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Chapter 1

Synopsis

1.1 Weight 2 and more

Let f =
∑

n>0 anq
n be a primitive non-CM cusp form of weight at least 2, level N and

character ǫ. LetMf be the motive attached to f . In weight 2 this is Shimura’s abelian

variety, and in higher weight it is Scholl’s Grothendieck motive. Let End(Mf ) denote

the ring of endomorphisms ofMf over Q̄ and Xf = End(Mf )⊗ZQ. Let E = Q(an) be

the number field generated by the Fourier coefficients of f and let F be the subfield

generated by a2pǫ(p)
−1 for all primes p such that gcd(p,N) = 1. It is known that Xf

is a central simple algebra over the the number field F . One also knows that the class

of X = Xf in Br(F ) is 2-torsion. K. Ribet has asked [Ri80] for an explicit description

of this class.

In view of the exact sequence

0 → 2Br(F ) → ⊕v 2Br(Fv) → Z/2Z → 0

it is enough to consider the local behaviour of X. For each place v of F , let Xv =

X ⊗F Fv. A theorem of Momose [Mo81] says that X is totally indefinite if k is even,

and totally definite if k is odd, giving complete information about the Brauer class of

Xv at the infinite places v. When v is a finite place, we prove that the class of Xv in

Br(Fv) is completely determined in terms of the parity of the slope at v of the adjoint

lift of f (when this slope is finite).

According to Langlands principle of functoriality, given two reductive algebraic
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groups H and G over Q and a homomorphism between their L-groups u : LH → LG,

there should be a way to lift cuspidal automorphic representations π of H(AQ) to

cuspidal automorphic representation Π of G(AQ), so that the Langland’s L-functions

of π and Π are related by the formula L(s,Π, r) = L(s, π, r ◦ u). In the case that

H = GL2 and G = GL3, and u is the adjoint map, it is (by now) a classical theorem

of Gelbart and Jacquet that every cuspidal automorphic form π on GL2(AQ) has a

lift ad(π), called the Gelbart-Jacquet adjoint lift, to an automorphic representation

of GL3(AQ). If the Satake parameters at an unramified prime p of π are αp and βp,

then the Satake parameters of the adjoint lift ad(π) are αp

βp
, 1, βp

αp
.

Let now π = πf be the automorphic representation attached to the non-CM form

f as above, and let Ad(π) = ad(π)⊕1 be the automorphic form on GL4(AQ) obtained

from the Gelbart-Jacquet adjoint lift by adding the trivial representation. Finally let

Π = Ad(π)(k − 1)

be the automorphic representation on GL4(AQ) obtained by taking the (k−1)-st twist

of Ad(π).

We define the slope mv of Π at v | p to be

mv := [Fv ·Qp] · v(tp) ∈ Z ∪ {∞},

where v is normalized so that v(p) = 1 and tp ∈ F is defined to be the sum of the

four parameters of Πp, namely

tp =

(
αp

βp
+ 1 +

βp
αp

+ 1

)
· pk−1 =

(αp + βp)
2

αpβp
· pk−1.

The following theorem may be considered as a summary of all the results of the

first part of the thesis (cf. [BG10a]).

Theorem 1.1.1. Suppose v is a finite place of F such that mv ∈ Z is finite. Then

the class of Xv in Br(Fv) is determined by the parity of the slope mv of Π at v.

For each place v of F , lying over p with gcd(p,N) = 1, one can compute

mv = [Fv : Qp] · v(a2pǫ(p)−1) ∈ Z ∪ {∞}.

We prove the following theorem.

11



Theorem 1.1.2 (Good reduction). Let p be a prime with gcd(p,N) = 1. Assume

ap 6= 0. Let v be a place of F lying over p. Then Xv is a matrix algebra over Fv if

and only if the finite slope mv of Π at v is even.

For p odd this is a theorem of Brown-Ghate [BG04] and Ghate–González-Jiménez–

Quer [GGQ05], under a minor technical condition. We prove the above theorem for

p = 2, and removed this technical condition for all primes p.

Let Np be the exponent of the exact power of p dividing N . Let C denote the

conductor of ǫ and let Cp be the exponent of the exact power of p dividing C. So

Np ≥ Cp.

We prove a similar result for primes p|N . We start with the so called Steinberg

case.

Theorem 1.1.3 (Steinberg). Let Np = 1, Cp = 0, and let v be a prime of F lying

above p. Then Xv is a matrix algebra over Fv if and only if the slope mv = [Fv :

Qp](k − 2) of Π at v is even.

Note that this result is an extension of the previous theorem, as in this case ǫ(p)

makes sense, and it is well known that a2p = ǫ(p)pk−2 (cf. Theorem 4.6.17 [Mi89]).

We now turn to the very interesting case when Np = Cp ≥ 1. We decompose

ǫ = ǫ′ · ǫp into its prime-to-p and p parts. We then have:

mv = [Fv : Qp] · v(a2pǫ′(p)−1 + 2p(k−1) + ā2pǫ
′(p)) ∈ Z ∪ {∞}.

Note that in this case apāp = pk−1 (cf. Theorem 4.6.17 of [Mi89]). It can be checked

that the three term expression in the last line above is indeed an element of F . Note

again that mv ∈ Z (unless it is infinite). In view of the two previous theorems, one

might conjecture:

Conjecture 1.1.4. If mv < ∞, then Xv is a matrix algebra over Fv if and only if

mv is even.

We prove that the conjecture is essentially true. In particular, when mv < [Fv :

Qp](k − 1), the conjecture is true.

12



Theorem 1.1.5 (Ramified principal series unequal slope case). Let Np = Cp and let

v be a place of F lying above p. Assume that mv < [Fv : Qp](k − 1). Then Xv is a

matrix algebra over Fv if and only if the finite slope mv of Π at v is even.

We remark that while a partial result in the ‘if’ direction was proved in [GGQ05,

Thm. 5.1], Theorem 1.1.5 gives complete information about the ramification of Xv

in the unequal slope case.

In the equal slope case, when mv ≥ [Fv : Qp](k−1), Conjecture 1.1.4 is, somewhat

surprisingly, false. We introduce a set of new quantities mζ
v, which may be thought

of as replacements of mv. Let µ =
a2p

ǫ′(p)
and ν = µ̄ =

ā2p
ǭ′(p)

. Let ev and fv be the

ramification index and residue degree of v | p, and let Gv be the decomposition

subgroup of F at v. For any root of unity ζ in the image of ǫp on Gv, let

mζ
v := ev · v

(
µfv · 1/ζ + 2p(k−1)fv + νfv · ζ

)
∈ Z ∪ {∞}.

The three term expression lies in F , so mζ
v is well defined. In particular, we define

m+
v := m+1

v , and if −1 belongs to the image of ǫp on Gv, then we define m−
v := m−1

v .

We prove:

Theorem 1.1.6 (Ramified principal series equal slope case). Assume that v | p and

Np = Cp ≥ 1. Suppose mv ≥ [Fv : Qp](k − 1).

(i) Let p be an odd prime. Assume that the tame part of ǫp on Gv is not quadratic.

Let ζ be in the image of the tame part of ǫp on Gv. Then the parity of mζ
v is

independent of ζ when it is finite, and then Xv is a matrix algebra over Fv if

and only if mζ
v ∈ Z is even.

(ii) If p = 2 and ǫ2 is not quadratic, then there exists an integer nv mod 2 defined

purely in terms of ǫ2, such that Xv is a matrix algebra over Fv if and only if

one of

m±
v + nv ∈ Z

is even.

(iii) If p is odd and the tame part of ǫp is quadratic on Gv, or if p = 2 and ǫ2

is quadratic on Gv, then there is an integer nv mod 2 defined in terms of the

Hilbert symbol (t, d)v, with t depending only on ǫp and d on an explicit Fourier

coefficient of f , such that Xv is a matrix algebra over Fv if and only if one of

m±
v + nv ∈ Z

13



is even.

The above theorem reduces to the previous theorem when the slopes are unequal.

Indeed, in the unequal slope case, the quantities mζ
v = mv, and nv = 0 in case (2)

and (3). Thus we may think of nv as an error term to the validity of Conjecture 1.1.4

in the equal slope case.

The above results give a complete answer to Ribet’s question on the Brauer class

of Xf = X in the cases of finite slope. We note that these cases cover all cases where

Mf has either semistable or crystabelian (crystalline over an abelian extension of Q)

reduction. The remaining finite places of bad reduction occur when Np > Cp. In such

cases ap = 0 and even the slope of f is not finite.

1.2 Weight One

We have also extended some of the above results to modular forms of weight one

[BG10b]. One can attach an Artin motive to such a form. We have proved a structure

theorem for the endomorphism algebra of this motive. We remark that it is well known

that the category of Artin motives can be identified with a category of (finite image)

Galois representations.

Let f ∈ S1(Γ0(N), ǫ) be a primitive form without RM or CM. Let E = Q(an)

be the number field generated by the Fourier coefficients of f . Let ρf be the Galois

representation attached to f , as constructed by Deligne-Serre [DS74], i.e.,

ρf : GQ −→ GL2(E).

For all σ ∈ Σ = Hom(E, Q̄), let ρσ be the Galois representation

ρσ : GQ̄ −→ GL2(Q̄)

obtained by composing ρf with σ. We define the representation ρ by

ρ =
⊕

σ∈Σ
ρσ.

The underlying vector space is

V =
⊕

σ∈Σ
Vσ,

14



where Vσ is the underlying vector space of ρσ. We view V as a vector space over Q̄.

We say an element T ∈ End(V ) is defined over a number field K, if T is H-

equivariant, where

H = Gal(Q̄/K).

We define:

Xf = EndGal(Q̄/K0)(V ),

whereK0 is a sufficiently large finite abelian extension ofQ. This is the endomorphism

algebra (over K0) of the Artin motive associated to f and its conjugates.

Lemma 1.2.1. Let

ρ : GQ −→ GL2(C)

be an odd representation with non-dihedral projective image. If H is an open, normal

subgroup of GQ with GQ/H abelian, then H acts irreducibly.

Recall that a pair (γ, χγ), where γ ∈ Aut(E) and χγ is an E-valued Dirichlet

character, is called an extra twist for f , if fγ = f ⊗ χγ, i.e., a
γ
p = ap · χγ(p), for

all primes p ∤ N . Let F ⊂ E be the field fixed by Γ. We call χγ the Dirichlet

character attached to γ ∈ Γ. Let L be a sufficiently large finite Galois extension

of Q (containing E and all the Gauss sums G(χ−1
γ ), for γ ∈ Γ). Write V/L for the

Artin motive above, but with field of rationality L instead of Q̄, and let Xf /L be the

corresponding endomorphism algebra (over K0).

Combining the above lemma with arguments of Ribet [Ri80] we prove the following

theorem.

Theorem 1.2.2. Let f be a non-dihedral primitive cusp form of weight one. The

endomorphism algebra Xf /L is isomorphic to X⊗QL, where X is the algebra given by

X =
⊕

γ∈Γ
E · xγ,

thought of as an algebra over Q, with relations

xγ · xδ =
G(χ−1

γ )G(χ−γ
δ )

G(χ−1
γδ )

· xγδ, and

xγ · e = γ(e) · xγ,

for γ, δ ∈ Γ, e ∈ E.

15



It is a deep fact that the algebra X is also the endomorphism algebra of the motive

attached to a primitive non-CM cusp form of weight k ≥ 2 (as was proved by Ribet

[Ri80] and Momose for k = 2 and Brown-Ghate [BG04] for k > 2). In view of the

above theorem, we conclude that the algebra X is important for weight one forms as

well.

Note that X is a central simple algebra over F , and again X is 2-torsion in the

Brauer group of F . We show that the analogue of Theorem 1.1.2 holds in the weight

one setting, namely:

Theorem 1.2.3. Let p ∤ N be a prime with ap 6= 0, and let v be a place of F lying

over p. Then Xv is a matrix algebra over Fv if and only if mv is even.

We calculate the possible values of mv in the theorem above using the adjoint repre-

sentation and conclude that Xv is a matrix algebra in almost all cases (cf. [BG10b]).

Since, the above result provides no information at the primes p | N , we also

calculated the Brauer class of the algebra X at all primes for forms of prime level. In

this case Serre [Se77a] has classified such forms into three types (b), (c1) and (c2).

Theorem 1.2.4. Let f ∈ S1(p, ǫ) be a primitive non-dihedral cusp form. The follow-

ing are the three possibilities for X in Br(F ).

(i) If f is of Serre type (b), then X = (−1,−2),

(ii) If f is of Serre type (c1), then X = (−2,−p),

(iii) If f is of Serre type (c2), then X = (−1,−p).

Here, (a, b) is the symbol defined for a, b ∈ F ∗.
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Chapter 2

Introduction

In this thesis, we study the endomorphism algebras of motives attached to non-

dihedral modular forms of weight greater or equal to one.

Let f =
∑∞

n=1 anq
n be a primitive non-CM (non dihedral for weight one) cusp

form of weight k ≥ 1, level N ≥ 1 and character ǫ, and letMf be the motive attached

to f .

• If f has weight 1, Mf is an Artin motive.

• If f has weight 2, Mf is the abelian variety attached to f by Shimura [Sh71].

• If f has weight larger than 2, Mf is the Grothendieck motive attached to f by

Scholl [Sc90].

Let E = Q(an) be the Hecke field of f . If f has weight greater than one, then

Mf is known to be a pure motive of rank 2, weight k − 1, with coefficients in E. Let

End(Mf ) denote the ring of endomorphisms of Mf defined over Q̄ and let

Xf = End(Mf )⊗Z Q

be the Q-algebra of endomorphisms of Mf .

Let Γ ⊂ Aut(E) be the group of extra twists of f , in all weights. Recall that a

pair (γ, χγ), where γ ∈ Γ ⊂ Aut(E) and χγ is an E-valued Dirichlet character, is

called an extra twist for f , if fγ = f ⊗ χγ, i.e., a
γ
p = ap · χγ(p), for all primes p ∤ N .
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Define the E-valued Jacobi sum 2-cocycle c on Γ by

c(γ, δ) =
G(χ−γ

δ )G(χ−1
γ )

G(χ−1
γ·δ)

∈ E,

for γ, δ ∈ Γ, where G(χ) is the usual Gauss sum attached to the character χ. Let X

be the corresponding crossed product algebra defined by:

X =
⊕

γ∈Γ
E · xγ ,(2.0.1)

where the xγ are formal symbols satisfying the relations

xγ · xδ = c(γ, δ) · xγδ,
xγ · e = γ(e) · xγ,

for γ, δ ∈ Γ and e ∈ E. Clearly X is a central simple algebra over F , the fixed field

of Γ in E. A fundamental result due to Momose [Mo81] and Ribet [Ri80] in weight 2,

and Brown and Ghate [BG04] and Ghate, González-Jiménez and Quer [GGQ05] in

higher weights, says that Xf
∼= X and the class of Xf in the Brauer group Br(F ) of

F is 2-torsion. Moreover F ⊂ E is known to be the subfield generated by a2pǫ
−1(p),

for primes p ∤ N .

Ribet has remarked that it seems difficult to describe the class of Xf by pure

thought. In this thesis, we give a complete description of the Brauer class of Xf in

terms of the slopes of the adjoint lift of f , under a finiteness hypothesis on these

slopes [BG10a].

One might also wonder to what extent the above mentioned results extend to

the presumably simpler case of non-dihedral modular forms of weight one, where the

Grothendieck motive is replaced by an Artin motive, which for practical purposes may

be taken to be the direct sum ρ of the finite image Galois representations attached

to the conjugates of the non-dihedral modular form f .

We consider a suitable algebra of endomorphisms Xf of ρ whose elements are

defined over abelian number fields, and prove a similar structure theorem for Xf .

More precisely, if the field of definition L of ρ is sufficiently large, then we prove that

Xf ≃ X ⊗Q L.

In this thesis, we also completely analyze the Brauer class of X for weight one

forms [BG10b].
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We start the thesis with some preliminaries. In Chapter 3, we introduce modular

forms and Galois representations attached to newforms. In Chapter 4, we define

motives attached to such newforms and the corresponding endomorphism algebras,

which are the objects of our study.

In Chapter 5, we recall how, for forms of weight greater than one, the endomor-

phism algebra Xf satisfies Xf
∼= X. In this chapter, we also prove that Xf ≃ X⊗QL

for modular forms of weight one (cf. Theorem 5.1.11).

The above structure theorems show the importance of the central simple algebra

X in the study of the endomorphism algebras of modular motives for all weight k ≥ 1.

The main objective of the present thesis is to study the Brauer class of X in 2Br(F ).

The standard exact sequence from class field theory

0 → 2Br(F ) → ⊕v 2Br(Fv) → Z/2Z → 0,

where v runs over all places of F , shows that it is enough to study the class of

Xv = X ⊗F Fv in Br(Fv), for each place v. It is well known that 2Br(Fv) ∼= Z/2

(including if v is infinite since F is totally real), and Xv is a matrix algebra over Fv

if the class of Xv is trivial, and a matrix algebra over a quaternion division algebra

over Fv, if the class of Xv is non-trivial. A theorem of Momose [Mo81] says that

X is totally indefinite if k is even, and totally definite if k is odd, giving complete

information about the Brauer class at the infinite places v. When v is a finite place,

we shall prove the class of Xv in Br(Fv) is completely determined in terms of the

parity of the slope at v of the adjoint lift of f (when this slope is finite).

In Chapter 6, we recall some basic facts about automorphic forms and Langlands

principle of functoriality. According to Langlands principle of functoriality, given

two reductive algebraic groups H and G over Q and a homomorphism between their

L-groups u : LH → LG, there should be a way to lift cuspidal automorphic represen-

tations π of H(AQ) to cuspidal automorphic representation Π of G(AQ), so that the

Langlands L-functions of π and Π are related by the formula L(s,Π, r) = L(s, π, u◦r).
In the case that H = GL2 and G = GL3, and u is the adjoint map, it is (by now) a

classical theorem of Gelbart and Jacquet that every cuspidal automorphic form π on

GL2(AQ) has a lift ad(π), called the Gelbart-Jacquet adjoint lift, to an automorphic

representation of GL3(AQ). If the Satake parameters at an unramified prime p of π

are αp and βp, then the Satake parameters of the adjoint lift ad(π) are αp

βp
, 1, βp

αp
.

Let now π = πf be the automorphic representation attached to the non-CM form
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f as above, and let Ad(π) = ad(π)⊕1 be the automorphic form on GL4(AQ) obtained

from the Gelbart-Jacquet adjoint lift by adding the trivial representation. Finally let

Π = Ad(π)(k − 1)

be the automorphic representation on GL4(AQ) obtained by taking the (k−1)-st twist

of Ad(π).

We define the slope mv of Π at v | p to be

mv := [Fv ·Qp] · v(tp) ∈ Z ∪ {∞},

where v is normalized so that v(p) = 1 and tp ∈ F is defined to be the sum of the

four parameters of Πp, namely

tp =

(
αp

βp
+ 1 +

βp
αp

+ 1

)
· pk−1 =

(αp + βp)
2

αpβp
· pk−1.

The following theorem may be considered as a summary of all the results proved

in Chapter 7 about the endomorphism algebras of motives attached to modular forms

of weight greater than 1.

Theorem 2.0.5. Suppose v is a finite place of F such that mv ∈ Z is finite. Then

the class of Xv in Br(Fv) is determined by the parity of the slope mv of Π at v.

Before we proceed further, we wish to remark that the above theorem seems to be

another instance of a recurring theme in the theory of the arithmetic of automorphic

forms, wherein arithmetic information about an object attached to a form (in this case

the endomorphism algebra) is contained in the Fourier coefficients of a suitable lift of

the original form(in this case the twisted adjoint lift). The most striking example of

this theme occurs in the correspondence between forms of integral weight k and forms

of half-integral weight (k+1)/2. Here, twisted central critical L-values of the original

form on PGL2 occur as Fourier coefficients of the Shimura-Shintani-Waldspurger lift

of this form to the metaplectic group S̃L2 (cf. [Sh73] and [Wa81]). The theorem above

establishes another instance where this theme is played out.

The slope mv of Π at a place v | p of F in the theorem above is defined to be a

suitably normalized v-adic valuation of the sum of certain parameters coming from

the local automorphic representation Π at p. The shape of these parameters vary in
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different cases, but can be made completely precise. As a result we obtain various

explicit versions of the above theorem which we state now.

For instance, suppose that v | p with p ∤ N , so that πp is an unramified represen-

tation. Then the slope mv of Π at v is the (normalized) v-adic valuation of the sum

of the Satake parameters of Πp. Since Ad(π) has Satake parameters αp

βp
, 1, βp

αp
, 1, we

have

mv := [Fv : Qp] · v
(
(
αp

βp
+ 1 +

βp
αp

+ 1) · pk−1

)
= [Fv : Qp] · v

(
(αp + βp)

2

αpβp
· pk−1

)

= [Fv : Qp] · v(a2pǫ−1(p)) ∈ Z ∪ {∞},

where v is normalized so that v(p) = 1. We remark that F may be considered as the

Hecke field of the adjoint lift Π, since it is generated by the quantities a2pǫ
−1(p), for

p ∤ N . Moreover, the slope mv of Π at v is an integer because of the local degree

term [Fv : Qp] (unless of course ap = 0, in which case mv is infinite). We prove (cf.

