful identities in the following way: Take a pair
of vector fields U and V . Applying the combination UV − V U − [U, V ] to
any function gives zero, by definition of the Lie bracket. In particular, we can
applying this to the position vector X:

0 = (UV − V U − [U, V ])X
= −h(U, V ) +DX(∇UV ) + h(V,U) −DX(∇V U) −DX([U, V ]).

Since the right-hand side vanishes, both the normal and tangential com-
ponents must vanish. The normal component is h(V,U) − h(U, V ), so this
establishes the fact we already knew that the second fundamental form is
symmetric. The tangential component is DX(∇UV −∇V U − [U, V ]), so the
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vanishing of this tells us that the connection is symmetric (as we proved
before).

18.2 The Gauss and Codazzi equations

We will use the same method as above to deduce further important identities,
by applying UV − V U − [U, V ] to an arbitrary tangential vector field.

Let W be a smooth vector field on M . Then we have

0 = (UV − V U − [U, V ])WX
= U(VWX) − V (UWX) − [U, V ]Wx
(18.1)
= U (−h(V,W ) + (∇VW )X) − V (−h(U,W ) + (∇UW )X)

−
(
−h([U, V ],W ) + (∇[U,V ]W )X

)

(18.2)
= −DX(W(U, h(V,W ))) − (∇h(U, V,W ) + h(∇UV,W ) + h(V,∇UW ))
+DX(W(V, h(U,W ))) − (∇h(V,U,W ) + h(∇V U,W ) + h(U,∇VW ))
+ U(∇VW )X − V (∇UW )X + h([U, V ],W ) − (∇[U,V ]W )X

(18.1)
= −DX(W(U, h(V,W ))) − (∇h(U, V,W ) + h(∇UV,W ) + h(V,∇UW ))
+DX(W(V, h(U,W ))) − (∇h(V,U,W ) + h(∇V U,W ) + h(U,∇VW ))
− h(U,∇VW ) + (∇U∇VW )X + h(V,∇UW ) − (∇V ∇UW )X
+ h([U, V ],W ) − (∇[U,V ]W )X

= DX (R(V,U)W −W(U, h(V,W )) + W(V, h(U,W )))
+ ∇h(U, V,W ) −∇h(V,U,W ).

In deriving this we used the definition of curvature in the last step, and
used the symmetry of the connection to note that several of the terms cancel
out. The tangential and normal components of the resulting identity are the
following:

R(U, V )W = W(U, h(V,W )) −W(V, h(U,W )) (18.3)

and
∇h(U, V,W ) = ∇h(V,U,W ). (18.4)

Note that the tensor ∇h appearing here is the covariant derivative of the
tensor h, defined by

∇h(U, V,W ) = ∇U (h(V,W )) − h(∇UV,W ) − h(V,∇UW )

for any vector fields U , V and W . Here the ∇ appearing in the first term on
the right-hand side is the connection on the normal bundle, and the other
two terms involve the connection on TM .
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Equation (18.3) is called the Gauss equation, and Equation (18.4) the
Codazzi equation. Note that the Gauss equation gives us a formula for the
intrinsic curvature of M in terms of the extrinsic curvature h.

It is sometimes convenient to write these identities in local coordinates:
Given a local chart with coordinate tangent vectors ∂1, . . . , ∂n, choose also
a collection of smooth sections eα of the normal bundle, α = 1, . . . , N − n,
which are linearly independent at each point. Let g be the metric on TM and
g̃ the metric on NM , and write gij = g(∂i, ∂j) and g̃αβ = g̃(eα, eβ). Then we
can write

h(∂i, ∂j) = hij
αeα

and
W(∂i, eβ) = Wiβ

j∂j .

The relation between h and W then tells us that Wiβ
j = gjkg̃βαhik

α.
The Gauss identity then becomes

Rijkl =
(
hjk

αhil
β − hjk

βhil
α
)
g̃αβ (18.5)

If we write ∇h = ∇ihjk
αdxi ⊗ dxj ⊗ dxk ⊗ eα, then the Codazzi identity

becomes
∇ihjk

α = ∇jhik
α. (18.6)

Since we already know that hij is symmetric in j and k, this implies that
∇khij is totally symmetric in i, j and k.

18.3 The Ricci equations

We will complete our suite of identities by applying UV − V U − [U, V ] to an
arbitrary section φ of the normal bundle:

0 = (UV − V U − [U, V ])φ
(18.2)
= U(W(V, φ)X + ∇V φ) − V (W(U, φ)X + ∇Uφ)
− (W([U, V ], φ)X + ∇[U,V ]φ)

(18.1)
= −h(U,W(V, φ)) + (∇W(U, V, φ) + W(∇UV, φ) + W(V,∇Uφ))X
+ h(V,W(U, φ)) − (∇W(V,U, φ) + W(∇V U, φ) + W(U,∇V φ))X
+ U∇V φ− V∇Uφ−W([U, V ], φ)X −∇[U,V ]φ

(18.2)
= −h(U,W(V, φ)) + (∇W(U, V, φ) + W(V,∇Uφ))X
+ h(V,W(U, φ)) − (∇W(V,U, φ) + W(U,∇V φ))X
+ W(U,∇V φ)X + ∇U∇V φ−W(V,∇Uφ)X −∇V ∇Uφ−∇[U,V ]φ

= R⊥(V,U)φ− h(U,W(V, φ)) + h(V,W(U, φ))
+ (∇W(U, V, φ) −∇W(V,U, φ))X.
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As before, this gives us two sets of identities, one from the tangential
component and one from the normal component. In fact the tangential com-
ponent is just the Codazzi identities again, but the normal component gives
a new identity, called the Ricci identity, which expresses the curvature of the
normal bundle in terms of the second fundamental form:

R⊥(U, V )φ = h(V,W(U, φ)) − h(U,W(V, φ)). (18.7)

In local coordinates, with a local basis for the normal bundle as above, this
identity can be written as follows: If we write R⊥

ijαβ = g̃(R⊥(∂i, ∂j)eα, eβ)
and hijα = g̃(h(∂i, ∂j), eα), then we have

R⊥
ijαβ = gkl(hikαhjlβ − hjkαhilβ). (18.8)

18.4 Hypersurfaces

In the case of hypersurfaces the identities we have proved simplify somewhat:
First, since the normal bundle is one-dimensional, the normal curvature van-
ishes and the Ricci equations become vacuous.

Also, the basis {eα} for NM can be taken to consist of the single unit
normal vector n, and the Gauss and Codazzi equations become

Rijkl = hikhjl − hjkhil

and
∇ihjk = ∇jhik.

The curvature tensor becomes rather simple in this setting: At any point
x ∈M we can choose local coordinates such that ∂1, . . . , ∂n are orthonormal
at x and diagonalize the second fundamental form, so that

hij =

{
λi, i = j

0, i �= j

Then we have an orthonormal basis for the space of 2-planes Λ2TxM , given
by {ei ∧ ej : i < j}. The Gauss equation gives for all i < j and k < l

Rm(ei ∧ ej , ek ∧ el) =

{
λiλj , i = k, j = l

0, otherwise.

In particular, this basis diagonalizes the curvature operator, and the eigen-
values of the curvature operator are precisely λiλj for i < j. Note that all of
the eigenvectors of the curvature operator are simple planes in Λ2TM . It fol-
lows that if M is any Riemannian manifold which has a non-simples 2-plane
as a eigenvector of the curvature operator at any point, then M cannot be
immersed (even locally) as a hypersurface in R

n+1.
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Example 18.4.1 (Curvature of the unit sphere). Consider the unit sphere Sn,
which is a hypersurface of Euclidean space R

n+1 (so we take the immersion
X to be the inclusion). With a suitable choice of orientation, we find that
the Gauss map is the identity map on Sn — that is, we have n(z) = X(z)
for all z ∈ Sn. Differentiating this gives

DX(W(u)) = Dun = DX(u)

so that W is the identity map on TSn, and hij = gij . It follows that all of
the principal curvatures are equal to 1 at every point, and that all of the
sectional curvatures are equal to 1. Therefore the unit sphere has constant
sectional curvatures equal to 1.

Example 18.4.2 (Totally umbillic hypersurfaces). A hypersurface Mn in Eu-
clidean space is called totally umbillic if for every x ∈ M the principal cur-
vatures λ1(x), . . . , λn(x) are equal — that is, the second fundamental form
has the form hij = λ(x)gij . The Codazzi identity implies that a connected
totally umbillic hypersurface in fact has constant principal curvatures (hence
also constant sectional curvatures by the Gauss identity):

(∇kλ)gij = ∇khij = ∇ihkj = (∇iλ)gkj

for any i, j and k. Fix k, and choose j = i �= k (we assume n ≥ 2, since
otherwise the totally umbillic condition is vacuous). This gives ∇kλ = 0.
Since k is arbitrary, this implies ∇λ = 0, hence λ is constant. There are two
possibilities: λ = 0 (in which case M is a subset of a plane), or λ �= 0 (in
which case M is a subset of a sphere).

Example 18.4.3 Spacelike hypersurfaces in Minkowski space The definitions
we have made for the second fundamental form were given for submanifolds of
Euclidean space. However the same definitions work with very minor modifi-
cations for certain hypersurfaces in the Minkowski space R

n,1: A hypersurface
Mn in R

n,1 is called spacelike if the metric induced onM from the Minkowski
metric is Riemannian — equivalently, if every non-zero tangent vector u ofM
has 〈u, u〉Rn,1 > 0. This is equivalent to the statement that M is given as the
graph of a smooth function with slope less than 1 over the plane R

n × {0}.
Given a spacelike hypersurface, we can choose at each x ∈ M a unit

normal by taking the unique future-pointing vector n which is orthogonal to
TxM with respect to the Minkowski metric, normalized so that 〈n,n〉 = −1.

The definitions are now identical to those for hypersurfaces in Euclidean
space, except that the metric on the normal bundle is now negative defi-
nite. The Codazzi identity is unchanged, and the Gauss identity is almost
unchanged: The one difference arises from the presence of the g̃ term in
Equation (18.5), which is now negative instead of positive. This gives

Rijkl = − (hikhjl − hjkhil) . (18.9)
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We can now compute the second fundamental form for a very special
example, namely Hyperbolic space H

n, which is the set of unit future timelike
vectors in Minkowski space. In this case we have n(z) = z for every z ∈ H

n,
since 0 = Du〈z, z〉 = 2〈Duz, z〉 = 2〈u, z〉. Differentiating, we find (exactly as
in the calculation for the sphere in Example 18.4.1 above) that hij = gij , so
that the principal curvatures are all equal to 1. The Gauss equation therefore
gives that the sectional curvatures are identically equal to −1.

More generally, a hypersurface with all principal curvatures of the same
sign (i.e. a convex hypersurface) in Minkowski space has negative curvature
operator, while a hypersurface with all principal curvatures of the same sign
in Euclidean space has positive curvature operator.