Theorem 7.1.1):

Theorem 2.0.6 (Spherical case). Assume gcd(p,N) = 1. Let v be a place of F

lying over p. Assume ap 6= 0. Then Xv is a matrix algebra over Fv if and only if

mv = [Fv : Qp] · v(a2pǫ(p)−1) ∈ Z is even.

The case k = 2 and mv = 0 (good, ordinary reduction) is due to Ribet [Ri81]. The

general case for odd primes, and for p = 2 when F = Q, was proved in [BG04] and

[GGQ05, Thm. 2.2], under a minor technical hypothesis. Here we include the case

p = 2 for all F , and remove this technical hypothesis. We also prove the analogous

theorem for weight one forms (cf. Theorem 8.1.1).

However, the main point of our thesis is to treat, for k ≥ 2, the primes of bad

reduction, i.e., the primes v | p of F with p | N . Let Np ≥ 1 be the exponent of

the exact power of p dividing N . Let C denote the conductor of ǫ and let Cp ≥ 0

be the exponent of the exact power of p dividing C. Note Np ≥ Cp. Since p | N ,

we no longer have the Satake parameters of πp at our disposal. However, we can

replace these numbers by the corresponding eigenvalues of ℓ-adic Frobenius in the

ℓ-adic Weil-Deligne representation corresponding to πp, for ℓ 6= p, or equivalently by

[Sa97], with the eigenvalues of crystalline Frobenius on the filtered (ϕ,N)-module

attached to πp as in [GM09], and can still compute the slope of Π at v.

For example, in the case that Np = 1 and Cp = 0, it is well known that πp is

an unramified twist of the Steinberg representation. In this case, the eigenvalues of

21



ℓ-adic Frobenius are nothing but αp = ap and βp = pap, up to multiplication by the

same constant. We thus have:

mv := [Fv : Qp] · v
(
(αp + βp)

2

αpβp
· pk−1

)

= [Fv : Qp] · (k − 2) ∈ Z.

In Theorem 7.2.4 we prove:

Theorem 2.0.7 (Steinberg case). Let Np = 1, Cp = 0, k ≥ 2 and let v be a prime

of F lying above p. Then Xv is a matrix algebra over Fv if and only if the slope

mv = [Fv : Qp](k − 2) of Π at v is even.

The proof of Theorem 2.0.7 uses the structure of the ℓ-adic Galois representation

attached to f at p, for ℓ 6= p, due to Langlands. The case k = 2 is due to Ribet

[Ri81], who in fact showed that the algebra X is trivial in the Brauer group of F ,

using the fact that the corresponding residual abelian variety has toric reduction.

Ribet’s result was extended to forms of even weight k in [BG04, Thm. 1.0.6]. In this

paper examples were also given of forms of odd weight for which the endomorphism

algebra is ramified at Steinberg primes. The above theorem gives a complete criterion

for the ramification of X at Steinberg primes in all weights k ≥ 2.

We now turn to the very interesting case when Np = Cp ≥ 1 and πp is in the rami-

fied principal series. The behaviour of the local Brauer class in this case is mysterious,

but has now become possible to treat using the adjoint lift. The eigenvalues of ℓ-adic

or crystalline Frobenius are not well-defined in this case since the Weil-Deligne pa-

rameter corresponding to πp is ramified. However, one more or less canonical choice

is αp = ap and βp = āpǫ
′(p), where we decompose ǫ = ǫ′ · ǫp into its’ prime-to-p and p

parts. We set, µ =
a2p

ǫ
′
(p)

and ν = µ̄. We then have:

mv := [Fv : Qp] · v
(
(αp + βp)

2

αpβp
· pk−1

)

= [Fv : Qp] · v(a2pǫ′(p)−1 + 2p(k−1) + ā2pǫ
′(p)) ∈ Z ∪ {∞}.

It can be checked that the three term expression in the last line above is indeed an

element of F . It is clearly fixed by complex conjugation; it is in fact fixed by all

elements of Γ (cf. Lemma 7.3.1). Note again that mv ∈ Z (unless it is infinite). In

view of the two previous theorems, one might conjecture:

Conjecture 2.0.8. Assume v | p and Np = Cp ≥ 1. If mv <∞, then Xv is a matrix

algebra over Fv if and only if mv is even.
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We prove that the conjecture is essentially true. In particular, we prove the conjecture

is true in Theorem 7.3.10 and Theorem 7.3.15, when mv < [Fv : Qp](k−1) and k ≥ 2.

Theorem 2.0.9 (Ramified principal series unequal slope case). Let Np = Cp, k ≥ 2,

and let v be a place of F lying above p. Assume that mv < [Fv : Qp](k− 1). Then Xv

is a matrix algebra over Fv if and only if the finite slope mv of Π at v is even.

We remark that while a partial result in the ‘if’ direction was proved in [GGQ05,

Thm. 5.1], Theorem 2.0.9 gives complete information about the ramification of Xv

in the unequal slope case.

In the equal slope case, when mv < [Fv : Qp](k − 1), the conjecture 2.0.8 is,

somewhat surprisingly, false. Counterexamples for p = 2 and p = 3 are given in

Chapter 9. This is related to the fact that the eigenvalues of the ℓ-adic Frobenius are

not well-defined.

We introduce a set of new quantitiesmζ
v, which may be thought of as replacements

of mv. Let µ =
a2p

ǫ′(p)
and ν = µ̄ =

ā2p
ǭ′(p)

. Let ev and fv be the ramification index and

residue degree of v | p, and let Gv be the decomposition subgroup of F at v. For any

root of unity ζ in the image of ǫp on Gv, let

mζ
v := ev · v

(
µfv · 1/ζ + 2p(k−1)fv + νfv · ζ

)
∈ Z ∪ {∞}.

The three term expression lies in F , so mζ
v is well defined. In particular, we define

m+
v := m+1

v , and if −1 belongs to the image of ǫp on Gv, then we define m−
v := m−1

v .

We prove:

Theorem 2.0.10 (Ramified principal series equal slope case). Assume v | p and

Np = Cp ≥ 1 and k ≥ 2. Suppose mv ≥ [Fv : Qp](k − 1).

(i) Let p be an odd prime. Assume that the tame part of ǫp on Gv is not quadratic.

Let ζ be in the image of the tame part of ǫp on Gv. Then the parity of mζ
v is

independent of ζ when it is finite, and then Xv is a matrix algebra over Fv if

and only if mζ
v ∈ Z is even.

(ii) If p = 2 and ǫ2 is not quadratic on Gv, then there exists an integer nv mod 2

defined purely in terms of ǫ2, such that Xv is a matrix algebra over Fv if and

only if one of

m±
v + nv ∈ Z

is even.
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(iii) If p is odd and the tame part of ǫp is quadratic on Gv, or if p = 2 and ǫ2

is quadratic on Gv, then there is an integer nv mod 2 defined in terms of the

Hilbert symbol (t, d)v, with t depending only on ǫp and d on an explicit Fourier

coefficient of f , such that Xv is a matrix algebra over Fv if and only if one of

m±
v + nv ∈ Z

is even.

The above theorem reduces to the previous theorem when the slopes are unequal.

Indeed, in the unequal slope case, the quantities mζ
v = mv, and nv = 0 in case (ii)

and (iii). Thus we may think of nv as an error term to the validity of conjecture

2.0.8 in the equal slope case.

The above results give a complete answer to Ribet’s question on the Brauer class

of Xf = X in the cases of finite slope and weight k ≥ 2. We note that these cases

cover all cases where Mf has either semistable or crystabelian (crystalline over an

abelian extension of Q) reduction. The remaining finite places of bad reduction occur

when Np > Cp. In such cases ap = 0 and even the slope of f is not finite. We hope

to return to the infinite slope cases in subsequent work.

In Chapter 8, we also completely analyze the Brauer class of X for weight one

forms. An interpretation of the slope in Theorem 2.0.6 in terms of the adjoint rep-

resentation allows us to compute it completely, showing that the Brauer class is

essentially unramified at all primes of good reduction, whenever the corresponding

slope is finite (Theorem 8.1.3). We also express the algebra X in terms of symbols,

which allows us to show that at a prime of bad reduction the Brauer class of X is

determined in a simple way by the nebentypus of the form. Finally, as an example,

we determine the Brauer class of X for all non-dihedral weight one forms of prime

level (Theorem 8.3.2).

In Chapter 9, we give some numerical examples supporting various theorems

proved in Chapter 7. These examples were generated by the program Endohecke

due to Brown and Ghate which was made by suitably modifying the C++ program

Hecke created by W. Stein.

24



Chapter 3

Modular forms and Galois

representations

3.1 Modular forms

In this section, we recall some basic results about classical elliptic modular forms. We

closely follow the expositions of [DS05].

The principal congruence subgroup of level N is

Γ(N) =
{(a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡
(
1 0

0 1

)
(mod N)

}
.

Definition 3.1.1. A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if Γ ⊃
Γ(N) for some N ∈ N. We define N to be the level of the congruence subgroup.

We recall the definition of the following congruence subgroups of level N .

Γ0(N) =
{(a b

c d

)
| c ≡ 0 (mod N)

}
, and

Γ1(N) =
{(a b

c d

)
| c ≡ 0 (mod N) and a ≡ 1 ≡ d (mod N)

}
.

Let Γ be a congruence subgroup of level N . Let H = {z ∈ C | Im(z) > 0} denote
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the complex upper half plane. Now SL2(Z) acts on Q∪{∞}. We define the cusps of

Γ to be the Γ-equivalence classes of Q ∪ {∞}.

Let GL+
2 (R) denote the set of 2 × 2 real matrices with determinant greater than

zero. We define an action of an element α =

(
a b

c d

)
∈ GL+

2 (R) on the space of

holomorphic functions on H by

(3.1.1) f [α]k(τ) = (det(α))k−1(cτ + d)−kf
(aτ + b

cτ + d

)
.

The congruence subgroup Γ contains a translation matrix of the form

(
1 t

0 1

)
for

some minimal t ∈ N, because Γ ⊃ Γ(N). Let the function f satisfies f [γ]k(τ) = f(τ)

for all γ ∈ Γ. Let D′ = {z : z ∈ C, |z| < 1}\{0}. Since Γ contains the matrix

(
1 t

0 1

)
,

so f(z + t) = f(z). The form f will define a holomorphic function g : D′ → C by

g(z) = f(exp 2πiz
t
). The modular form f is said to be holomorphic at ∞, if g extends

to a holomorphic function on D = {z : z ∈ C, |z| < 1}. Hence, if f is holomorphic at

∞, g extends holomorphically to 0. We write

f(z) =
∑

n

anq
n,

where q = exp(2πiz) and we call the above Fourier expansion to be the q-expansion

of the modular form f at ∞.

Let c ∈ Q∪ {∞} be any cusp, it can be written in the form c = α(∞) for some α

in SL2(Z). The function h = f [α]k is a holomorphic function on the upper half plane

and satisfies the condition h[β]k(τ) = h(τ) for all β ∈ α−1Γα. Now α−1Γα is a also

congruence subgroup of level N . The modular form f is said to be holomorphic at

the cusp c if h is holomorphic at ∞.

For the congruence subgroup Γ = Γ1(N), it is easy to see that t = 1, since Γ1(N)

contains the matrix

(
1 1

0 1

)
.

Definition 3.1.2. A modular cusp form, or simply a cusp form, of weight k ≥ 1,

level N and nebentypus character ǫ :
(
Z/NZ

)× −→ C× is a function f : H −→ C

satisfying

(i) f is holomorphic as a function f : H → C,
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(ii) for all α =

(
a b

c d

)
∈ Γ0(N) and all τ ∈ H, we have

f [α]k(τ) = ǫ(d)f(τ),

(iii) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z),

(iv) the constant term of the q-expansion at each cusp is zero.

The space of all cusp forms of weight k, level N and character ǫ is denoted by

Sk(N, ǫ). Inside the space of cusp forms there is the space of newforms. The space of

newforms is an orthogonal complement of the space of oldforms with respect to the

Petersson inner product. We do not give a formal definition here but remark that

newforms are cusp forms which are normalized, i.e., whose first Fourier coefficient is

1 and which do not arise from cusp forms of lower level. We sometimes denote them

by cuspidal newforms. They are also simultaneous eigenfunctions of all the Hecke

operators.

3.1.1 Hecke operators

Let f(z) =
∑

n anq
n, where q = exp(2πiz), be a modular form in Sk(N, ǫ). For any

n ∈ N, the Hecke operators Tn on Sk(N, ǫ) are defined as follows:

Tn(f) =
∞∑

m=0

(
∑

d|(m,n)

ǫ(d)dk−1amn/d2)q
m.

For l ∤ N , the Hecke operators 〈l〉 on Sk(N, ǫ) are defined as

〈l〉f = ǫ(l)f.

The Hecke operators on Sk(N, ǫ) form an algebra. We state a theorem regarding

Fourier coefficients of newforms.

Theorem 3.1.3. Let f ∈ Sk(N, ǫ) be a newform, then the field obtained by adjoining

all the Fourier coefficients is a number field.

Proof. [DS05, p. 234].
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3.1.2 Complex multiplication

Let f ∈ Sk(N, ǫ) be an elliptic modular form and let φ be a Dirichlet character. Let

f ⊗ φ be defined by

f ⊗ φ :=
∞∑

n=1

φ(n)anq
n.

By [Sh71, Proposition 3.64], f ⊗ φ is a modular form of weight k and nebentypus

ǫφ2.

Definition 3.1.4 ([Ri76]). The modular form f is said to have complex multiplication

(CM) by φ if

φ(p)ap = ap

for all primes p in a set of primes of density 1.

In this thesis, we are interested in modular forms which don’t have complex mul-

tiplication. We call them non-CM elliptic modular forms.

3.2 Galois representations attached to newforms

In this section, we recall how we can attach Galois representations to newforms.

3.2.1 Galois representations associated to weight one new-

forms

In fact, we can attach Galois representations to modular forms, which are simultane-

ous eigenfunctions of all the Hecke operators.

Theorem 3.2.1 ([DS74]). Let f be a modular form of weight one, level N and neben-

typus ǫ as defined above. Suppose f is an eigenfunction for Tp for all p ∤ N with

eigenvalue ap, then there exists a Galois representation

ρf : GQ → GL2(C)

such that trace(ρf (Frobp)) = ap and det(ρf (Frobp)) = ǫ(p) for all primes p ∤ N .

Moreover, the representation ρf is irreducible if and only if f is a cusp form.
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We note that the converse of the above theorem is Artin’s conjecture. Chan-

drashekhar Khare and J-P. Wintenberger completed the proof of Artin’s conjecture,

as a consequence of Serre’s modularity conjecture.

In view of the above, newforms f of weight one are completely determined by the

corresponding Galois representations ρf : GQ → GL2(C). We can project the contin-

uous representation to PGL2(C). The image of ρf is a finite subgroup of PGL2(C)

and by [Kl93], the only possible finite subgroups of PGL2(C) are

• the cyclic group of order n, denoted by Cn,

• the dihedral group of order 2n, denoted by Dn for n ≥ 2,

• the alternating groups A4 and A5 and the symmetric group S4.

We note that the image of ρf in PGL2(C) is cyclic if and only if ρf is reducible.

Since f ∈ S1(N, ǫ), so the projective image of the irreducible Galois representation

ρf can only be Dn or the groups A4, A5 or S4. From [Se77a, Theorem 7.2.1], the

projective image of ρf is dihedral if and only if ρf is induced from a character of a

quadratic subfield. In other words, there exists an extension K such that [K : Q] = 2

and a character χ : GK = Gal(Q̄/K) → C∗ such that ρ = IndK/Qχ. There are two

possibilities, K is imaginary or K is real. In the first case, we say f is a CM modular

form and in the second case, we say f is a modular form with real multiplication

(RM). In this thesis, we will be interested only in the modular forms of weight one,

whose projective images are A4, S4 and A5. In these cases, we call the corresponding

modular forms of tetrahedral type, octahedral type and icosahedral type.

3.2.2 Galois representations attached to newforms of weight

greater than one

We state without proof the analogue of Theorem 3.2.1 for modular forms of weight

greater than one.

Theorem 3.2.2 ([DS74]). Let f be a modular form of weight greater than one, level

N and nebentypus ǫ as defined above. Suppose f is an eigenfunction for Tp for all

p ∤ N with eigenvalue ap. Let E = Q(an) be the Hecke field. Let λ be a finite prime of
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E with residue characteristic ℓ and let Eλ be the completion of E at the prime ideal

λ. Then there exists a continuous, semisimple Galois representation

ρf,λ : GQ → GL2(Eλ)

satisfying the properties trace(ρf,λ(Frobp)) = ap and det(ρf,λ(Frobp)) = ǫ(p)pk−1 for

all primes p ∤ Nℓ.

The Galois representations {ρf,λ}λ as constructed in the above theorem, form a

so called compatible system of Galois representations. Hence we can remove λ from

our notations and call the corresponding Galois representations to be ρf .

We state the following theorem of Langlands which describes the local behaviour

of ρf . Let ρf : GQ → GL2(Eλ) be an ℓ-adic Galois representation attached to f , for a

prime λ | ℓ of E with ℓ 6= p, as described above. Let λ(x) be the unramified character

which takes arithmetic Frobenius Frobp to x ∈ Eλ.

Theorem 3.2.3 (Langlands). The local behaviour of ρf |Gp at a decomposition group

Gp at p is as follows.

• If p ∤ N , let αp and βp be roots of the polynomial x2 − apx+ ǫ(p)pk−1. Then

ρf |Gp ∼
(
λ(βp) 0

0 λ(αp)

)
.

• If Np = 1 and Cp = 0, let αp = ap and βp = pap. Then

ρf |Gp ∼
(
λ(βp) ∗
0 λ(αp)

)
.

• If Np = Cp ≥ 1, let αp = ap and βp = āpǫ
′(p). Then

ρf |Gp ∼
(
λ(βp) · ǫp 0

0 λ(αp)

)
.

• If Np ≥ 2 > Cp and p > 2, and πp is supercuspidal, then ρf |Gp ∼ Ind
Gp

GK
χ, for a

quadratic extension K of Qp, and a character χ of GK.

Remark 3.2.4. If f is a modular form with a complex multiplication by φ as defined

in section 3.1.2, then by considering the determinant of the corresponding Galois

representations, we get ǫφ2 = ǫ. In other words, φ is a quadratic character. Let K be

the field cut out by the kernel of φ. We say that the f has complex multiplication by

K.
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Chapter 4

Modular motives

4.1 Abelian varieties for cusp forms of weight two

In this section, we will explicitly describe how to associate abelian varieties to new-

forms of weight two. We refer to [DS05] for more elaborate discussions.

4.1.1 Abelian varieties

Let X be a compact Riemann surface of genus g. The Jacobian of X is defined to be

the linear functionals on the holomorphic differentials on X modulo those functionals

coming from integration over loops in X. Complex analytically, the Jacobian of X is

the torus Cg/Λg, where Λg
∼= Zg is a lattice.

Definition 4.1.1. Let Ωhol(X) denote the vector space of holomorphic differentials

on X and let Ωhol(X)∗ denote the dual of the vector space Ωhol(X). The Jacobian of

X is the quotient group

Jac(X) := Ωhol(X)∗/H1(X,Z).

Let Y1(N) = Γ1(N)\H and let X1(N) be the compactification of Y1(N) by adding

the cusps of Γ1(N). Let J1(N) = Jac(X1(N)) denotes the Jacobian of the compact

Riemann surface X1(N). A well-known construction, namely

f 7→ fdz
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identifies S2(Γ1(N)) with the holomorphic differentials on X1(N). We get another

description of complex points of J1(N). Namely,

J1(N) = S2(Γ1(N))∗/H1(X1(N),Z).

4.1.2 Hecke operators

Definition 4.1.2. For a congruence subgroup Γ of SL2(Z) and α ∈ GL+
2 (Q), we

decompose ΓαΓ =
∑

j Γβj. We define the weight-2 double coset operator ΓαΓ to be

an operator, which takes f ∈ S2(Γ) to

f [ΓαΓ]2 =
∑

j

f [βj ]2.

We can define the pullback of the weight-2 ΓαΓ-operator on S2(Γ)
∗ as in [DS05,

p. 228]. This action will induce an action on J1(N), as explained in [DS05, p. 228].

The Hecke operators are special cases of double coset operators.

For p prime, the Hecke operator Tp on S2(Γ1(N)) is [Γ1(N)

(
1 0

0 p

)
Γ1(N)]2. Let

l be an integer relatively prime to N . The diamond operator 〈l〉 on S2(Γ1(N)) is

[Γ1(N)αΓ1(N)]2, for α =

(
a b

c δ

)
∈ Γ0(N) with δ ≡ l (mod N). For (l, N) > 1, we

define 〈l〉 = 0.

To define Tn, set T1 = 1 (Identity operator); Tp is already defined for primes p.

For prime powers, we define inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 ,

for r ≥ 2.

We extend the definition multiplicatively to Tn for all n, by defining Tn =
∏

p Tpr

if n =
∏

p p
r.

A small calculation will show that the action of Tn and 〈l〉 on S2(N, ǫ) are the

same as that defined in 3.1.1.

Definition 4.1.3. The Hecke algebra TZ is the algebra over Z of endomorphisms of

S2(Γ1(N)), generated over Z by the Hecke operators Tn and 〈l〉, for l relatively prime
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to N . That is,

TZ = Z[{Tn, 〈l〉 : (l, N) = 1}].

4.1.3 Abelian varieties associated to weight two newforms

Let f be a cuspidal newform. Recall, we have a map

λf : TZ → C

defined by T (f) = λf (T )f . We denote the kernel of the map by

If = {T ∈ TZ : T (f) = 0}.

Since, TZ acts on J1(N), the subgroup IfJ1(N) of J1(N) makes sense.

Definition 4.1.4. The abelian variety Af associated to f is defined to be

Af = J1(N)/IfJ1(N).

Let

[f ] = {fσ| σ : E → C}.

The cardinality of this set is the number of embeddings of E in C. Let Vf = span[f ] ⊂
S2(Γ1(N)) be a subspace of dimension [E : Q]. Restricting the action of the subgroup

H1(X1(N),Z) of S2(Γ1(N))∗ to the modular forms of the space Vf , we get a subgroup

of the dual space V ∗
f ,

Λf = H1(X1(N),Z)|Vf
.

The following theorem identifies the complex torus associated to Af .

Theorem 4.1.5. The map

Af → V ∗
f /Λf

defined by

[φ] + IfJ1(N) → φ|Vf
+ Λf

for φ ∈ S2(Γ1(N))∗, induces an isomorphism Af
∼= V ∗

f /Λf . The right hand side is a

complex torus of dimension [E : Q].

Proof. [DS05, Proposition 6.6.4, p. 242].
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The abelian variety Af is defined overQ. TheQ-algebra of endomorphisms defined

over Q is known to be E. Let End(Af ) denote the algebra of endomorphisms of Af ,

which are defined over Q̄.

Definition 4.1.6. We define the algebra Xf to be

Xf := End(Af )⊗Z Q.

We will study this algebra in the next few chapters.

4.2 Modular motives for weight greater than 2

In the section, we will discuss some basic facts about Grothendieck motives and the

endomorphism algebras of these motives. We refer to [BG04] for further details.

4.2.1 Grothendieck motives

Let K ⊂ C be a number field with a fixed embedding to C. Let X and Y be nonsin-

gular projective varieties defined over K and suppose each geometrically irreducible

component of X and Y has dimension d. Let Z(X × Y ) be the rational vector space

generated by irreducible subvarieties of X × Y , defined over K, of pure codimension

d. We fix an embedding Q̄ →֒ C. Let H2d
B (X × Y )(d) denote the Betti cohomology

group with coefficients in (2πi)dQ. Let cB : Z(X ×X) → H2d
B (X ×X)(d) denote the

cycle class map.

Let Zh(X × Y ) be the quotient

Zh(X × Y ) := Z(X × Y )/ ∼

where ∼ is the cohomological equivalence relation, i.e., for any Z ∈ Zh(X × Y ), Z is

trivial if and only if the image of Z in H2d
B (X × Y )(d) under the cycle class map is 0.

We endow Zh(X × Y ) with the multiplication defined by the composition product of

correspondences.

An effective motive is a pair M = (X, p), where X is a nonsingular projective

variety and p ∈ Zh(X ×X) is a projector, that is it satisfies p2 = p. If N = (Y, q) is

also an efffective motive, then Hom(M,N) is defined to be
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Definition 4.2.1.

Hom(M,N) :=
{Z ∈ Zh(X × Y ) : Z ◦ p = q ◦ Z}

{Z ∈ Zh(X × Y ) : Z ◦ p = q ◦ Z = 0} .

In this category of effective motive defined over K, we define the tensor product

M ⊗N := (X × Y, p× q).

Let L be the effective motive (P1, 1 − Z), where Z ∈ Zh(P
1 × P1) is the class of the

cycle P1 × {point}. The functor sending M to M ⊗ L is fully faithful, so it can be

formally inverted.

Definition 4.2.2. A motive is a pair (M,a), where M is an effective motive and

a ∈ Z. (M,a), sometime denoted by M(a), is the a-fold Tate twist of M . If N(b) is

another effective motive, then Hom(M(a), N(b)) is defined by

Hom(M(a), N(b)) := Hom(M ⊗ Lr−a, N ⊗ Lr−b)

for any r ≥ max{a, b}.

This defines the category of Grothendieck motives over K with cohomological

equivalence. An effective motive has a realisation in each of the standard cohomology

theories.

4.2.2 Modular motives attached to modular forms of weight

≥ 3

In this section, we recall how we can associate Grothendieck motives to modular

forms of weight greater than 2 and level N = n. We start with some definitions from

classical algebraic geometry. We refer to [DR72], [KM85], [Sc98], [Br07] for more

elaborate discussions on these topics.

An elliptic curve over a scheme S is a proper, smooth morphism of schemes p :

E → S, whose fibers are geometrically connected curves of genus one with a section

O ∈ E(S).

The category E of elliptic curves is a category whose objects are elliptic curves

(p : E → S,O). We denote the objects in this category by E/S. The morphism in
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this category from the object (p : E → S,O) to (p1 : E1 → S1, O1), consisting of

maps (f : S → S1, g : E → E1) such that the diagram

E −−−→ E1y
y

S −−−→ S1

is commutative and the induced morphisms of S1-schemes E → E1 ×S1
S is an iso-

morphism of elliptic curves over S.

Let S denote the category of sets. Let C be any category, and let F : C → S be

any contravariant functor. We recall that a functor F is said to be representable, if

there exists an object X of C, such that F is isomorphic to the contravarient functor

T → HomC(T,X).

A moduli problem for elliptic curves is a contravariant functor P : E → S. Now we

define a particular type of moduli problem, called rigid moduli problem [KM85, p.

109]. Let P be a moduli problem. For every elliptic curve f : E → S, the group

AutS(E) = {g : E ≃ E : fg = f} acts from the right on the set P(E/S) by the

functoriality of P. P is said to be a rigid moduli problem if AutS(E) acts freely on

P(E/S). In other words, for every elliptic curve E/S and every α ∈ P(E/S), the

only element of AutS(E) fixing α is identity. We note that any representable moduli

problem is a rigid moduli problem.

Definition 4.2.3. [Br07] Let P be a rigid moduli problem and now consider a functor

from the category of schemes Sch to S, which associates to a scheme S, isomorphism

classes of pairs (E/S, α), where α ∈ P(E/S). Let us assume this functor is repre-

sentable, and represented by M . Then there exists an elliptic curve E/M , such that

the object E/M represents the moduli problem P. This object E/M is called the

universal elliptic curve for the moduli problem P.

We consider the following moduli problem on Z[ 1
n
]-schemes, so called (Γ1(n)-

structure) moduli problem: E → S,

[Γ1(n)] : E/S 7→ {points of order n in E(S)}.

We consider a functor from the category of schemes over Z[ 1
n
] to S, which associates

to any Z
[
1
n

]
- scheme S, isomorphism classes of elliptic curves E over S with a Γ1(n)-

structure on E.
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This is a representable functor for n ≥ 3 by [KM85, p. 104, Theorem 3.7.1].

Let Mn denote the affine, smooth curve over Z[ 1
n
] which represents the functor. Let

j : Mn → M̄n denote the smooth compactification of Mn. Let π : Xn → Mn denote

the universal elliptic curve which represents the (Γ1(n)-structure) moduli problem.

Let π̄ : X̄n → M̄n denote the universal generalized elliptic curve, as constructed

by Deligne-Rapoport [DR72]. We have a commutative diagram

Xn −−−→ X̄ny
y

Mn −−−→ M̄n

.

Let πk : X̄k
n → M̄n denote the k-fold product over M̄n. Let ¯̄Xk

n denote the

canonical desingularisation, constructed by Deligne.

The group (Z/nZ)2 acts on X̄n by translation in the fibers and µ2 acts on X̄n

by the inversion in the fibers. This induces an action of the semi-direct product

(Z/nZ)2 ⋊ µ2 on X̄n. Let Σk-denote the symmetric group on k letters. The group

Γk = ((Z/nZ)2 ⋊ µ2)
k ⋊ Σk

acts on X̄k
n. By the canonical nature of the desingularisation the action of Γk extends

to an action on ¯̄Xn.

Let ǫ : Γk → {±1} be a homomorphism which is trivial on (Z/nZ)2k, is the

product map on µk
2 and is the sign character on Σk. Let

Πǫ =
1

|Γk|
∑

g∈Γk

ǫ(g) · g ∈ Z

[
1

2nk!

]
[Γk]

be the projector attached to ǫ and let Wn = ( ¯̄Xk
n,Πǫ) be the associated effective

motive.

The group GL2(Z/nZ) acts on Xn by

(E, σ) 7→ (E, γ ◦ σ)

for γ ∈ GL2(Z/nZ).

Let Γ1
n be the subgroup of GL2(Z/nZ) of matrices of the form

(
∗ ∗
0 1

)
.
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Let If be the annihilator of f in the Hecke algebra. Scholl [Sc90] defines Mf to

be the sub-motive of W
Γ1
n

n , which is the kernel of If acting on W
Γ1
n

n . Mf is a motive

over Q with coefficients in the Hecke field E = Q(an) of f .

Definition 4.2.4. Let End(Mf ) denote the ring of endomorphisms of Mf defined

over Q̄ and let

Xf = End(Mf )⊗Z Q

be the Q-algebra of endomorphisms of Mf .

In the thesis, we study the algebra Xf . One knows that Xf is a central simple

algebra over a subfield F of E, and that the class of Xf in the Brauer group Br(F )

of F is 2-torsion.

4.3 The category of Artin motives

4.3.1 Artin motives with coefficients

The category of Artin motives over Q with coefficients in E is the Karoubian envelope

of the dual of the category C with objects consisting of varieties over Q of dimension

0, and morphisms consisting of correspondences defined over Q with coefficients in

E.

This category can be made explicit. Let Q̄ be an algebraic closure of Q and

GQ = Gal(Q̄/Q). A variety over Q of dimension 0 is the spectrum of a finite product

of number fields. A correspondence of a variety X of dimension 0, in another Y , is a

formal linear combination of connected components of X × Y , with coefficients in E.

Thus if {Zi} are the connected components of X × Y , then

Cor(X, Y ) = {Σi aiZi | ai ∈ E}.

Let χZi(Q̄) be the characteristic function of Zi(Q̄) ⊂ (X × Y )(Q̄). The map induced

by

ΣiaiZi 7→ ΣiaiχZi(Q̄)

clearly identifies correspondences of X in Y with E-valued GQ-invariant functions on

(X × Y )(Q̄) = X(Q̄) × Y (Q̄). Note such a GQ-invariant function determines an E-

valued matrix, whose rows and columns are indexed by X(Q̄) and Y (Q̄) respectively,

and ‘composition of correspondences’ corresponds to ‘matrix products’.
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For example, if X and Y are each the spectrum of a single number field, say

X = Spec(K) = Spec(Q[x]/(f(x))), and Y = Spec(L) = Spec(Q[x]/(g(x))),

where f , g are irreducible polynomials with coefficients in Q, then

X × Y = Spec(K⊗L) = Spec(K[x]/(g(x))) =
∐

i
Spec(Mi)

where g(x) =
∏
gi(x) is a decomposition of g(x) in K[x] into irreducible factors,

Mi = M [x]/(gi(x)), and Zi = Spec(Mi) are the connected components of X × Y .

Then

Cor(X, Y ) = {Σi ai Spec(Mi)|ai ∈ E}.

Let Hom(K, Q̄) = {σi} and Hom(L, Q̄) = {τj} be the embeddings of K and L into Q̄

respectively. Let F ∈ Cor(X, Y ) be a correspondence, and let f be the corresponding

GQ-invariant function as above. The E-valued matrix corresponding to F = (Fσi,τj)

and the function f are related by the formula f(σi, τj) = Fσi,τj .

Now consider the dual (opposite) category C◦ and its Karoubian envelope. This

is formally obtained by adjoining projectors to C◦: its objects consist of pairs (X, p),

where X is a variety of dimension 0 and p : X → X is a correspondence such that

p2 = p, and morphisms are defined by

Hom((X, p), (Y, q)) = {Z ∈ Cor(Y,X)|Z ◦ q = p ◦ Z}.

4.3.2 Rational representations

Note that if X is a variety of dimension 0 over Q, then the E-vector space EX(Q̄) has

a natural GQ-action, and defines an E-rational representation of GQ. Moreover, every

correspondence F : X → Y (with matrix F ) gives rise to a GQ-linear map EY (Q̄) →
EX(Q̄), which is defined by the matrix F t. In particular a projector p : X → X gives

a GQ-linear map pt : EX(Q̄) → EX(Q̄).

Consider the contravariant functor from the Karoubian envelope of C to the cat-

egory of E-rational GQ-representations induced by

(X, p) 7→ Image(pt) and F 7→ F t.

This functor is clearly fully faithful. It is also essentially surjective since every rep-

resentation ρ of GQ with kernel corresponding to the number field K is cut out by a
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GQ-linear projector E
X(Q̄) → EX(Q̄), with X = Spec(K). More precisely, we can look

at ρ as a representation of the finite group Gal(K/Q). The vector space EX(Q̄) is a

space on which GQ acts, and is the regular representation of Gal(K/Q). There is an

explicit GQ-linear, E-rational projection map to the isotypical component containing

ρ (cf. [Se77b, Theorem 8, p. 21]). Now further project to the E-vector space on which

ρ acts. The projection is given by a block matrix consisting of one identity block and

other zeros, which is clearly GQ-linear. The composition of these two projections is

GQ-linear and cuts out ρ.

Hence the above functor yields an equivalence of categories between the category

of Artin motives and the category of E-rational representations of GQ. We identify

these categories from now on.

4.3.3 Artin motive attached to a cusp form of weight one

Let f =
∑

n anq
n ∈ S1(N, ǫ) be a non-dihedral normalized newform of weight 1. Let

E = Q(an) be the number field generated by the Fourier coefficients of f . Let ρf be

the finite image Galois representation attached to f , as constructed in [DS74, Thm.

4.1], so

ρf : GQ → GL2(E),

and trace(ρf (Frobp)) = ap and det(ρf (Frobp)) = ǫ(p), for all primes p ∤ N . That ρf

has a model over E follows from the oddness of ρf [DS74, p. 521, footnote]. We also

note that the extension E/Q is abelian, since E is generated by the traces of matrices

of finite order. For each σ ∈ Σ = Hom(E, Q̄), let ρσ be the Galois representation

attached to the modular form fσ. We view ρσ as a representation

ρσ : GQ → GL2(L),

where L ⊂ Q̄ is a sufficiently large number field containing E.

In view of the subsection 4.3.1, the Artin motive attached to f should be the

Galois representation ρf . However, at least näıvely, this object is not so interesting

as far as a study of its endomorphism algebra is concerned. Indeed, if H is a normal

subgroup of GQ and H acts irreducibly (true if H = GQ since f is a cusp form), then

by Schur’s lemma, EndH(ρf ) = E. If H doesn’t act irreducibly, and H is sufficiently

small (e.g., H ⊂ Ker(ρf )), then EndE[H](ρf ) = EndE(ρf ) = M2×2(E). Thus for all
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subgroups H,

1 ≤ dimE EndE[H](ρf ) ≤ 4,

and so this dimension is essentially independent of |Γ|, where Γ is the group of extra

twists contained in Aut(E/Q), i.e.,

Γ = {γ ∈ Aut(E) | fγ = f ⊗ χγ, for some E-valued Dirichlet character χγ}.

However for weight k ≥ 2, the endomorphism algebra of the motive attached to a cusp

form of weight k is usually dependent on |Γ|. Hence, we make instead the following

definition.

Definition 4.3.1. Define the Artin motive attached to f to be the GQ-representation

ρ, where

ρ :=
⊕

σ∈Σ
ρσ.

Let Vσ be the two dimensional vector space over L which affords the representation

ρσ. The underlying vector space of ρ is then

V =
⊕

σ∈Σ
Vσ,

which is a 2[E : Q]-dimensional vector space over L. Thus ρ is an Artin motive with

coefficients in L (not E).

We remark that what we have called the Artin motive attached to f is really

the sum of the motives attached to each of the conjugates of f . The motive ρ is

a closer analogue in weight one than ρf of Shimura’s abelian variety Af in weight

two, or Scholl’s motive Mf in higher weight, since its L-function satisfies L(s, ρ) =
∏

σ∈Σ L(s, f
σ), as does the L-function of Af and Mf .

We now define an algebra of endomorphisms of the Artin motive ρ. Say an element

T ∈ EndL(V ) is defined over a number field K, if T is H-equivariant, where H =

Gal(Q̄/K), i.e., T ∈ EndL[H](V ).

Definition 4.3.2. We define

Xf := EndL[H](V )

where H = Gal(Q̄/K0) and K0 is a sufficiently large finite abelian extension of Q.

The requirement that the elements of Xf are defined over abelian extensions of Q

seems necessary in order to adapt several arguments from higher weight to the weight

one situation.
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Chapter 5

Extra twists and crossed product

algebras

Let Γ ⊂ Aut(E) be the group of extra twists of f . Recall that a pair (γ, χγ), where

γ ∈ Γ ⊂ Aut(E) and χγ is an E-valued Dirichlet character, is called an extra twist

for f , if fγ = f ⊗ χγ, i.e., a
γ
p = ap · χγ(p), for all primes p ∤ N . Define the E-valued

Jacobi sum 2-cocycle c on Γ by

c(γ, δ) =
G(χ−γ

δ )G(χ−1
γ )

G(χ−1
γ·δ)

∈ E,

for γ, δ ∈ Γ, where G(χ) is the usual Gauss sum attached to the character χ. Let X

be the corresponding crossed product algebra defined by:

X =
⊕

γ∈Γ
E · xγ ,(5.0.1)

where the xγ are formal symbols satisfying the relations

xγ · xδ = c(γ, δ) · xγδ,
xγ · e = γ(e) · xγ,

for γ, δ ∈ Γ and e ∈ E. Clearly X is a central simple algebra over F , the fixed field

of Γ in E.
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5.1 Structure theorems

5.1.1 Structure theorem for weight greater than one

In this section we will mention a theorem which explicitly describes the crossed-

product structure of endomorphism algebras of motives attached to non-CM modular

forms.

Theorem 5.1.1. Let f be a non-CM modular form of weight k ≥ 2, then

Xf ≃ X.

Proof. • For k = 2, cf. [Ri80, Theorem 5.1].

• For k ≥ 3, cf. [BG04, Theorem 2.3.8] and [GGQ05, Theorem 2.0.3].

5.1.2 Structure theorem for weight one

We recall the definition of the endomorphism algebra for a modular form of weight

one.

Definition 5.1.2. We define

Xf := EndL[H](V )

where H = Gal(Q̄/K0) and K0 is a sufficiently large finite abelian extension of Q.

Write elements of V in the form v = (vσ)σ∈Σ. Then EndL(V ) can be thought of

as an E-algebra using the following map:

ι : E → EndL(V )

e 7→ {(vσ)σ∈Σ 7→ (σ(e)vσ)σ∈Σ}.

Lemma 5.1.3. The action of E defined above commutes with the action of GQ.
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Proof. Let g ∈ GQ. We compute

ρ(g)e · (vσ)σ∈Σ = ρ(g)(σ(e)vσ)σ∈Σ = (σ(e)ρσ(g)vσ)σ∈Σ,

while

e · ρ(g)(vσ)σ∈Σ = e · (ρσ(g)vσ)σ∈Σ = (σ(e)ρσ(g)vσ)σ∈Σ.

In particular the elements of E are defined over Q.

Assume now that L contains all the Gauss sums G(χ−σ
γ ), for γ ∈ Γ and σ ∈ Σ.

Definition 5.1.4. For each γ ∈ Γ, we define an endomorphism ηγ ∈ EndLV by

ηγ((vσ)σ∈Σ) = (G(χ−σ
γ )vσγ)σ∈Σ.

Lemma 5.1.5. If H is a subgroup of GQ such that H ⊂ ker(χγ), then ηγ is H-

equivariant. In particular, ηγ is defined over the fixed field cut out by χγ, an abelian

extension of Q.

Proof. If h ∈ H, we have

ηγρ(h)(vσ)σ∈Σ = ηγ(ρσ(h)vσ)σ∈Σ = (G(χ−σ
γ )ρσγ(h)vσγ)σ∈Σ.

On the other hand

ρ(h)ηγ(vσ)σ∈Σ = ρ(h)(G(χ−σ
γ )vσγ)σ∈Σ = (G(χ−σ

γ )ρσ(h)vσγ)σ∈Σ.

Since fγ·σ = fσ ⊗ χσ
γ , it follows

ρσγ(g) = ρσ(g)χ
σ
γ(g),

for all g ∈ GQ. In particular, if h ∈ H ⊂ ker(χσ
γ), then ρσγ(h) = ρσ(h), and the two

expressions above coincide.

Define the E-valued 2-cocycle c on Γ by

c(γ, δ) =
G(χ−1

γ )G(χ−γ
δ )

G(χ−1
γ·δ)

∈ E,

for γ, δ ∈ Γ. We have:
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Lemma 5.1.6. ηγ defined as above satisfies the relations

ηγ · e = γ(e) · ηγ,

ηγ · ηδ = c(γ, δ) · ηγδ.

Proof. Again, we compute:

ηγ(e · (vσ)σ∈Σ) = ηγ(σ(e)vσ)σ∈Σ = (G(χ−σ
γ )(σγ)(e)vσγ)σ∈Σ,

whereas

γ(e) · (ηγ(vσ)σ∈Σ) = γ(e) · (G(χ−σ
γ )vσγ)σ∈Σ = ((σγ)(e)G(χ−σ

γ )vσγ)σ∈Σ,

proving the first relation. For the second, we have:

ηγηδ(vσ)σ∈Σ = ηγ(G(χ
−σ
δ )vσδ)σ∈Σ = (G(χ−σ

γ )G(χ−γ·σ
δ )vσγδ)σ∈Σ.

On the other hand

c(γ, δ) · ηγδ(vσ)σ∈Σ = c(γ, δ) · (G(χ−σ
γδ )(vσγδ))σ∈Σ = (σ(c(γ, δ))G(χ−σ

γδ )vσγδ)σ∈Σ.

So ηγ · ηδ = c(γ, δ) · ηγδ, if for all σ ∈ Σ,

σ(c(γ, δ)) =
G(χ−σ

γ )G(χ−γ·σ
δ )

G(χ−σ
γδ )

.

But this is proved in [Sh76, Lemma 8, p. 797].

Let X be the crossed product associated to the cocycle c(γ, δ) defined in the

introduction of this chapter.

Let K0 be the fixed field of H = ∩ kerχγ. Note K0 is an abelian number field. By

Lemma 5.1.5, each ηγ is defined over K0, and so there is a natural map:

X ⊗Q L→ Xf(5.1.1)

induced by

xγ 7→ ηγ

e 7→ ι(e).

We will prove that the above map is an isomorphism. The proof uses several

arguments from higher weight (see especially Ribet’s proof in weight two [Ri80]), with

a few modifications, which we explain below. We start with two general lemmas.
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Lemma 5.1.7. Let ρV : GQ → GL(V ) and ρW : GQ → GL(W ) be two representations

where V and W are vector spaces over L. Let H be an open, normal subgroup of GQ

such that H acts irreducibly on V and W . Then V ≃ W as H-modules iff V ≃ W ⊗φ
as GQ-modules, for some finite order character φ : GQ → L∗ which is trivial on H.

Proof. Let T : V → W be an H-isomorphism with inverse S : W → V . For g ∈ GQ,

define an element of EndL(W ) by

φ(g) = T · ρV (g) · S · ρW (g)−1.

SinceH is a normal subgroup ofGQ, φ(g) isH-equivariant. Hence φ(g) ∈ EndL[H](W ).

Evidently φ has an inverse as well, so φ(g) ∈ AutL[H](W ). Since H acts irreducibly,

by Schur’s lemma, EndL[H](W ) = L, hence φ(g) ∈ L∗. Now φ is a homomorphism

because

φ(g1g2) = T · ρV (g1g2) · S · ρW (g−1
2 g−1

1 )

= T · ρV (g1) · S · T · ρV (g2) · S · ρW (g−1
2 ) · ρW (g−1

1 )

= φ(g1)φ(g2).

Finally, since φ is trivial on H, and H is a subgroup of finite index of GQ, φ has finite

order. The definition of φ shows V ≃ W ⊗ φ as GQ-modules, proving one direction

of the lemma. The other direction is clear.

Lemma 5.1.8. Let

ρ : GQ → GL2(C)

be an irreducible representation with non-dihedral projective image. If H is an open,

normal subgroup of GQ with GQ/H abelian, then H acts irreducibly.

Proof. Let K = Q̄ker(ρ) be the field cut out by ρ and let L = Q̄H be the fixed field of

H. Suppose H acts reducibly. Then Image(ρ|H) ∼→ Gal(KL/L)
∼→ Gal(K/K ∩ L) is

an abelian group. Since GQ/H
∼→ Gal(L/Q) is abelian by hypothesis, the quotient

group Gal(K ∩ L/Q) is also abelian. Projecting the exact sequence

1 → N := Gal(K/K ∩ L) → G := Gal(K/Q) → G/N
∼→ Gal(K ∩ L/Q) → 1

to PGL2(C) we obtain another exact sequence

1 → Ñ → G̃→ G̃/Ñ → 1(5.1.2)
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where G̃ and Ñ are the projective images of ρ and ρ|H respectively. Since N is abelian,

so is Ñ . In fact, since H acts reducibly, Ñ is a cyclic group. Similarly, G̃/Ñ is an

abelian group, since it is a quotient of G/N .

But an exact sequence such as (5.1.2) does not exist. Indeed, (5.1.2) shows that G̃

is solvable, so the case G̃
∼→ A5 does not occur. The normal subgroups of S4 are the

trivial group, the Klein 4-group, A4 and S4, with respective quotients S4, S3, Z/2,

and the trivial group. In particular one of Ñ or G̃/Ñ must always be non-abelian.

Thus G̃ ≃ S4 is also not possible. Finally the normal subgroups of A4 are the trivial

group, the Klein 4-group and A4, with respective quotients A4, Z/3, and the trivial

group. Even though the Klein 4-group and Z/3 are both abelian, the former group

is not cyclic, so the case G̃ ≃ A4 is also ruled out.

Thus the assumption that H acts reducibly does not hold.

Remark 5.1.9. We remark that while the analogous lemma is true in higher weight

without the abelianess assumption on GQ/H (a result of Ribet says that that every

non-dihedral cuspidal modular ℓ-adic Galois representation of weight 2 or more is

irreducible on each open subgroup of H of GQ), it is clearly false for weight one forms

without this assumption (take, e.g, H = ker(ρ)). The utility of the above lemma in

adapting higher weight arguments to the weight one setting is one reason why we

only consider endomorphisms defined over abelian number fields.

We return to the proof of the main result of this section. We recall some notation

that is used in higher weight. If H is a subgroup of GQ, then let

ΓH := {γ ∈ Γ | χγ is trivial on H}

and let FH be the fixed field of ΓH in E. The following theorem (compare with [Ri81,

Theorem 4.4]) is important for dimension counting reasons.

Theorem 5.1.10. If H is an open, normal subgroup of GQ such that GQ/H is abelian,

then

EndL[H]V ≃ EndFH
E ⊗Q L.

Proof. By Lemma 5.1.8, V is a sum of modules Vσ, each of which is simple as an

H-module, and hence satisfies

EndL[H]Vσ = L.
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Thus to compute EndL[H]V we only have to determine when Vσ and Vτ are isomorphic

as H-modules, for any two embeddings σ, τ of E into L. By Lemma 5.1.7, this

happens iff there is a character of finite order

φ : GQ → L∗

trivial on H, such that Vσ and Vτ ⊗ φ are isomorphic as GQ-modules. Taking traces,

this happens iff

σ(ap) = τ(ap) · φ(p),

for almost all primes p, i.e., σ = τγ for some γ ∈ ΓH . Recalling Σ is the set of all

embeddings σ : E → L, we obtain

EndL[H]V =
∏

σ∈Σ/ΓH

EndL[H]

(∏
γ∈ΓH

Vσ·γ

)
≃ Ma×a(L)

b,

where

a = |ΓH |, and b = |Σ/ΓH |.

This proves the theorem, since

EndFH
E ⊗Q L ≃ Ma×a(FH)⊗Q L ≃ Ma×a(L)

b.

We can now prove the following structure theorem for the endomorphism algebra

Xf of the Artin motive attached to f .

Theorem 5.1.11. Suppose f is a cuspidal newform of weight one of non-dihedral

type. Let L be a sufficiently large number field which contains E and all G(χ−σ
γ ), for

all γ ∈ Γ, σ ∈ Σ. Then the endomorphism algebra Xf of f satisfies:

Xf ≃ X ⊗Q L.

Proof. Let K0 be a sufficiently large abelian extension of Q. Here ‘sufficiently large’

means that K0 contains the fixed field of ∩γ∈Γ ker(χγ), or equivalently, if H =

Gal(Q̄/K0), then

H ⊂ ∩γ∈Γ ker(χγ).(5.1.3)

Then, by definition, Xf = EndL[H](V ).
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Consider the natural map defined in (5.1.1):

X⊗QL→ Xf .

This map is clearly injective since X ⊗Q L =
∏

σ:F →֒L(X ⊗F,σ L) and the restriction

of the above map to each factor is clearly injective (each factor is a central simple

algebra over L, so has no two-sided ideals).

Now X has dimension [E : F ] over E, and hence has dimension [E : F ][E : Q]

over Q. Hence X⊗QL has dimension [E : F ][E : Q] over L. If we can prove Xf =

EndL[H](V ) also has dimension [E : F ][E : Q] over L then the above inclusion will be

an isomorphism. Since GQ/H = Gal(K0/Q) is abelian, by Theorem 5.1.10, we have

dimL EndL[H](V ) = [E : FH ]
2[FH : Q].

Since F = FH by (5.1.3), this dimension is [E : F ][E : Q], as desired.

Remark 5.1.12. We expect to eliminate L from the arguments given in this section.

Indeed, the referee of [BG10b] has remarked that another candidate for the Artin

motive attached to f which may allow this is the Q representation W , of dimension

2[E : Q] over Q, obtained from ρf by restricting scalars from E to Q. Now W is a

model of V over Q, since W ⊗Q L ∼= V . Note, EndQ[H](W ) contains E and has same

Q dimension as X, and the referee has suggested that they are isomorphic.

5.2 Brauer class of X

Theorem 5.1.1 shows the importance of the central simple algebra X in describing

the structure of the endomorphism algebra Xf for forms of weight greater than one

and Theorem 5.1.11 shows that X is important even for weight one modular forms.

We will study the Brauer class of X for any weight greater or equal to 1. In this

section we study the Brauer class of X as an element of the Brauer group of F .

5.2.1 Definition of α

In higher weights a crucial role is played by a certain map α : GQ → E∗.

The map α in higher weights is defined directly on the geometric object Af orMf ,

using the Skolem-Noether theorem (cf. [Ri81, section 2, p. 6] and [GGQ05, Theorem
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4.0.10]). It seems difficult to extend this definition to weight one. However, a purely

algebraic definition of α in higher weights was later given by Papier (cf. [Ri85, p.

192]), which extends nicely to all weights, as follows.

Recall, f ∈ Sk(N, ǫ) is a non-CM (non-dihedral for weight one) normalized new-

form, E is the Hecke field of f , and Γ ⊂ Aut(E) is the group of extra twists of f .

For γ ∈ Γ, there is a unique Dirichlet character χγ such that fγ = f ⊗ χγ, and hence

ρfγ ∼ ρf ⊗ χγ. For γ, δ ∈ Γ, the identity

χγ·δ = χγχδ
γ

shows that γ 7→ χγ is a 1-cocycle. Specializing to g ∈ GQ, we see that γ 7→ χγ(g)

is a 1-cocycle as well. By Hilbert’s theorem 90, H1(Γ, E∗) is trivial, i.e., there is an

element α(g) ∈ E∗ such that

(5.2.1) α(g)γ−1 = χγ(g)

for all γ ∈ Γ. Clearly, α(g) is completely determined up to multiplication by elements

of F ∗. Varying g ∈ GQ, we obtain a well defined map

α̃ : GQ → E∗/F ∗.

Since each χγ is a character, α̃ is a homomorphism. We mention some relevant proper-

ties of α for weight one, whose proofs work for higher weights also. The corresponding

properties for weight greater than one are discussed in [Ri92]. We note that though

[Ri92] only consider the case weight k = 2, the same proof works for all weights

greater than or equal to two.

Lemma 5.2.1. The homomorphism α̃ satisfies:

(i) α̃ is unramified at all primes p ∤ N .

(ii) For all g ∈ GQ, we have α2(g) ≡ ǫ(g) mod F ∗.

(iii) If ap 6= 0, then α(Frobp) ≡ ap mod F ∗.

Proof. Noting ρfγ ∼ ρf⊗χγ , for each γ ∈ Γ, we have:

(i) Since both ρfγ and ρf are unramified at p ∤ N , we have χγ(g) = 1 for all

g ∈ Ip. The relation (5.2.1) shows that α(g) ∈ F ∗, for all g ∈ Ip, and thus α̃ is

unramified at p ∤ N .
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(ii) Taking the determinant, we have χ2
γ = ǫγ−1. Again by (5.2.1) we conclude that

α2 ≡ ǫ mod F ∗.

(iii) If the trace of ρf (g) for g ∈ GQ is non-zero, then a standard argument shows

that

α(g) ≡ trace(ρf (g)) mod F ∗.

In particular, if p ∤ N and ap 6= 0, then α(Frobp) ≡ ap mod F ∗.

5.2.2 The 2-cocycle underlying X

By [Ri81, Proposition 1, p. 9], whose proof also holds for all weights (including weight

one), the class of X in Br(F ) = H2(Gal(Q̄/F ), Q̄∗) is given by the 2-cocycle

(g, h) 7→ χg(h)

for g, h ∈ Gal(Q̄/F ), where χg := χγ for γ the image of g in Γ. By (5.2.1), this

2-cocycle is the same as the 2-cocycle given by

(g, h) 7→ α(h)g

α(h)

which in turn differs from the 2-cocycle

c(g, h) =
α(g) · α(h)
α(gh)

(5.2.2)

by a coboundary. Hence, the class of X is given by the 2-cocycle c(g, h) above.

Observe that the class of c is independent of the lift α of α̃. Suppose α′ is another

lift of α̃. Then α′(g) = α(g) · f(g), for some map f : GF → F ∗. Let us denote the

2-cocycle obtained from α′ by c′. Then c and c′ differ by the map (g, h) 7→ f(g)f(h)
f(gh)

,

which is clearly a 2-coboundary, as desired.

We also note that the class of c (hence X) is 2-torsion in the Brauer group of

F . This follows immediately from part (2) of Lemma 5.2.1, noting that c2(g, h) =

d(g)d(h)/d(gh) is a 2-coboundary, since d(g) := α2(g)/ǫ(g) ∈ F ∗.
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5.2.3 Invariant map

To study the Brauer class of X, it suffices to study the Brauer class of Xv := X⊗F Fv

in Br(Fv), for each place v of F . It is well known that if v is finite then

invv : Br(Fv) ≃ Q/Z

via the invariant map invv at v. Since the class of X lies in 2-torsion in the Brauer

group of F , we have that invv(Xv) ∈ 1
2
Z/Z. Identifying this group with Z/2, we see

that Xv is a matrix algebra over Fv if invv(Xv) = 0 mod 2, and is a matrix algebra

over a quaternion division algebra over Fv if invv(Xv) = 1 mod 2.

To aid in the computation of invv(Xv), for finite places v, it is useful to recall

the explicit definition of the invariant map, which we do now. Let Iv be the inertia

subgroup of GF at the prime v. Let Gal(F nr
v /Fv) be the Galois group of F nr

v , the

maximal unramified extension of Fv, over Fv. The inflation map

Inf : H2(Gal(F nr
v /Fv), F

nr
v ) → Br(Fv)

is well-known to be an isomorphism. Now, the surjective valuation v : F ∗ → Z can

be extended uniquely to (F nr
v )∗ which we continue to call v. This gives rise to a map

v : H2(Gal(F nr
v /Fv), F

nr
v ) → H2(Gal(F nr

v /Fv),Z)

which we again denote by v. Also, the short exact sequence of abelian groups

0 → Z → Q → Q/Z → 0

gives rise to a long exact sequence of cohomology groups, with boundary map

δ : H1(Gal(F nr
v /Fv),Q/Z) → H2(Gal(F nr

v /Fv),Z)

which is an isomorphism since Hi(Gal(F nr
v /Fv),Q) = 0 for i = 1, 2. We recall the

definition of δ. If χ : Gal(F nr
v /Fv) → Q/Z is a homomorphism, and χ̃ is a lift of χ to

Q, then δ(χ) is the Z-valued 2-cocycle on Gal(F nr
v /Fv) given by

(g, h) 7→ χ̃(g)χ̃(h)

χ̃(gh)
.

Finally, there is a map, say Ev (for evaluation)

Ev : H1(Gal(F nr
v /Fv),Q/Z) → Q/Z

obtained by evaluating a homomorphism at the arithmetic Frobenius at v. Then, by

definition, the invariant map at v is given by

invv = Ev ◦ δ−1 ◦ v · Inf−1 : Br(Fv) → Q/Z.
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5.2.4 Local 2-cocycle

Now let K : Gv → F̄ ∗
v be any map. Then

cK(g, h) =
K(g)K(h)

K(gh)

defines a local 2-cocycle on Gv, if cK(g, h) ∈ Fv, for all g, h ∈ Gv. We call it the

local 2-cocycle defined by the function K. The following general lemma regarding the

Brauer class of this local 2-cocycle will be very useful in computations.

Lemma 5.2.2. Let K : Gv → F̄ ∗
v be a map and let t : Gv → F̄ ∗

v be an unramified

homomorphism such that

(i) K(i) ∈ F ∗
v , for all i ∈ Iv,

(ii) K(g)2/t(g) ∈ F ∗
v , for all g ∈ Gv.

Then, for any arithmetic Frobenius Frobv at v, we have

invv(cK) =
1

2
· v
(
K(Frobv)

2

t(Frobv)

)
∈ 1

2
Z/Z,

where v : F ∗
v → Z is the surjective valuation.

Proof. We will calculate invv(cK), step by step, using the definition of invv just re-

called.

Replacing the induced homomorphism K : Gv → F̄ ∗
v /F

∗
v with another lift K :

Gv → F̄ ∗
v , which we again call K, does not change the cohomology class of cK . By

property (i) we may choose a lift K such that for g ∈ Gv, K(gi) = K(g), for all

i ∈ Iv. Denote the image of g under the projection map Gv → Gv/Iv = Ẑ by ḡ.

Define cK̄ : Ẑ × Ẑ → F ∗
v by cK̄(ḡ, h̄) = cK(g, h). Then cK̄ is clearly a well-defined

2-cocycle on Ẑ whose image under the inflation map is cK .

Now, by definition, v(cK̄) is the 2-cocycle defined by

(g, h) 7→ v

(
K(g)K(h)

K(gh)

)
∈ Z,

for g, h ∈ Gv.
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By property (ii), d(g) = K2(g)/t(g) ∈ F ∗
v , for g ∈ Gv. The 2-cocycle above is the

same as the 2-cocycle induced by

(g, h) 7→ 1

2
· v
(
d(g)d(h)

d(gh)

)
∈ Z.

Consider now the map χ : Gal(F nr
v /Fv) → Q/Z defined by

χ(g) =
1

2
· v(d(g)) mod Z.

Under the boundary map δ the 1-cocycle χ maps to the 2-cocycle above, so (δ−1 ◦ v ◦
Inf−1)(cK)) is just χ. Hence

invv(cK) = (Ev ◦ δ−1 ◦ v ◦ Inf−1)(cK) = χ(Frobv) =
1

2
· v
(
K(Frobv)

2

t(Frobv)

)
mod Z.
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Chapter 6

Automorphic forms and Langlands

principle of functoriality

In this chapter, we will only mention some basic results about automorphic forms

and Langlands principle of functoriality, which appear in the main results proved in

Chapter 7. We will try to avoid technicalities as much as possible. Instead, we will

give suitable references.

6.1 Automorphic forms

In this section, we will closely follow [Ge75].

Notations

• Ak= Adèle ring of any number field k.

• A = AQ= Adèle ring of Q.

• G(S) = GL2(S), for any ring S.

• Kp = G(Zp).

• G(A) = GL2(AQ)=restricted direct product of G(Qp) with respect to G(Zp).

• ZA = {
(
b 0

0 b

)
: b ∈ A∗

Q}.
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• GL+
2 (R) = the set of 2× 2 matrices over R with determinant greater than zero.

• K ′
0 =

∏
p<∞K ′

p and K ′
p any choice of open subgroup of GL2(Zp) with K ′

p =

GL2(Zp) for almost all primes p.

• O2(R) = the set of 2× 2 orthogonal matrices over R.

By a grossencharacter we shall mean a unitary character of the idele class group,

i.e., a character A∗
Q → C∗, which is trivial on the discrete subgroup Q∗. Suppose ǫ

is a character of (Z/NZ)∗. It determines a character ǫp of Z∗
p for all primes p | N

by composing with the natural homomorphism of Z∗
p into (Z/NZ)∗. The product

∏
p<∞ ǫp then determines a character of

∏
p<∞ Z∗

p, which is trivial for almost all primes

p. Hence it determines a character of A∗
Q.

Definition 6.1.1. An automorphic ψ cusp form on GL2 is any function φ on G(AQ)

satisfying the following conditions:

• φ(γg) = φ(g) for all γ ∈ G(Q),

• φ(gz) = φ(zg) = ψ(z)φ(g) for all z ∈ ZA,

• φ is right K = O2(R)
∏

p<∞Kp finite,

• Let z-denotes the centre of the universal enveloping algebra ofG∞. As a function

of G∞ = GL2(R) alone, φ is smooth and z-finite. We refer to [Bu97, section 2.2,

p. 145] for the definition of the universal enveloping algebra of G∞ and p. 279

of the same book for the definition of z-finiteness.

• φ is slowly increasing, i.e., for every c > 0 and compact subset K of G(AQ),

there exist constants C and N such that

φ(

(
a 0

0 1

)
g) ≤ C|a|N ,

for all g ∈ K and a ∈ A∗
Q with |a| > c.

• φ is cuspidal, i.e., ∫

Q∗\A∗

φ(

(
a 0

0 1

)
g)da = 0,

for almost every g ∈ G(A) .
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An automorphic form on GL2 is an automorphic ψ cusp form for some grossenchar-

acter ψ.

An automorphic form on a general reductive algebraic group can be defined in

similar way. We choose not to define them in that generality in the present thesis,

rather we refer to [BJ79] for details.

6.2 Modular forms and automorphic representa-

tions

We recall how to associate an automorphic form πf on GL2 corresponding to the

modular form f . The principle of strong approximation for SL2 over Q shows that

G(AQ) = G(Q)GL+
2 (R)K

′
0.

In particular, the above principle is true with the choice of the subgroup

K ′
p = {

(
a b

c d

)
∈ Kp : c ≡ 0 (mod N)}.

Let f ∈ Sk(N, ǫ) be a newform. Now the map
(
a b

c d

)
7→ ǫp(a)

defines a character on K ′
p. We define a function φf on G(AQ) by

φf (g) = f(g∞(i))j(g∞, i)
−kǫ(k0)

by decomposing g as γg∞k0 and ǫ =
∏

p ǫp.

We note that φf is well defined, since

G(Q) ∩GL+
2 (R)

∏

p

K
′

p = Γ0(N)

and f ∈ Sk(N, ǫ). Hence for all γ ∈ G(Q), we have φf (γg) = φf (g).

Proposition 6.2.1. The map f goes to φf describes an isomorphism between the

spaces Sk(N, ǫ) and the set of automorphic ǫ cusp forms φ on GA = GL2(AQ), as

defined in 6.1.1 and satisfying the following properties:
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• φ(g.k0) = φ(g)ǫ(k0) for all k0 ∈
∏
K ′

p.

• φ(gr(θ)) = e−kiθφ(g) if r(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

• The function φ, viewed as a function on GL+
2 (R), satisfies the differential equa-

tion

∆φ = −k
2

(
k

2
− 1

)
φ.

Proof. [Ge75, Proposition 3.1, p. 42].

6.3 Admissible homomorphisms

Let k be a non-archimedean local field and let Wk be the Weil group of k. For

w ∈ Wk, let ||w|| denote the power of q (the number of elements of the residue field)

to which w raises elements of the residue field.

Definition 6.3.1 ([Ta79]). The Weil-Deligne group W′
k is the group scheme over

Q, which is the semi-direct product of Wk by Ga, on which Wk acts by the rule

wxw−1 = ||w||x.

Let G be an arbitrary reductive algebraic group over a field k.

Definition 6.3.2. The (Langlands) dual group or L-group of G is L(G/k) = LG0

⋊Gal(k̄/k).

We refer to [Bo79, p. 29] for the precise definition of LG0. Instead, we list LG0

for some reductive algebraic groups G in the following table:

G LG0

GLn GLn(C)

SO2n+1 Sp2n(C)

SO2n SO2n(C)

Sp2n SO2n+1(C)

PGL2 SL2(C)

adjoint type simply connected

simply connected adjoint type
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Definition 6.3.3 ([Bo79]). Let k be a local field and let W′
k be the associated Weil-

Deligne group, a homomorphism φ : W′
k → LG is called admissible if

• φ is a homomorphism over Gal(k̄/k), i.e., the following diagram commutes

W′
k −−−→ LGy

y
Gal(k̄/k) Gal(k̄/k)

.

• φ is continuous, φ(Ga) is unipotent in LG0 and φ maps semisimple elements

to semisimple elements in LG. We refer to [Bo79, section 8.1, p. 39], for

the definition of semisimple elements of W′
k. In LG, an element is said to be

semisimple if its image under any representation r : LG → GLn(C) is semi-

simple.

• If φ(W′
k) is contained in a Levi subgroup of a proper parabolic subgroup P of

LG then P is relevant. We refer to [Bo79, section 3.3, p. 32] for the definition

of parabolic subgroups, Levi subgroups and “relevant”.

Let Φ(G) denote the category of admissible homomorphisms φ : W′
k → LG, mod-

ulo the inner automorphisms by elements of LG0. We again refer to [Bo79, section

8.1, p. 39] for the precise definition.

6.4 Admissible representations

A locally profinite group is a topological group G such that every open neighbourhood

of the identity in G contains a compact, open subgroup of G. Let k be a local field,

then GLn(k) is a locally profinite group. Let (π, V ) be a representation of a locally

profinite group G, i.e., V is a complex vector space (possibly of infinite dimension)

and π : G→ GL(V ) is a group homomorphism.

Definition 6.4.1 ([BH06]). The representation (π, V ) is called smooth, if for every

v ∈ V , there exists a compact, open subgroup Kv, depending on v, such that π(g)v =

v for all g ∈ Kv. For any compact open subgroup K of G, let V K denotes the space

of π(K) fixed vectors of V . A representation is smooth if and only if

V = ∪KV
K ,
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where K ranges over all compact, open subgroups of G.

Definition 6.4.2 ([BH06]). A smooth representation (π, V ) is called admissible, if

the space V K is finite dimensional, for each compact, open subgroup K of G.

Let A(G) = A(G(k)) denote the equivalence class of irreducible, admissible com-

plex representations of G(k).

6.5 Local Langlands conjecture

Let k be a local field. According to the local Langlands conjecture [Co01], there is

a surjective map from A(G) to Φ(G), with finite fibres which partitions the category

A(G) into disjoint union of finite sets Aφ = Aφ(G), for φ ∈ Φ(G). The sets Aφ for

φ ∈ Φ(G), are called L-packets.

In the case of G = GLn, this map is actually known to be bijective [HT01].

6.6 Functoriality

In this section, we recall the definition of functoriality [Co01]. Let k denote either

a local or global field and let H and G be two connected, reductive algebraic groups

defined over k. A homomorphism u : LH → LG is called an L-homomorphism if

• It is a homomorphism over Gal(k̄/k), i.e., the following diagram commutes

LH −−−→ LGy
y

Gal(k̄/k) Gal(k̄/k)

.

• u is continuous.

• The restriction of u to LH0 is a complex analytic homomorphism u : LH0 →
LG0.
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6.6.1 Local functoriality

Let k be a local field and u : LH → LG be a local L-homomorphism. If we take π ∈
A(H) an irreducible representations of H(k), then this is parametrised (conjecturally)

by an admissible homomorphism φ = φπ : W′
k → LH. We compose φ with u and

obtain φ′ = φ ◦ u, an admissible homomorphism of W′
k to LG. Then φ′ parametrises

a local L-packet Aφ′(G) and this L-packet is the functorial lift of π.

6.6.2 Global functoriality

Suppose now that k is a global field. Let H and G be two connected reductive k-groups

and u : LH → LG be an L-homomorphism. For each place v of k, we have associated

local L-homomorphism uv : LHv → LGv. Let π ∈ A(H), π = ⊗′πv be an irreducible

automorphic representation of H(Ak). We have a local parameter φv : W′
kv

→ LHv

for πv. We can form a local lift Πv, as a representation of G(kv) associated to the

parameter φ′
v = uv ◦ φv. We call an automorphic representation Π = ⊗′Πv of G(Ak)

to be a weak functorial lift of π with respect to u if for all archimedean places and

almost all finite places v where πv is unramified, there exist a local functorial lift Πv

of πv with respect to uv. We call Π to be a strong functorial lift of π if Πv is a local

functorial lift of πv for all places v of k.

6.7 Adjoint lift

Now suppose that H = GL2 and G = GL3 are defined over Q. By definition, the

connected parts of the corresponding L-groups are LH0 = GL2(C) and
LG0 = GL3(C).

The natural adjoint action of GL2(C) on the three dimensional vector space consisting

of the trace zero matrices of M2×2(C), induces L-homomorphisms u and up, for each

prime p. On diagonal elements (of the first factor) the map up is easily checked to be

the map
(
α 0

0 β

)
7→




α
β

0 0

0 1 0

0 0 β
α


 .

By a classical theorem of Gelbart and Jacquet [GJ78, Theorem 9.3, p. 534], every

automorphic representation of H has a strong lift to G. If π = πf is the automorphic
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representation of GL2(AQ) corresponding to f ∈ Sk(N, ǫ), let ad(π) denote the auto-

morphic lift to G(AQ). The image of arithmetic Frobenius Frobp at p under φp is of

the form ((
αp 0

0 βp

)
, Frobp

)
.

If p ∤ N is an unramified prime, αp and βp are the Satake parameters of πp. Then

by definition of up it is clear that the image of Frobp under φ′
p is a diagonal matrix

with entries αp

βp
, 1, βp

αp
(on the first factor, and just Frobp on the second factor). It is

more convenient to work with Π = (ad(π) ⊕ 1)(k − 1), the (k − 1)-th twist of the

automorphic representation on GL4(AQ) obtained by adding the trivial representation

to ad(π).

6.7.1 The slope mv

We define the slope mv of Π at v | p to be

mv := [Fv ·Qp] · v(tp),

where v is normalized so that v(p) = 1 and tp ∈ F is defined to be the sum of the

four parameters of Πp, namely

tp =

(
αp

βp
+ 1 +

βp
αp

+ 1

)
· pk−1 =

(αp + βp)
2

αpβp
· pk−1.

We note that tp can be computed easily in various cases. When p ∤ N an easy check

shows

tp =
a2p
ǫ(p)

.

When p | N and Np = 1 and Cp = 0, it is known that αp = ap and βp = pap (up to

multiplication by a constant), and so

tp = pk−2(p+ 1)2.

Finally, if Np = Cp, then a natural choice is αp = ap and βp = āpǫ
′(p) (again up to

multiplication by a constant), so

tp =
ap

2

ǫ′(p)
+ 2pk−1 +

ā2p
ǭ′(p)

,

noting |ap|2 = pk−1. In fact the Weil Deligne parameter in this case is ramified at p, so

there are other choices for αp and βp and hence for tp. This causes some complications

in the statements and the proofs of results in this case.
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6.8 Galois representations

All the above formulas can be computed on the Galois side as well. We recall the pre-

cise form of the Galois representation ρf attached to f as described in Theorem 3.2.3.

Let π = πf be the automorphic representation corresponding to f . Then ρπ, the

Galois representation attached to π, differs a bit from ρf (e.g., the Satake parameters

differ from the roots of the polynomial x2−apx+ ǫ(p)p
k−1 by a factor of p(k−1)/2, and

similarly the L-functions satisfy L(s, f) = L(s − k−1
2
, π, 1)). However the resulting

adjoint Galois representation obtained by making GQ act by conjugation on M2×2(Eλ)

is the same, and we let

ρAd(π) : GQ → GL4(Eλ)

be defined by ρAd(π)(g)(X) = ρπ(g)Xρπ(g)
−1, for all X ∈ M2×2(Eλ) and g ∈ GQ.

Finally, let

ρΠ = ρAd(π) ⊗ χk−1
ℓ

be the representation obtained by taking the (k − 1)-fold twist of the adjoint repre-

sentation by the ℓ-adic cyclotomic character.

Corollary 6.8.1. Let p 6= ℓ be a prime. We have

• If p ∤ N , then trace(ρΠ(Frobp)) = a2p/ǫ(p).

• If Np = 1 and Cp = 0, then trace(ρΠ(Frobp)) = pk−2(p+ 1)2.

• If Np = Cp ≥ 1, then in many cases there exists an arithmetic Frobenius Frobp

such that trace(ρΠ(Frobp)) = a2p/ǫ
′(p) + 2pk−1 + ā2p/ǭ

′(p).

Proof. If

ρπ(Frobp) ∼
(
αp 0

0 βp

)
,

then

ρAd(π)(Frobp) ∼




αp

βp
0 0 0

0 1 0 0

0 0 βp

αp
0

0 0 0 1




and χℓ(Frobp)
k−1 = pk−1. Taking the trace of ρΠ(Frobp) gives the corollary.
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Chapter 7

Adjoint lifts and modular

endomorphism algebras

The aim of this chapter is to show the locally at the prime v, the ramification of the

endomorphism algebra of the motive Mf , attached to a modular form f of weight

greater or equal to 2, is controlled by the slope mv of Π at the the prime v, if the

slope is finite. In other words, we will prove Theorem 2.0.5 in this chapter.

7.1 Good primes

Theorem 7.1.1. Assume gcd(p,N) = 1 and assume ap 6= 0. Let v be a place of F

lying over p. Then Xv is a matrix algebra over Fv, if and only if the slope

mv = [Fv : Qp] · v(a2p/ǫ(p)) ∈ Z

is even, where v is normalized such that v(p) = 1.

Proof. This follows from the Lemma 5.2.2 by taking K = α and t = ǫ. Indeed, we

have invv(cα) =
1
2
v(α2(Frobv)/ǫ(Frobv)) mod Z, and it is known from Lemma 5.2.1

that α(Frobp) ≡ ap mod F ∗.

For the cases where ap = 0 we have the following criterion (which is not in terms

of a slope). Let p† ∤ N be a prime such that p† ≡ p mod N and ap† 6= 0. Let

m†
v := [Fv : Qp† ] · v(a2p†/ǫ(p†)) ∈ Z,
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where v is normalized so that v(p) = 1.

Theorem 7.1.2. Let gcd(p,N) = 1 and suppose ap = 0. Let v be a place of F lying

over p. Then Xv is a matrix algebra over Fv if and only if m†
v ∈ Z is even.

Proof. The proof is similar to that of the previous theorem, with minor changes. Note

that p† ≡ p mod N implies χγ(p) = χγ(p
†), for all γ ∈ Γ. So, if Frobp and Frobp†

denote the Frobenii at the prime p and p†, then by (5.2.1), we have α(Frobp) ≡
α(Frobp†) ≡ ap† mod F ∗. Hence

invv(cα) =
1

2
v

(
α2(Frobv)

ǫ(Frobv)

)
=

1

2
· fv · v

(
α2(Frobp)

ǫ(p)

)
=

1

2
· fv · v

(
a2
p†

ǫ(p†)

)

mod Z.

7.2 Steinberg primes

Let now turn to the cases where p | N . In this section we assume that Np = 1 and

Cp = 0. Thus N = Mp, where M is a positive integer with (M, p) = 1, and ǫ is a

character mod M .

Lemma 7.2.1. If (γ, χγ) is an extra twist for f , then the conductor of χγ divides M .

Proof. A general result due to Atkin-Li [ALi78, Thm. 3.1] allows one to calculate the

exact level of the newform attached to a twisted form f ⊗χ. We recall this now. Let

f ∈ Sk(N, ǫ) be a newform of weight k ≥ 2, and nenbentypus ǫ. In the notation of

loc. cit., let q | N be a prime and let Q be the q-primary factor of N . So N = QM ,

with (M, q) = 1. Let the conductor of ǫQ, the q-part of ǫ, be q
α, for α ≥ 0. Let χ be

a character of conductor qβ, with β ≥ 1. Set

Q′ = Max{Q, qα+β, q2β}.

According to the theorem, the level of the newform attached to f ⊗ χγ is Q′M ,

provided that

• max {qα+β, q2β} ≤ Q, if Q′ = Q, or

• Conductor of ǫQχ = max {qα, qβ}, if Q′ > Q.
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In our case, taking Q = q = p, we have ǫQ = ǫp = 1. We let χ be the p-part of

χγ. Suppose towards a contradiction that χγ has level divisible by p. Then α = 0

and β = 1. Then Q′ = p2 > Q = p and the Q-part of the conductor of ǫQχγ = χγ

is p. So the second condition above is satisfied and we get the p-part of the level of

the newform attached to f ⊗ χγ is p2. On the other hand, f ⊗ χγ = fγ has the same

level as f namely Mp, which is not divisible by p2, a contradiction. Thus the p-part

of the conductor of χγ must be trivial, as desired.

Recall that aγℓ = aℓχγ(ℓ) for all ℓ ∤ N . We show that this also holds for p||N . We

have:

Lemma 7.2.2. aγp = χγ(p) · ap, for all γ ∈ Γ.

Proof. We use the precise form of the local Galois representation at p from Langlands

Theorem ([Hid00, Theorem 3.26, p. 109]). According to the theorem

ρf |Gp ∼
(
λ(pap) ∗

0 λ(ap)

)
.

where λ(x) : Gp −→ Z∗
l is the unramified character taking arithmetic Frobenius to

x. Note that both characters make sense since both pap and ap are ℓ-adic units.

By the previous lemma, the conductor of χγ for γ ∈ Γ, is prime to p and so χγ(p)

makes sense, and is an ℓ-adic unit, and locally we have χγ|Gp = λ(χγ(p)). Applying

Langlands’ theorem for fγ, we get

ρfγ |Gp ∼
(
λ(paγp) ∗

0 λ(aγp)

)
.

Since fγ = f ⊗ χγ, implies ρfγ ∼ ρf ⊗ χγ, we have locally that
(
λ(paγp) ∗

0 λ(aγp)

)
∼
(
λ(pap)λ(χγ(p)) ∗

0 λ(ap)λ(χγ(p))

)
.

An important part of Langlands’ theorem (not mentioned explicitly above) is that ∗ 6=
0, since the inertia groups Ip acts unipotently with infinite image. Thus comparing

like diagonal entries, we see that aγp = χγ(p) · ap.

It is a result of Ribet that the map α̃ is unramified and primes of semi-stable

reduction (for k = 2). At primes of good reduction it is known that α(Frobp) = ap

mod F ∗ (cf. 5.2.1). We show that this continues to hold for primes of semi-stable

reduction.
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Proposition 7.2.3. Suppose p is a prime such that Np = 1 and Cp = 0. Then

α(Frobp) ≡ ap mod F ∗.

Proof. Since for γ ∈ Γ, the conductor of χγ is prime to p, we have χγ(i) = 1, for

i ∈ Ip. By (5.2.1), we deduce α(i) ∈ F ∗, for all i ∈ Ip. Thus we recover the fact that

α̃ is unramified at the Steinberg primes for any k ≥ 2. In any case, it makes sense to

speak of α(Frobp) mod F ∗.

By Lemma 7.2.2, we have aγ−1
p = χγ(p), for γ ∈ Γ. By (5.2.1), α(Frobp)

γ−1 =

χγ(p). Since these identities hold for all γ ∈ Γ, we deduce that α(Frobp) ≡ ap mod

F ∗.

Theorem 7.2.4. Let Np = 1 and Cp = 0 and let v | p be a prime of F . Then Xv is

a matrix algebra if and only if [Fv : Qp] · (k − 2) is even.

Proof. Applying Lemma 5.2.2 with K = α and t = ǫ, we get invv(cα) =
1
2
v(α

2(Frobv)
ǫ(Frobv)

)

mod Z. By the previous proposition, α(Frobv) ≡ afvp mod F ∗. Thus invv(cα) =
1
2
· fv · v( a2p

ǫ(p)
). By Theorem 4.6.17 [Mi89],

a2p
ǫM (p)

= pk−2. Also we may replace the

valuation v by ev · v, where the second v is normalized such that v(p) = 1. We obtain

that invv(cα) = [Fv : Qp] · (k − 2) mod 2, as desired.

7.3 Ramified principal series primes

We now assume that Np = Cp ≥ 1. Let v be a place of F lying above p. Let ev and

fv be the ramification degree and inertia degree of v over p. Recall that in this case

πp is in the ramified principal series.

Recall that ǫ = ǫ′ · ǫp is a decomposition of the nebentypus ǫ into its prime-to-p

part and p part. We use repeatedly a fundamental theorem of Langlands, which states

that the local Galois representation at the prime p is given by

ρf |Gp ∼
(
λ(āpǫ

′(p)) · ǫp 0

0 λ(ap)

)
,

where λ(x) is the usual local unramified character.

Lemma 7.3.1. Let µ =
a2p

ǫ′(p)
and ν = µ̄ =

ā2p
ǭ′(p)

. Then µf + νf ∈ F , for all integers

f ≥ 1.
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Proof. Let (γ, χγ) be an extra twist for the form f . Thus we have ρfγ ∼ ρf ⊗ χγ.

Hence, by Langlands’ theorem, locally on Gp we have

(
λ(āγpǫ

′(p)γ) · ǫγp 0

0 λ(aγp)

)
∼
(
λ(āpǫ

′(p)) · ǫp · χγ 0

0 λ(ap) · χγ

)
.

One of the two characters on the left is unramified and the other one is ramified. Thus

the same must be true on the right hand side. Moreover, the unramified characters

on both sides must be equal and the ramified characters must also be equal.

We decompose χγ into its prime-to-p and p parts, namely χγ = χ′
γ · χγ,p. First,

assume that χγ is unramified at p. Then, χγ = χ′
γ = λ(χγ(p)), and comparing

unramified characters, we get aγp = χγ(p)ap. Using the fact that χ2
γ = ǫγ−1, we have

χ2
γ(p) = ǫ′(p)γ−1. Thus (µf )γ = µf and (νf )γ = νf , since Γ is abelian, so complex

conjugation commutes with γ. Hence, γ fixes µf + νf .

Now assume that χγ is ramified at p. Comparing ramified characters, we get, on

Ip, that χγ,p = ǫγp and ǫpχγ,p = 1. Thus ǭp = ǫγp = χγ,p. Now, comparing unramified

characters, we get aγp = āp · ǫ′(p) · χ′
γ(p). Again, since (χ

′
γ)

2 = (ǫ′)γ−1, we deduce that

(a2p)
γ

ǫ′(p)γ
=

ā2p
ǭ′(p)

.

In other words, µγ = ν, and hence (µf )γ = νf , for all integers f ≥ 1. Applying

complex conjugation we see that similarly (νf )γ = µf . Hence again γ fixes µf + νf .

In both cases γ ∈ Γ = Gal(E/F ) is arbitrary, so µf + νf must belong to F , for all

integers f ≥ 1.

For later use we state the following generalization of Lemma 7.3.1 which can be

proved in a similar manner, or directly by noting that α2 ≡ ǫ mod F ∗.

Lemma 7.3.2. Let Frobv be an arithmetic Frobenius at v, and let ζ = ǫp(Frobv).

Then µfv · 1/ζ + νfv · ζ ∈ F .

We will end the section, by mentioning few lemmas which we will use later.

Lemma 7.3.3. Let Gv = Gal(Q̄p/Fv) be the decomposition group at the prime v

and let Iv be the inertia group at the prime v. The kernel of ǫp is a totally ramified

extension of Fv.
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Proof. Let the kernel of ǫp be denoted by T . For any field K,L, let us denote f(L/K)

to be the inertia degree of L over K. We will use the fact that, if K,L are two

extensions of F , such that L/F is a Galois extension, then Gal(KL/K) is naturally

a subgroup of Gal(L/F ). Let us look at the map

ǫp : Gp = Gal(Q̄p/Qp) −→ C∗.

It’s kernel will be a cyclotomic extension. Let the kernel be Qp(ζpn). It is a totally

ramified extension. Then, using the above mentioned facts for the residue fields, we

get f(Fv(ζpn)/Fv) = 1. Being a local field, Fv(ζpn) is a totally ramified extension

of Fv. Since, T is a subextension of the local field Fv(ζpn), we conclude that T is a

totally ramified extension.

Lemma 7.3.4. Let Gv = Gal(Q̄p/Fv) be the decomposition group and Iv be the inertia

group at the prime v. Then,

ǫp(Gv) = ǫp(Iv).

Proof. Let T denote the extension of Fv, corresponding to the kernel of ǫp. Let us

denote, I(T/Fv) to be the inertia group of T over Fv. Since T is a totally ramified

extension of Fv, I(T/Fv) = Gal(T/Fv). Hence we conclude that,

ǫp(Gv) = Gal(T/Fv) = I(T/Fv) = ǫp(Iv).

Lemma 7.3.5. We can choose σv = Frobv such that ǫp(σv) = 1.

Proof. Let σv be any Frobenius. Let us assume ǫp(σv) = ζr is a r-th root of unity.

By previous Lemma, ǫp(σv
r−1) = ǫp(i) for some i ∈ Iv. Hence

ǫrp(σv) = 1 = ǫp(σv) · ǫp(i) = ǫp(σ̃v).

But σ̃v is also a Frobenius.

7.3.1 Unequal slope

In this section, we assume that

v

(
a2p
ǫ′(p)

+ 2p(k−1) +
ā2p
ǭ′(p)

)
< k − 1.
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Here v is a valuation such that v(p) = 1.

By an elementary calculation, it can be shown that the above assumption is equiv-

alent to the assertion that for all place w of E lying over v, we have w(ap) 6= w(āp).

Let Ov be the ring of integers of Fv. Let Pv be the prime ideal of Ov and let πv be

the prime element of Ov. Let U
(n)
v = 1 + P n

v , for n ≥ 1.

Lemma 7.3.6. µ and ν belongs to Fv.

Proof. By Lemma 7.3.1, µ+ ν belongs to F . Consider the quantity

(µ− ν)2

(µ+ ν)2
= 1− 4

µ · ν
(µ+ ν)2

.

Now µν = p2(k−1). Since the slopes of µ and ν are not the same, the expression

on the right hand side belongs to U
(1)
v = 1 + πvOv, for p odd, and it belongs to

U
(3ev)
v = 1 + π3ev

v Ov, for p = 2. It therefore has a square root in U
(1)
v = 1 + πvOv,

in both cases. Hence, µ−ν
µ+ν

belongs to Fv. Since we have already proved that µ + ν

belongs to F , we see µ − ν belongs to Fv. Hence, individually, both µ and ν belong

to Fv.

The case of odd primes

We now assume that p is an odd prime. We say that ǫp is tame if the order of ǫp

divides p− 1.

Lemma 7.3.7. If ǫp is tame on Gv, then for any arithmetic Frobenius Frobv at v,

(afvp + ǫp(Frobv)(āpǫ
′(p))fv)2

a2fvp + (āpǫ′(p))2fv
∈ F ∗

v
2

is a square.

Proof. We may rewrite this expression as

µfv + ǫ2p(Frobv)ν
fv

µfv + νfv
·
(
1 + 2ǫp(Frobv) ·

p(k−1)fv

µfv + ǫ2p(Frobv)νfv

)
,

where µ and ν are as above. By the previous lemma, µ and ν belong to Fv. Since ǫp

is tame, the image of ǫp belongs to Qp, and hence to Fv. Thus all terms in the display
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above are in Fv. Now, since p is odd, and the slopes are unequal, the second term

(in parentheses) is in U
(1)
v , hence a square. If w(ap) > w(āp), the first term is of the

form ǫ2p(Frobv) times an element of U
(1)
v , and if w(ap) < w(āp), then the first term is

in U
(1)
v , so in both cases, the first term is also a square.

Lemma 7.3.8. If ǫp is tame on Gv and Frobv is an arithmetic Frobenius at v, then

α2(Frobv) ≡ a2fvp + (āpǫ
′(p))2fv mod F ∗2

v .

Proof. If the trace of ρf (g) is non-zero, for g ∈ GQ, then (cf. 5.2.1)

α2(g) ≡ (trace ρf (g))
2 mod F ∗2.

Since w(ap) 6= w(āp), the trace of ρf (Frobv) is non-zero. Using Langlands’ theorem

to compute the trace we obtain

α2(Frobv) ≡ (afvp + ǫp(Frobv)(āpǫ
′(p))fv)2 mod F ∗2.

The lemma now follows from the previous lemma.

Lemma 7.3.9. If ǫp is tame on Gv, then α(i) belongs to F
∗
v , for i ∈ Iv.

Proof. If i ∈ Iv, and σv is an arithmetic Frobenius at v, then σ′
v = σvi is also an

arithmetic Frobenius at v. By the lemma above, α(σv) ≡ ±α(σ′
v) mod F ∗

v . Since

cα(σ, i) =
α(σv)α(i)

α(σ′
v)

∈ F ∗,

we see that α(i) belongs to F ∗
v .

Theorem 7.3.10. Let p be an odd prime such that p | N and Np = Cp. Let v be a

place of F lying above p. Let w be an extension of v to a place of E. If w(ap) 6= w(āp),

then Xv is a matrix algebra if and only if

mv = [Fv : Qp] · v
(
µ+ 2pk−1 + ν

)
∈ Z

is even, where v is normalized so that v(p) = 1.

Proof. Let L be the extension of Fv cut out by the wild part of ǫp. So ǫp, thought of

as a character of GL, is tame. Note that L/Fv is a totally ramified extension of odd

(p-power) degree. By Lemma 7.3.9, α̃ : GL → F̄ ∗
v /F

∗
v is an unramified character. On
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GL, we have α2 ≡ ǫ′ mod F ∗
v , since this is true with ǫ′ replaced with ǫ, and on GL

we have ǫ′ ≡ ǫ mod F ∗
v , since ǫp(GL) ⊂ Q∗

p ⊂ F ∗
v , since ǫp|GL

is tame. We calculate

invL(resFv/Lcα) using Lemma 5.2.2 applied to K = α|GL
and t = ǫ′|GL

. Let u be the

prime of L lying over v and let Frobu be an arithmetic Frobenius at u. We obtain

invL(resFv/Lcα) =
1

2
· u
(
α2(Frobu)

ǫ′(Frobu)

)
mod Z ∈ 2Br(L).

Since fv is also the residue degree of u | p, by Lemma 7.3.8 we obtain

α2(Frobu) ≡ a2fvp + (āpǫ
′(p))

2fv mod F ∗2
v .

Hence
α2

ǫ′
(Frobu) ≡ µfv + νfv mod F ∗2

v .

Now [L : Fv] · invvcα = invL(resFv/Lcα), and for x ∈ Fv, u(x) = [L : Fv] · v(x), where
both u and v are the surjective valuations onto Z. But [L : Fv] is a power of p, so is

odd, and so in both cases can be ignored. We obtain

invvcα =
1

2
· v
(
α2

ǫ′
(Frobu)

)
=

1

2
· v(µfv + νfv) =

1

2
· v(µfv + νfv + 2p(k−1)fv) mod Z.

Since the last three terms lie in F and have distinct valuations, replacing v with the

valuation v satisfying v(p) = 1, we obtain the theorem.

The case of p = 2

We now assume that p = 2, so that N2 = C2 ≥ 1. We continue to assume that

w(a2) 6= w(ā2).

Lemma 7.3.11. There exists an arithmetic Frobenius Frobv such that ǫp(Frobv) = 1.

Proof. Let σv be an arithmetic Frobenius at v. Then ǫp(σv) = ζ2n , a 2n-th root of

unity, for n ≥ 0. If n = 0, we are done. Otherwise, since ǫp(Gv) = ǫp(Iv), there exists

i ∈ Iv such that ǫp(σ
2n−1
v ) = ǫp(i). Hence ǫ

2n
p (σv) = 1 = ǫp(σv) · ǫp(i) = ǫp(σ̃v), where

σ̃v = σvi is another arithmetic Frobenius at v.

Lemma 7.3.12. If Frobv is an arithmetic Frobenius at v, then ǫp(Frobv) belongs to

F ∗
v .
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Proof. Let σv = Frobv. Assume ǫp(σv) is a primitive 2m-th root of unity, for m ≥ 0.

Let r ≥ 1 be such that Fv contains a primitive 2r-th root of unity, but not a 2r+1-th

root of unity. It is enough to prove m ≤ r.

Assume, towards a contradiction, that m ≥ r + 1. Then ǫ2
m−r−1

p (σv) is a 2r+1-th

root of unity. Using the fact that ǫp(Gv) = ǫp(Iv), we can find i ∈ Iv such that

ǫ2
m−r−1

p (σv) = ǫp(σv · i) (see proof of previous lemma). For example, if m = r + 1, we

can take i = 1. Now σ′
v = σvi is another arithmetic Frobenius at v. Using Langlands’

theorem to compute the (non-zero) trace of ρf (σ
′
v) we obtain

α(σ′
v) ≡ afvp + ǫp(σ

′
v)(āpǫ

′(p))fv mod F ∗.

Since α2 ≡ ǫ mod F ∗, we deduce that

µfv + ǫ2p(σ
′
v)ν

fv

ǫp(σ′
v)

∈ F ∗.

By Lemma 7.3.6, µfv and νfv belong to Fv. Also, ǫ2p(σ
′
v) is a primitive 2r-th root

of unity, so belongs to Fv. We conclude that the primitive 2r+1-th root of unity

ǫp(σ
′
v) = ǫ2

m−r−1

p (σv) belongs to Fv, a contradiction.

Lemma 7.3.13. If i ∈ Iv, then α(i) belongs to F
∗
v .

Proof. If ǫp(Gv) = ±1, then by Langlands’ theorem

α(Frobv) ≡ afvp ± (āpǫ
′(p))fv mod F ∗.

Let i be an arbitrary element of Iv and let σv and σ
′
v = σvi be two arithmetic Frobenii

at v. The above congruence for α (and a calculation similar to that in Lemma 7.3.6

and Lemma 7.3.8 in the case of unequal sign) guarantees that α(σv) ≡ α(σ′
v) mod

F ∗
v . Since α(σv)α(i)/α(σ

′
v) ∈ F ∗, so α(i) ∈ Fv.

Let us assume now that ǫp(Gv) 6= ±1. We first show that if ǫp(i) 6= −1, then

α(i) ∈ Fv. We first choose an arithmetic Frobenius σv such that ǫp(σv) = 1, by

Lemma 7.3.11. Then ǫp(i) = ǫp(σv) · ǫp(i) = ǫp(σ
′
v), for σ

′
v = σvi. Hence ǫp(i) ∈ Fv,

by Lemma 7.3.12. By Langlands’ theorem, we know α(i) ≡ 1+ ǫp(i) mod F ∗. Hence,

α(i) belongs to F ∗
v . If ǫp(i) = −1, we choose j ∈ Iv such that ǫp(j) 6= ±1, using

the fact that ǫp(Gv) = ǫp(Iv). Since ǫp(j) and ǫp(ij) 6= −1, the previous argument

shows that α(j) and α(ij) belongs to Fv. Since α(i)α(j)/α(ij) ∈ F ∗, we see that

α(i) ∈ F ∗
v .
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Lemma 7.3.14. Let Frobv be an arithmetic Frobenius at v. Then

α2(Frobv) ≡ a2fvp + (āpǫ
′(p))2fv + 2p(k−1)fvǫ′(p)fv mod F ∗2

v .

Proof. Let σv be a Frobenius as in Lemma 7.3.11, and let σ̃v be any arithmetic

Frobenius at v. Then σv and σ̃v will differ by an element of Iv. By Lemma 7.3.13,

α(σ̃v) ≡ α(σv) mod F ∗
v .

Since ǫp(σv) = 1, we get by Langlands’ theorem

α2(σv) ≡ a2fvp + (āpǫ
′(p))2fv + 2p(k−1)fvǫ′(p)fv mod F ∗2.

Hence,

α2(σ̃v) ≡ a2fvp + (āpǫ
′(p))2fv + 2p(k−1)fvǫ′(p)fv mod F ∗2

v .

Theorem 7.3.15. Let p = 2 and assume N2 = C2 ≥ 1. Let v | 2 be a place of F .

Assume that w(a2) 6= w(ā2). Then Xv is a matrix algebra over Fv if and only if

mv = [Fv : Q2] · v(µ+ 2pk−1 + ν) ∈ Z

is even, where v is normalized such that v(p) = 1.

Proof. By Lemma 7.3.13, the map α : Gv → F̄ ∗
v /F

∗
v is unramified. Applying

Lemma 5.2.2 with K = α|Gv and t = ǫ′|Gv , we have

invvcα =
1

2
· v
(
α2

ǫ′
(Frobv)

)
=

1

2
· v(µfv + 2p(k−1)fv + νfv) mod Z,

where the last equality follows from Lemma 7.3.14. The theorem now follows replacing

v by the valuation v normalized such that v(p) = 1.

7.3.2 Equal slope

In this section, we assume that

v

(
a2p
ǫ′(p)

+ 2p(k−1) +
ā2p
ǭ′(p)

)
≥ k − 1.
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Here v is a valuation such that v(p) = 1. So, w(ap) = w(āp) for all place w of E lying

above v. In this case it is possible for mv = ∞. To avoid this we introduce mζ
v, for

any root of unity ζ in the image of ǫp, defined by

mζ
v := ev · v

(
µfv · 1/ζ + 2p(k−1)fv + νfv · ζ

)
∈ Z ∪ {∞},

where v is normalized such that v(p) = 1. By Lemma 7.3.2, the three term expression

above is in F so the above expression is well defined. Moreover, for some ζ, the three

term expression above is non-zero and mζ
v ∈ Z is finite. When ζ ∈ F ∗

v , e.g., if ζ is the

value of the tame part of ǫp, then we may rewrite

mζ
v = ev · v

(
µfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}.

Note that in the unequal slope case mζ
v = mv if ζ ∈ F ∗

v , so the quantities mζ
v may

be considered as generalizations of mv in the equal slope case. In particular taking

ζ = +1 we have

m+
v = m+1

v = ev · v
(
µfv + 2p(k−1)fv + νfv

)
∈ Z ∪ {∞},

and if −1 belongs to the image of the tame part of ǫv, then

m−
v = m−1

v = ev · v
(
µfv − 2p(k−1)fv + νfv

)
∈ Z ∪ {∞}.

We remark that m+
v is finite if and only if afvp + (āpǫ

′(p))fv 6= 0, and m−
v is finite if

and only if afvp − (āpǫ
′(p))fv 6= 0, so if −1 belongs to the image of the tame part of ǫv,

then one of the two quantities m±
v is always finite.

The case of odd primes

We now assume that p is odd and work under a condition on the tame part of ǫp.

Theorem 7.3.16. Let p be an odd prime with Np = Cp ≥ 1 and v | p be a place of

F . Assume that the tame part of ǫp on Gv is not quadratic. Let ζ be in the image of

the tame part of ǫp. Then the parity of

mζ
v = ev · v

(
µfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}

is independent of ζ when it is finite, and then Xv is a matrix algebra over Fv if and

only if mζ
v ∈ Z is even. In particular
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• if afvp +(āpǫ
′(p))fv 6= 0, then Xv is a matrix algebra over Fv if and only if m+

v ∈ Z

is even, and,

• if −1 belongs to the image of the tame part of ǫv and afvp − (āpǫ
′(p))fv 6= 0, then

Xv is a matrix algebra over Fv if and only m−
v ∈ Z is even.

Proof. The proof goes along the lines of the proof of Theorem 7.3.10, with a few

modifications. We base change to L so that ǫp|GL
is tame, compute the invariant

there, and then descend back to Fv.

We first show that α̃ : GL → F̄ ∗
v /F

∗
v is unramified. If the trace of ρf (g) is nonzero,

then α(g) ≡ trace ρf (g) mod F ∗, for g ∈ GL (cf. 5.2.1). If the tame part of ǫp is

trivial on Gv, then α(i) ≡ 1 + ǫp(i) = 2 mod F ∗, for all i ∈ IL. So, we may assume

that ǫp is non trivial on Gv. We first prove that if ǫp(i) 6= −1, for i ∈ IL, then α(i)

belongs to F ∗
v . Indeed by Langlands’ theorem, α(i) ≡ 1 + ǫp(i) mod F ∗, and since ǫp

is tame on GL, ǫp(i) ∈ Q∗
p ⊂ F ∗

v . If ǫp(i) = −1, for i ∈ IL, we choose j ∈ IL such that

ǫp(j) 6= ±1. Such a choice is possible since by assumption the tame part of ǫp is not

quadratic. The above argument shows that α(j) and α(ij) belong to F ∗
v , and since

α(i)α(j)/α(ij) ∈ F ∗, α(i) ∈ F ∗
v as well.

Write u for the prime of L lying over v and Frobu be an arithmetic Frobenius at u.

We calculate invL(resFv/Lcα) using Lemma 5.2.2 applied to K = α|GL
and t = ǫ′|GL

,

and get

invL(resFv/Lcα) =
1

2
· u
(
α2

ǫ′
(Frobu)

)
mod Z.

Since [L : Fv] is odd (a power of p) we may descend to Fv as before to get

invvcα =
1

2
· v
(
α2

ǫ′
(Frobu)

)
mod Z.

Let ζ = ǫp(Frobu) ∈ Q∗
p ⊂ F ∗

v . Then the usual argument using Langlands’ theorem

shows that
α2

ǫ′
(Frobu) ≡ µfv + 2ζp(k−1)fv + ζ2νfv mod F ∗2

v

and replacing v with the valuation v such that v(p) = 1 we obtain the theorem. We

note that the parity of mζ
v is independent of ζ since α̃ is unramified on GL.
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p = 2 and the remaining odd prime cases

We now show that if p = 2 and ǫ2 is not quadratic on Gv, then the ramification of

Xv is also determined by m±
v , up to an error term nv which depends purely on the

nebentypus ǫ2, and which we define now.

If ǫ2 is trivial on Gv, set nv = 0. If ǫ2 has order 2
r on Gv, for r > 1, let Fv(

√
t)/Fv,

for t ∈ F ∗
v be the quadratic extension of Fv cut out by the quadratic character ǫ2

r−1

2

on Gv. Let ζ2r be a primitive 2r-th root of unity and define

z =
(1 + ζ2r)

2

ζ2r
∈ F ∗,

noting that z ∈ F ∗ by Langlands’ theorem. Define nv mod 2 by

(−1)nv = ǫv(−1) · (t, z)v,

where ǫv is the restriction of ǫ2 to Gv and (t, z)v is the Hilbert symbol of t and z at

v .

Let cǫ be the cocycle

cǫ(g, h) =

√
ǫ(g)

√
ǫ(h)√

ǫ(gh)
,

for g, h ∈ GQ. Then [cǫ] is 2-torsion in the Br(Q).

Lemma 7.3.17. Let v | p be a prime of F and let ǫv denote the restriction of the

character ǫ to Gv. Then [cǫ]v = 1 if and only if ǫv(−1) = 1.

Proof. Let p : F̄ ∗
v → F̄ ∗

v be the map t → t2. We have a short exact sequence of

abelian groups, considered as a Gv module with a trivial action of Gv.

1 → {±1} → F̄ ∗
v

p−→ F̄ ∗
v → 1.

This short exact sequence will induce a long exact sequence of cohomology groups

namely,

...→ Hom(Gv, F̄
∗
v ) −→ Hom(Gv, F̄

∗
v )

δ−→ H2(Gv,±1) → .....

Now ǫ : Gv → F̄ ∗
v is a homomorphism. Hence we calculate δ(ǫ) from [Se79] and

get δ(ǫ) = [cǫ]v. Hence [cǫ]v = 1 if and only if δ(ǫ) = 1, which is true if and only

if ǫ belongs to the image of the previous map, which in turn is true if and only if ǫ
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is a square of a character. By class field theory, we look at ǫv as a character on F ∗
v .

We identify F ∗
v /{±1} with F ∗2

v by the map p. If ǫv(−1) = 1, then ǫv will define a

character on F ∗2
v and hence it has a square root. On the other hand, if ǫv has a square

root then ǫv(−1) = 1. Hence, square root of ǫv exists if and only if ǫv(−1) = 1. We

get the desired result.

Lemma 7.3.18. Assume ǫ2 has order 2r on Gv. Let h be the function on Gv defined

by

h(g) =





1+ǫ2(g)√
ǫ2(g)

if ǫ2(g) 6= −1

1 if ǫ2(g) = −1,

and let ch be the corresponding F -valued 2-cocycle on Gv. Then the class of ch in

2Br(Fv) is given by the symbol (t, z)v.

Proof. We first claim that if −1 6= ζ = ǫ2(g) is not a primitive 2r-th root of unity,

then 1+ζ√
ζ
∈ F ∗. Indeed, choose g ∈ Gv such that ǫ2(g) = ζ2r , where ζ2r is a primitive

2r-th root of unity. We may assume g ∈ Iv, and applying Langlands’ theorem we

obtain that (1+ǫ2(g))2

ǫ2(g)
∈ F ∗, and hence that

1+ζ
2r−1√

ζ
2r−1

∈ F ∗, where ζ2r−1 = ǫ2(g
2) is a

primitive 2r−1-th root of unity. Now set h = g2 ∈ Iv. Set d = α2

ǫ2
on Iv. Then

by Langlands’ theorem d(h) ∈ F ∗2. Since d : Iv → F ∗/F ∗2 is a homomorphism

we see that d(ha) ∈ F ∗2, for all integers a. Hence by Langlands’ theorem again we

deduce that
(1+ζa

2r−1
)2

ζa
2r−1

∈ F ∗2, if it is non-zero. Hence
1+ζa

2r−1√
ζa
2r−1

∈ F ∗, for all integers a,

if it is non-zero, proving the claim. We now claim that if ǫ2(g
b) with b odd is any

primitive 2r-th root of unity then h(gb) ≡ h(g) mod F ∗. Indeed by the discussion

above h(gb−1) ∈ F ∗ since b− 1 is even.

The two claims above show that the 2-cocycle ch is cohomologous to the 2-cocycle

cl where

l(g) =




1 if ǫ2

r−1

2 (g) = 1,

1+ζ2r√
ζ2r

if ǫ2
r−1

2 (g) = −1.

Let σ be the non-trivial element of the Galois group Gal(Fv(
√
t)/Fv). Let z =(

1+ζ2r√
ζ2r

)2
∈ F ∗. Then the class of cl is completely determined by the table

1 σ

1 1 1

σ 1 z

which is precisely the symbol (t, z)v.
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Theorem 7.3.19. Let p = 2 and assume that ǫ2 is not quadratic on Gv. If ǫ2 is

trivial on Gv and m+
v <∞, then Xv is a matrix algebra if and only if m+

v is even. If

ǫ2 on Gv has order 4 or more and if

• afvp + (āpǫ
′(p))fv 6= 0, then Xv is a matrix algebra if and only if m+

v + nv ∈ Z is

even, and if

• afvp − (āpǫ
′(p))fv 6= 0, then Xv is a matrix algebra if and only if m−

v + nv ∈ Z is

even,

noting that if both afvp ± (āpǫ
′(p))fv 6= 0 then m±

v have the same parity.

Proof. If ǫ2 is trivial on Gv, then by Langlands’ Theorem, α(i) ≡ 2 mod F ∗, for

all i ∈ Iv. We can directly apply Lemma 5.2.2 to prove the first statement. So we

may assume ǫ2 is not of order 1 or 2 on Gv. Hence, there exists i ∈ Iv such that

ǫ2(i) =
√
−1. If ǫ2(j) = −1 for j ∈ Iv, then a short computation using the fact that

cα(i, j) ∈ F ∗ shows that α(j) ≡
√
−1 mod F ∗.

We define a function f : Gv → E∗ by

f(g) =




1 + ǫ2(g) if ǫ2(g) 6= −1,
√
−1 if ǫ2(g) = −1.

Now define K : Gv → E∗ by K(g) = α(g)
f(g)

, for g ∈ Gv. Then the cocycle cα can be

decomposed as cα = cKcf , where cK and cf are the cocycles corresponding to K and

f respectively. That these are indeed cocycles follows from the fact that they are

F -valued, which can be proved using ǫ2(Gv) = ǫ2(Iv) and Langlands’ theorem.

We first calculate invvcK . By choice of f , K(i) belongs to F ∗, for all i ∈ Iv. Since

ǫ2(Gv) = ǫ2(Iv) a computation using Langlands’ theorem shows that K2(g)
ǫ′(g)

∈ F ∗, for

all g ∈ Gv. Let σv be the Frobenius at the prime v. By Lemma 5.2.2 applied to K as

above and t = ǫ′ we have

invvcK =
1

2
· v
(
K2

ǫ′
(σv)

)
mod Z.

Assume afv2 6= −(ā2ǫ
′(2))fv , then we choose σv in such a way that ǫ2(σv) = 1. Then

α(σv) ≡ (afv2 + (ā2ǫ
′(2))fv) mod F ∗, so that K2

ǫ′
(σv) ≡ µfv + νfv + 2p(k−1)fv mod F ∗2.

Finally, the valuation considered in the statement of the theorem is normalized so that
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v(2) = 1, and differs from the valuation used in the proof by e. Noting ef = [Fv : Q2],

we obtain

invvcK =
1

2
·m+

v mod Z.

If afv2 = −(ā2ǫ
′(2))fv , then we choose σv in such a way that ǫ2(σv) = −1. Then

α(σv) ≡ (afv2 − (ā2ǫ
′(2))fv) mod F ∗, so that K2

ǫ′
(σv) ≡ µfv + νfv − 2p(k−1)fv mod F ∗2.

We obtain

invvcK =
1

2
·m−

v mod Z.

We also remark that since K2/ǫ′ : Gv → F ∗/F ∗2 is an unramified homomorphism,

invvcK does not depend on the choice of arithmetic Frobenius at v, and in particular

m±
v have the same parity if both are simultaneously finite.

Now we will calculate invv(cf ). Recall cǫ is the cocycle

cǫ(g, h) =

√
ǫ(g)

√
ǫ(h)√

ǫ(gh)
,

for g, h ∈ GQ. We further decompose invvcf = invvch+invvcǫ where h is the function

defined in the previous lemma. The theorem follows from the previous two lemmas.

Corollary 7.3.20. Assume that p = 2 and ǫ2 is not quadratic on Gv. Assume also

that F = Q. Then,

• If ǫ2(−1) = 1, then Xv is a matrix algebra if and only if mv is even.

• If ǫ2(−1) = −1, then Xv is a matrix algebra if and only if mv is odd.

Proof. The quadratic field Q(
√
t) is contained in the kernel of ǫ2, which is a cyclotomic

extension of discriminant a power of 2 , so considering the discriminant, we get t can

only be 2,−1 and −2. A calculation using the fact that minimal polynomial of ζ2r

is X2r−1

+ 1 = 0, we get NQ(ζ2r )/Q(z) = 4. Since, Q(ζ2r)/Q is a totally ramified

extension, so NQ2(ζ2r )/Q2
(z) = 4. By assumption z ∈ Q2, so we get z2

r−1

= 4, that

forces r = 3, by writing z = 2m.u. Hence, the only possible value of z is 2 and using

the formulas from [Se79, p. 212], we get (t, z)2 = 1.

Remaining quadratic cases:- If the tame part of ǫp is quadratic on Gv for

an odd prime p or if p = 2 and ǫ2 is quadratic on Gv, we again show that Xv is
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determined completely by m±
v up to an extra Hilbert symbol. The following results

are quite general and hold for the unequal slope case also. In the case of unequal

slope the extra symbol is trivial.

We need some notations.

Assume that the quadratic extension cut out by the tame part of ǫp if p is odd, or

by ǫp if p = 2, is Fv(
√
t), for some t ∈ F ∗

v .

Define

a =
µfv + νfv + 2p(k−1)fv

µfv + νfv − 2p(k−1)fv
∈ F ∗ ∪ {0,∞}.

Note a ∈ F ∗ if and only if afvp 6= ±(āpǫ
′(p))fv . In this case define the integer nv mod

2 by (−1)nv = (t, a)v. Let p
† ∤ N be a prime such that ap† 6= 0 and such that

χγ(p
†) =




-1 if χγ is ramified,

1 if χγ is unramified.

We can always choose p† as above, since f is a non-CM form. Since ǫ−1 is an extra

twist, we have ǫ(p†) = −1. Let

b = a2p† = −
a2
p†

ǫ(p†)
∈ F ∗.

If afvp = (āpǫ
′(p))fv , define nv by (−1)nv = (t, b)v, and if afvp + (āpǫ

′(p))fv = 0, define

nv by (−1)nv = (t, b)v · (−1)evv(b).

Theorem 7.3.21. Assume that the tame part of ǫp is quadratic for an odd prime p,

or p = 2 and ǫ2 is quadratic.

(i) Assume that a ∈ F ∗. Then, Xv is a matrix algebra over Fv if and only if

m+
v + nv

is even.

(ii) If afvp = (āpǫ
′(p))fv , then Xv is a matrix algebra over Fv if and only if

m+
v + nv

is even.
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(iii) If afvp + (āpǫ
′(p))fv = 0, then Xv is a matrix algebra over Fv if and only if

m−
v + nv

is even.

Proof. If ǫp(i) = −1, for i ∈ Iv, then α
2(i) ∈ F ∗. We claim that the image of α(i)2

in F ∗
v /F

∗2
v is constant, i.e., there exists d ∈ F ∗

v such that α2(i) ≡ d mod F ∗2
v . Indeed,

a priori α(i) =
√
t(i)d(i), for some t(i), d(i) ∈ F ∗

v . If j ∈ Iv with ǫp(j) = −1, then

by Langlands’ theorem, since ǫp(ij) = 1, α(ij) ∈ F ∗. Since cα(i, j) ∈ F ∗, we get√
t(i) ≡

√
t(j) mod F ∗

v , as desired. Thus
√
t(i) ≡

√
d mod F ∗

v for all i ∈ Iv such

that ǫp(i) = −1. We compute d and show that the ramification of Xv is controlled by

m±
v , and an extra Hilbert symbol involving d. In case (1) we show we can take d = a,

whereas in case (2) and (3) we can take d = b.

For p odd, we do a base change as in Theorem 7.3.10 and assume without loss of

generality that ǫp is tame (and quadratic).

Assume we are in case (1), so that a ∈ F ∗. Let σv be an arithmetic Frobenius at

v, such that ǫp(σv) = 1. Let i ∈ Iv be such that ǫp(i) = −1. By Langlands’ theorem,

α(σv)

α(σvi)
≡

√
a mod F ∗.

Since cα(σv, i) ∈ F ∗, and a belongs to F ∗, we have α(i) ≡ √
a mod F ∗. We define a

function f on Gv by

f(g) =




1 if ǫp(g) = 1,
√
a if ǫp(g) = −1.

Let K(g) = α(g)
f(g)

on Gv. Then the cocycle cα can be decomposed as cα = cKcf .

Clearly K(i) belongs to F ∗
v , for all i ∈ Iv. Using Lemma 5.2.2 applied to K and

t = ǫ′, we have invvcK = 1
2
· v
(

K2

ǫ′
(σv)

)
= 1

2
·m+

v mod Z. To compute invvcf , let σ

be the nontrivial element of Gal(Fv(
√
t)/Fv). Then the cocycle table of the cocycle

cf is given by

1 σ

1 1 1

σ 1 a

which gives the symbol (t, a)v. This proves (1).
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We now turn to parts (2) and (3). We wish to find d ∈ F ∗, such that α(i) ≡
√
d

mod F ∗
v , if ǫp(i) = −1. We cannot take d = a in parts (2) and (3) since a = 0 or ∞.

So we argue a bit differently.

Let i ∈ Iv with ǫp(i) = −1. We claim that α(i) ≡ ap† mod F ∗. By (5.2.1) and

the proof of Theorem 7.3.1, if χγ is unramified at p, then α(i)γ = α(i). Similarly,

if χγ is ramified at p, then α(i)γ = χγ(i)α(i) = ǫp(i)α(i) = −α(i). Thus, if Frobp†

is an arithmetic Frobenius at the prime p†, then α(i) ≡ α(Frobp†) ≡ ap† mod F ∗, as

claimed. Define f on Gv by

f(g) =




1 if ǫp(g) = 1,

ap† if ǫp(g) = −1.

Let K(g) = α(g)
f(g)

on Gv. Then the cocycle cα can be decomposed as, cα = cKcf . We

now proceed as in the proof of part (1). If afvp + (āpǫ
′(p))fv 6= 0, the cocycle cK has

invariant invvcK = 1
2
·m+

v mod Z. If afvp − (āpǫ
′(p))fv 6= 0, then we get an extra term

on evaluating α at an arithmetic Frobenius Frobv for which ǫp(Frobv) = −1, and get

invv(cK) =
1
2
· (m−

v − ev · v(b)). It remains to calculate invvcf . Let σ be the nontrivial

element of the Galois group of the quadratic field cut out by ǫp. The table for the

cocycle cf is given by

1 σ

1 1 1

σ 1 b

which is clearly the symbol (t, b)v. This proves (2) and (3).

The above theorem shows that the ramification of X at the place v is determined

by m±
v and one extra Hilbert symbol. We can calculate those symbols using the

formulas of page 211-212 of [Se79], except if p = 2 and Fv 6= Q2, in which case we

can use the formulas stated in [Se81] and [FV93].

7.4 Supercuspidal primes

We assume in this section that p > 2, Np > Cp and Np ≥ 2. In this case, we prove a

weaker result about the ramification of Xv. Since the slopes we study in this case tend

to be infinite, the results so far we have studied, relating ramification to the valuations
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of expressions involving the Fourier coefficients are no longer possible. The cases for

which the local Galois representation is a twist of the cases that have already been

treated previously, can be dealt with easily since the ramification of the Brauer class

is invariant under twist. Thus we may assume that the local Galois representation is

supercuspidal and the local representation is induced by a character of χ of an index

two subgroup GK of Gp, i.e.,

ρf |Gp ∼ Ind
Gp

GK
χ.

We manage to sometimes predict the ramification of Xv in terms of the character

χ. Let σ be a non trivial automorphism of K/Qp. We define a suitable extension L

of Fv and for an arithmetic Frobenius Frobu of L, define

mv = ev · v
(
(χ(Frobu) + χσ(Frobu))

2

ǫ′(p)fv

)
∈ Z ∪ {∞},

where v is normalised such that v(p) = 1. We note that mv < ∞ if and only if

χ(Frobu) + χσ(Frobu) 6= 0.

Lemma 7.4.1. Assume Fv contains K. If mv is finite, then, Xv is a matrix algebra

over Fv if and only if mv is even.

Proof. Since Fv contains K, so the local Galois representation is of the form

ρ|Iv ∼
(
χ 0

0 χσ

)
.

If i ∈ Iv and χ(i) 6= −χσ(i) then by Lemma 5.2.1, α(i) ≡ (χ(i) + χσ(i)) mod F ∗.

If K = Qp2 is unramified, then we write χ|IK = ωj
2χ1χ2, following the notation of

[GM09] , where ω2 is the fundamental character of level two and χi’s are characters

of p power order. On the other hand if K/Qp is ramified, then again in the notation

of [GM09] we get χ|IK = ωjχ1χ2, where ω is the Teichmüller character and χi’s are

the characters of p power order .

We can always choose an extension L of odd degree over Fv, such that χi’s are

trivial and ǫp is tame when restricted to the inertia subgroup of L.

If K = Qp2 is an unramified extension, since ωσ = ωp so α(i) ≡ (ωj
2(i) +

ωpj
2 (i)) mod F ∗ if i belongs to the inertia group IL of L and ωj

2(i) 6= −ωpj
2 (i) . The

character ω2 takes value in the p2−1-th root of unity and Fv contains Qp2 , so α(i) ∈ Fv
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under the nonvanishing assumption. Since, α̃ is a homomorphism, so α(i) belongs to

Fv even if i ∈ IL and ωj
2(i) = −ωpj

2 (i).

On the other hand, if K is an ramified extension of Qp, since, ω = ωσ, so α(i) ≡
2ωj(i) if i belongs to the inertia group IL of L. the ω takes value in the p − 1-th

root of unity, so α(i) ∈ Fv. We use Lemma 5.2.2 applied to K = α and t = ǫ′, both

restricted to GL, we have

inv(resFv |L)c =
1

2
w(
α2

ǫ
(σL)) =

1

2
w(
α2

ǫ′
(σL)) mod Z.

Since ǫp is tame when restricted to L. Since α2

ǫ
(σL) ∈ F and ǫp(σL) ∈ Qp, so

α2

ǫ′
(σL) ∈ Fv. Let [L : Fv] = pt, then using the fact that invL(resFv |L)c = pt · invvc,

we get Xv is a matrix algebra if and only if eL/Fvv(
α2

ǫ
′ (σL) is even, where eL/Fv is the

degree of the totally ramified extension L/Fv and v is a surjective valuation of Fv

onto Z. We calculate that

α(σL) ≡ (χ(σu) + χσ(σu)) mod F ∗.

If we choose the valuation such that v(p) = 1, then Xv is a matrix algebra if and only

if mv is even, assuming that it is finite. Since, the inertia degree of L/Qp also fv, we

get the desired result.
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Chapter 8

Brauer class of X for weight one

forms

8.1 Good primes

We can now calculate the local Brauer class Xv at a prime v|p with p ∤ N (good

prime), for modular forms of weight one. For each such v, define

mv := [Fv : Qp] · v(a2pǫ−1(p)) ∈ Z ∪ {∞}

where v is now normalized so that v(p) = 1. This theorem is the analogue of the

Theorem 7.1.1. We have:

Theorem 8.1.1. Let p ∤ N be a prime with ap 6= 0, and let v be a place of F lying

over p. Then invv(Xv) = mv mod 2. Thus Xv is a matrix algebra over Fv if and only

if the normalized slope [Fv : Qp] · v(a2pǫ−1(p)) is even.

Proof. The proof goes exactly as the proof of Theorem 7.1.1.

8.1.1 Adjoint representation

In this section we will compute the quantity mv appearing in Theorem 8.1.1 using

the adjoint representation. This will allow us to essentially completely determine the
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Brauer class of the algebra X at the good places v|p with ap 6= 0. The remaining

good places v for which ap vanishes are treated in the next section.

Recall that the adjoint representation

Ad(ρf ) : GQ → GL4(E)

attached to the representation ρf : GQ → GL2(E) is the 4-dimensional representation

defined by the adjoint action:

Ad(ρf )(g)(X) = ρf (g)Xρf (g)
−1,

for X ∈ M2×2(E). It is important for us because of the following elementary but

useful fact.

Lemma 8.1.2. Say p ∤ N . Then

trace(Ad(ρf )(Frobp)) =
ap

2

ǫ(p)
.

Proof. If

ρf (Frobp) ∼
(
αp 0

0 βp

)
,

then a small computation shows that

Ad(ρf )(Frobp) ∼




1 0 0 0

0 αp

βp
0 0

0 0 1 0

0 0 0 βp

αp



.

So

trace(Ad(ρf )(Frobp)) = 2 +
αp

βp
+
βp
αp

=
(αp + βp)

2

αpβp
=

ap
2

ǫ(p)
.

Theorem 8.1.3 (Good primes of finite slope). Let f be a non-dihedral cuspidal new-

form in S1(N, ǫ). Then

X is unramified at v for all good primes v|p with p ∤ N and ap 6= 0,

87



except possibly in the case when p = 2 and the projective image of ρf is S4. Moreover,

if the projective image of ρf is

(i) A4, then F = Q,

(ii) S4, then F = Q,

(iii) A5, then F = Q(
√
5).

Proof. We have Ad(ρf ) = Ad0(ρf )⊕1, where Ad0(ρf ) is the irreducible 3-dimensional

representation, afforded by the trace zero matrices.

Say the projective image of ρf is A4. From the character table of A4, we see

that A4 has one 3-dimensional irreducible representation V , and three 1-dimensional

representations (cf. [FH91, p. 20]). Thus

Ad(ρf ) = V ⊕ U

where U is the trivial representation. Computing the character of V ⊕U on the four

conjugacy classes of A4, and using Lemma 8.1.2 above, we obtain

ap
2

ǫ(p)
= 4, 1, 1 or 0.

Thus F = Q and by Theorem 8.1.1, X is unramified at all primes v = p, with ap 6= 0

(note the 2-adic valuation of 4 is even!).

Suppose now that the projective image of ρf is S4. From the character table of S4

(cf. [FH91, p. 19]), we see that S4 has two 1-dimensional representations, U (trivial)

and U ′ (sign), one 2-dimensional irreducible representation, and two 3-dimensional

irreducible representations V and V ⊗U ′. A small check shows that Ad0(ρf ) = V ⊗U ′

(and not V ), so that Ad(ρf ) = (V ⊗ U ′)⊕ U . Computing traces on the 5 conjugacy

classes as above, we get this time that

ap
2

ǫ(p)
= 4, 0, 1, 2 or 0.

So again, F = Q, and if v = p is a good odd prime with ap 6= 0, then by Theorem 8.1.1,

X is unramified at v. Note that since the 2-adic valuation of 2 is odd, X may be

ramified at the prime 2 (we shall later give examples where in fact X2 is ramified).

Finally, let the projective image of ρf be A5. This time, there are two irreducible

3-dimensional representations Y and Z, and so Ad(ρf ) = Y ⊕U or Z⊕U , where U is
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the trivial representation. Again, computing traces on the 5 conjugacy classes using

the character table of A5 (cf. [FH91, p. 29]) we get

ap
2

ǫ(p)
= 4, 1, 0,

3±
√
5

2
or

3∓
√
5

2
.

Since F = Q( ap
2

ǫ(p)
), we conclude that F = Q(

√
5). Now NormQ(

√
5)/Q(

3±
√
5

2
) = 1,

so that 3±
√
5

2
are units in F , and v(3±

√
5

2
) = 0 for all primes v of F . Again, by

Theorem 8.1.1, we conclude that Xv is unramified for all good places v of F lying

above p with ap 6= 0.

8.2 Symbols

In this section we give formulas for the Brauer class of X in terms of symbols, which

help us determine the Brauer class completely.

Let ρ̃f be the projectivization of ρf . Let DK be the discriminant of the unique

quadratic extension K/Q in the S4-number field cut out by ρ̃f , when ρ̃f (GQ) = S4.

Define the 2-cocycle cǫ on GQ by

cǫ(g, h) =

√
ǫ(g)

√
ǫ(h)√

ǫ(gh)
,

for g, h ∈ GQ. Then [cǫ] is 2-torsion in Br(Q).

Theorem 8.2.1. The class of X in Br(F ) is as follows. If the image of ρ̃f is

(i) A4, then [X] = [cǫ],

(ii) S4, then [X] = [cǫ] · (2, DK), where (a, b) is the symbol for F = Q,

(iii) A5, then [X] = [cǫ].

Proof. We use a general formula from [Qu98] which works for weight one forms as

well:

[X] = [cǫ] · [cd],

where [cǫ] ∈ Br(F) is as above, and [cd] ∈ Br(F ) is the product of the symbols

[cd] = (t1, d1) · · · (tn, dn),
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where ti and di are determined as follows. Note that d = α2/ǫ induces a continuous

map

d : GQ → F ∗/F ∗2,

where F ∗/F ∗2 has the discrete topology. Thus GQ/ ker(d) ≃ Gal(K/Q) ≃ (Z/2)m,

for some elementary 2-extension K of Q. Now, for each i between 1 and m, let

σi ∈ Gal(K/Q) denote the element corresponding to (0, 0.., 1, .., 0) ∈ (Z/2)m, with a

1 in the i-th spot. Then tj ∈ Q∗ is defined by σi(
√
tj) = (−1)δij

√
tj. We lift each σi

to an element in GQ which we continue to call σi, and set di := d(σi) ∈ F ∗/F ∗2.

We now claim that ker(ρ̃f ) ⊂ ker d. This is immediate, since if ρ̃f (g) = 1, for

some g ∈ GQ, then ρf (g) is a scalar, so trace(ρf (g))
2/ det(ρf (g)) = 4. Since the trace

is non-zero, this last expression is also equal to α2(g)/ǫ(g) up to an element of F ∗2,

and hence d(g) = 1 mod F ∗2, proving the claim. Thus, there is a surjection

GQ/ ker(ρ̃f ) ։ GQ/ ker(d).

The group on the left is A4, S4 or A5, and the group on the right is an elementary

2-group. We conclude that in the A4 and A5 cases, the 2-group is trivial, and hence d

is trivial. This finishes the proof in these cases. In the S4 case, we see that the 2-group

must be Z/2, and the quadratic fieldK cut out by dmust be the fixed field of A4 in the

S4-extension cut out by ρ̃f . Thus m = 1 and t1 = DK . To compute d1 we recall some

general facts. One knows that each extra twist χγ satisfies χγ(g) = ψγ(g) ·
√
ǫ(g)

γ−1
,

for g ∈ GQ, where ψγ is a quadratic character, and γ is here also thought of as an

element of GF . Hence, by (5.2.1), for γ ∈ GF ,

(α(g)/
√
ǫ(g))γ = ψγ(g) · (α(g)/

√
ǫ(g)),

for all g ∈ GQ. It follows that ker(d) is the intersection of all the ker(ψγ). We conclude

that there is only one γ for which ψγ is non-trivial, and d = ψγ, for this γ. By part

(3) of Lemma 5.2.1 we have:

(8.2.1) (ap/
√
ǫ(p))γ = ψγ(p) · (ap/

√
ǫ(p)),

for γ ∈ GF , and each prime p ∤ N . Using the character of the adjoint representation,

we had computed that ap/
√
ǫ(p) is equal to the square-root of 4, 2, 1, or 0, and in

particular lies in F = Q, except in one case. By the Chebotarev density theorem, there

is a prime p ∤ N such that ap/
√
ǫ(p) = ±

√
2. By (8.3.2) we must have ψγ(p) = −1, for

the unique non-trivial quadratic character ψγ. But d = ψγ, and so taking σ1 = Frobp
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we see that d1 = d(σ1) = 2 up to a square in F ∗ = Q∗. This shows that the class of

cd is given by the symbol (2, DK), completing the proof in the S4 case as well.

Remark 8.2.2. The above proof is purely algebraic. One can give a slight variation

of the above proof using the Chebotarev density theorem. For instance, in the A4 and

A5 cases it suffices to show that all the ψγ are trivial. In the A4 case, computations

using the adjoint representation showed that for p ∤ N , ap/
√
ǫ(p) =

√
4,

√
1 or

√
0,

so is always in F = Q. By (8.3.2) we see that for each γ, we must have

{p ∤ N | ψγ(p) = −1} ⊂ {p ∤ N | a2p/ǫ(p) = 0}.

By the Chebotarev density theorem applied to the A4-number field cut out by ρ̃f , the

density of the larger set is 3/12 = 1/4. If ψγ is quadratic the density of the smaller set

would be 1/2, which is not possible, and so ψγ must be trivial. A similar argument

applies in the A5 case, noting that for p ∤ N , ap/
√
ǫ(p) = 2, 1, 0,

√
5±1
2

∈ F = Q(
√
5),

and the density of the larger set is again 15/60 = 1/4. In the S4 case this näıve

argument fails, as it should, since this time we have

{p ∤ N | ψγ(p) = −1} ⊂ {p ∤ N | a2p/ǫ(p) = 0 or 2}

and the larger set has density 9/24 + 6/24 > 1/2.

8.3 Prime level

In this section, we will give an alternative method of calculating the algebra X com-

pletely, at least when the modular form has prime level.

We start by recalling the following result [Se77a, Theorem 7] which shows that

only the octahedral and icosahedral cases occur in prime level.

Theorem 8.3.1. Say f ∈ S1(p, ǫ) is a non-dihedral cuspidal newform of odd prime

level p. Then

(a) p 6≡ 1 mod 8.

(b) If p ≡ 5 mod 8, then ǫ is of order 4 and the projective image of ρf is S4.

(c) If p ≡ 3 mod 4, then ǫ is quadratic and the projective image of ρf is either S4

or A5.
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Following Serre we break case (c) into two cases (c1) and (c2), depending on whether

the projective image or ρf is S4 or A5. The following theorem completely determines

the Brauer class of X in prime level.

Theorem 8.3.2. Say f ∈ S1(p, ǫ) is a form of prime level as above. Then

(b) X = (−1,−2)

(c1) X = (−2,−p)

(c2) X = (−1,−p)

in Br(F ).

Proof. We start with case (c2). So p ≡ 3 mod 4, ǫ(n) =
(

n
p

)
, and the projective

image of the Galois representation attached to f be A5. In this case it is known (cf.

[Se77a, p. 250]) that

E = Q(
√
−1,

√
5).

We have F = Q(
√
5) (by Theorem 8.1.3). In fact the order 2 group Γ is generated

by complex conjugation c, and f c = f ⊗ ǫ−1 is the only extra twist of f .

We now use the following result from [BG04, p. 1665], valid for real-valued neben-

typus characters, and which one can easily check is valid in weight one as well. Let

S(N) be the set containing all the odd primes dividing the level N as well as the

formal symbol ±2. Then the Brauer class of X is given by

X =
⊗

q∈S(N)
(zq, q

∗),

where q∗ = (−1)
q−1

2 if q is odd and q∗ = ±2 if q = ±2, and zq ∈ F ∗ is determined as

in [BG04, p. 1664].

Since the level is an (odd) prime p we need to only find zp. We use some notation

from [BG04, p. 1664]. Consider the homomorphism Γ → Z/2 given by mapping c

to 1. It is clearly injective, so its kernel Γ(p) is trivial, and F (p), the fixed field of

Γ(p), is E. Since zp is a quantity in F whose square root generates F (p) we may take

zp = −1. It follows from the formula above that

X = (−1,−p).
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Suppose now we are in case (c1). Again p ≡ 3(4), ǫ(n) =
(

n
p

)
. and the projective

image of the Galois representation attached to f is S4. In this E = Q(
√
−2) ([Se77a,

p. 250]), and F = Q (Theorem 8.1.3). By an argument similar to the one above we

get

X = (−2,−p).

Finally, suppose we are in case (b). Thus p ≡ 5 mod 8, ǫ is of order 4, and

the projective image of the Galois representation attached to f is S4. This time

E = Q(
√
−1) ([Se77a, p. 250], and F = Q (Theorem 8.1.3). Again f c = f ⊗ ǫ−1 is

the only non-trivial extra twist. In this case, since the twists are not quadratic we

cannot use the formula from [BG04] quoted above. We will use instead a formula in

[Qu98] which also works in weight one:

[X] = [cǫ] · [cd]

where cǫ is the 2-cocycle given by cǫ(g, h) =

√
ǫ(g)

√
ǫ(h)√

ǫ(gh)
, and [cd] ∈ Br(F ) is the

product of the classes

[cd] = (t1, d1) · · · (tn, dn),

where ti and di are determined as follows. Note that d = α2/ǫ induces a continuous

map

d : GQ → F ∗/F ∗2,(8.3.1)

where F ∗/F ∗2 has the discrete topology. Thus GQ/ ker(d) = Gal(K/Q) = (Z/2)m,

for some elementary 2-extension K of Q. Now, for each i between 1 and m, let

σi ∈ Gal(K/Q) denote the element corresponding to (0, 0.., 1, .., 0) ∈ (Z/2)m, with a

1 in the i-th spot. Then tj ∈ Q∗ is defined by σi(
√
tj) = (−1)δij

√
tj. We lift each σi

to an element in GQ which we continue to call σi, and set di := d(σi) ∈ F ∗/F ∗2. In

case (b), the class of cǫ is ramified exactly at p (since ǫ is odd) and at ∞, and a small

check shows it is equal to the symbol (−2,−p), since p ≡ 5 mod 8. We now compute

the class of cd. Recall E = Q(i) and F = Q, and ǫ has order 4. We prove in the next

lemma that the map d satisfies ker(d) = ker(ǫ2). We use the fact and compute that

[cd] = (2, p).

Hence by Quer’s formula we obtain [X] = [cǫ] · [cd] = (−2,−p) · (2, p) = (−1,−2).

Lemma 8.3.3. The map d satisfies ker(d) = ker(ǫ2).
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Proof. Recall E = Q(i) and F = Q, and ǫ has order 4. Let σ ∈ ker(d). Then

d(σ) ∈ F ∗2, hence
√
d(σ) ∈ F ∗. We conclude that

(8.3.2) g

(
α(σ)√
ǫ(σ)

)
=

α(σ)√
ǫ(σ)

,

for all g ∈ GF . Since α(σ) ∈ E we see that g(
√
ǫ(σ)) =

√
ǫ(σ), for all g ∈ GE =

Gal(Q̄/E). In particular
√
ǫ(σ) has to be a fourth root of unity and ǫ2(σ) = 1.

Conversely, suppose σ belongs to ker(ǫ2). Let g be an element of GF . Assume g

induces the identity map on E. Then
√
ǫ(σ)

g−1
= 1, since

√
ǫ(σ) ∈ E. Thus (8.3.2)

holds vacuously, since α(σ) ∈ E. Assume now that g induces complex conjugation γ

on E. Then α(σ)g−1 = χγ(σ) =
1

ǫ(σ)
=
√
ǫ(σ)

γ−1
, and again we obtain (8.3.2). We

conclude d(σ) ∈ F ∗2.

Lemma 8.3.4. cd = (2, p).

Proof. By the previous lemma, ker(d) = ker(ǫ2). Hence to apply Quer’s formula,

it is enough to look at the field cut out by ker(ǫ2). There is only one symbol in

the expression for [cd] above. We compute t1 and d1. Since p ≡ 1 mod 4, the

character ǫ2 is real quadratic of conductor p and so t1 = p. We now compute d1.

Since σ1 acts non-trivial on
√
p, any preimage of σ1 in Gal(Q(ǫ)/Q) is of order 4, so

ǫ(σ1) = ±i. Thus using the relation ᾱ(σ1) = ǫ−1(σ1) · α(σ0), and the fact that α(σ1)

is a Gaussian number, we conclude that α(σ1) = a(1 ± i) for some a ∈ Q∗. Hence

d1 = d(σ1) = α2(σ1)/ǫ(σ1) = 2 mod (F ∗)2.

Corollary 8.3.5. Let f ∈ S1(p, ǫ) be as above. Then X is ramified exactly at

(b) 2 and ∞.

(c1) one, but not both of 2 or p, and at ∞.

(c2) the two primes lying above p when p splits in F = Q(
√
5), and the two ∞ places.

Proof. Cases (b) and (c1) are easy to check. Suppose we are in case (c2). If v is the

(inert) place of F = Q(
√
5) lying above 2, then (−1,−p)v = (NormFv/Qp(−1), p)2 =

(1, p)2 = 1. If p splits in Q(
√
5) and v|p, then (−1,−p)v = −1, since −1 is not a

square in Fv = Qp, whereas if v|p is inert, then (−1,−p)v = 1, since −1 is a square

in Fv, the unramified quadratic extension of Qp.
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Chapter 9

Numerical Examples

We will now discuss some numerical examples, which helped us to prove the vari-

ous theorems proved in this thesis. These examples were generated by the program

Endohecke due to Brown and Ghate which was made by suitably modifying the C++

program Hecke created by W. Stein. I wish to thank Prof. E. González-Jiménez for

helping me to find an example supporting Theorem 7.3.19 and Prof. Jordi Quer for

sharing with me [Qu06].

9.1 Steinberg primes

Let f ∈ S5(15, [2, 1]) be the unique newform. It is Steinberg at the prime 5 since

N5 = 1 and C5 = 0. F is a cubic extension of Q. Now, 5 decomposes into two

distinct primes v1, v2 in F with ramification index and inertia degree (1, 1) and (2, 1)

respectively. It turns out that Xv1 is ramified but Xv2 is not ramified as predicted by

Theorem 7.2.4.
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9.2 RPS primes

9.2.1 Example of Theorem 7.3.10

Let f ∈ S3(35, [2, 2]) be the unique newform of orbit size 4. Endohecke will give

F = Q and X is ramified at the ramified principal series prime 5. Hecke will give

v(µ+ ν) = v(µ+ ν + 10) = 1, corroborating Theorem 7.3.10.

9.2.2 Examples of Theorem 7.3.15

• Let f ∈ S2(88, [2, 2, 2]) be the unique newform of orbit size 8. Endohecke will

give F = Q(
√
2). In F , there is a unique prime v lying above 2, with inertia

degree 1 and ramification degree 2. Using Endohecke and Pari, we get X is

ramified at the ramified principal series prime v. A calculation using Hecke and

Pari will give a22 + ā22 =
√
2. Hence v(µ + ν) = 1

2
(v is a valuation such that

v(2) = 1), supporting Theorem 7.3.15.

• Let f ∈ S4(12, [2, 2]) be the unique newform of orbit size 4. Endohecke will give

F = Q and X is unramified at the ramified principal series prime 2. Hecke will

give v(µ+ ν) = v(µ+ ν + 10) = 2, corroborating Theorem 7.3.15.

9.2.3 Example of Theorem 7.3.16

Let f ∈ S2(35, [4, 2]) be the unique newform of orbit size 4. Here [4, 2] is the character

ǫ, such that ǫ5 is of order 4 and ǫ7 is quadratic. [Qu06] will give F = Q and X is

ramified at the ramified principal series prime 5. Sage will give µ = −5i and hence

m+
v = v(µ+ ν + 10) = 1, corroborating Theorem 7.3.16.

9.2.4 Example of Theorem 7.3.19

Let f ∈ S2(112, [2, 4, 2]) be the newform with a2 = 1 + i. In this case F = Q and

p = 2 is a prime with RPS reduction and ǫ2 is a character of conductor 16 with tame

part of order 2 and wild part of order 4. We also note that v2(µ+ ν + 4) = v2(4) = 2
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and ǫ2(−1) = −1. [Qu06] will show that X2 is ramified at 2. This will support

Theorem 7.3.19, using the corollary after the Theorem.

9.2.5 Example of Theorem 7.3.21 for p = 2

Let f ∈ S2(196, [2, 2]) be the unique non-CM newform of orbit size 4. Then 2 is an

RPS prime. Endohecke gives X is ramified at 2, F = Q and a22 = 2i and hence,

w(a2) = w(ā2). We conclude that, v2(µ+ ν + 2.2) = v2(4) = 2 is an even integer. So

m+
v is even. According to the notations of Theorem 7.3.21, a = −1 and t = −1. We

know (−1,−1)2 = −1. The result is consistent with part (1) of Theorem 7.3.21.

9.2.6 Example of Theorem 7.3.21 for p odd

Let f ∈ S3(91, [2, 2]) be the eigenform of orbit size 4. In this case we can’t use

part (1) of Theorem 7.3.21, because a = ∞. We use part (2) of Theorem 7.3.21.

Endohecke will give there is no ramification at 7, the same program will give p† = 3

and Hecke will give b = a23 = −26. According to the notations of Theorem 7.3.21, we

get t = −7 and m+
v = 2. We calculate and get (−26,−7)7 = 1, which corroborates

Theorem 7.3.21.
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Chapter 10

Appendix

In this section, we will give an alternative proof of Theorem 7.1.1 and Theorem 7.2.4,

based on the original approach in [BG04] and [GGQ05].

Remark 10.0.1. We first remark that we can easily remove the technical condition

of [BG04] and [GGQ05]. Note that in this case also the above theorems are true. We

observe that if ψγ(p) = 1 for all γ ∈ Γ0, then
ap√
ǫ(p)

lies in F . This is because, for all

γ ∈ Γ,

γ

(
ap√
ǫ(p)

)
=
χγ(p)ap√
ǫ(p)

γ .

But ψγ(p) = 1 implies that χγ(p) =
√
ǫ(p)

γ−1
, so

γ

(
ap√
ǫ(p)

)
=

ap√
ǫ(p)

.

Hence if ψγ(p) = 1, for all γ ∈ Γ0, then
ap√
ǫ(p)

lies in F and hence mv is even. Since,

each tγ = 1, Xv is trivially a matrix algebra. Hence, we can remove the condition in

[BG04] and [GGQ05].

10.0.7 Good primes

Lemma 10.0.2. If L/K is a finite extension of local fields of degree n = [L : K], then

the restriction map below is a surjective homomorphism and we have a commutative
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diagram

Br(K)
invK−−−→ Q/Zyres

y×n

Br(L)
invL−−−→ Q/Z

.

Proof. [Se79, p. 193].

Lemma 10.0.3. If L/K is a finite extension of local fields, then for all a, b ∈ L,

invK ◦ cores(a, b)L = invL(a, b)L,

where cores : Br(L) → Br(K) is the corestriction map.

Proof. Since the restriction map is surjective, we may write (a, b)L = res(D), for

D ∈ Br(K). Hence,

invK ◦ cores(a, b)L = invK ◦ cores ◦ res(D) = invK(nD) = n · invK(D).

By the lemma above this is equal to

invL ◦ res(D) = invL(a, b)L.

Now if b ∈ K∗ and a ∈ L∗, then by [Se79, p. 209],

cores(a, b)L = (NL/K(a), b)K .

We will use this to give an alternative proof of Theorem 7.1.1. The alternative proof

works for non-CM modular forms of weight k ≥ 2.

Theorem 10.0.4 (Good reduction). Let p be a prime with gcd(p,N) = 1. Assume

ap 6= 0 and k ≥ 2. Let v be a place of F lying over p. Then Xv is a matrix algebra

over Fv if and only if the finite slope mv of Π at v is even.

Proof. We will give an alternative proof only for p = 2; for p odd see [GGQ05].

By [GGQ05, Theorem 4.1.3] we know

Xv =
⊗

γ∈Γ0

(znγ , tγ)v.
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We have

cores(znγ , tγ)v = (NFv/Qp(znγ ), tγ)p.

Write NFv/Qp(znγ ) = pvp(NFv/Qp (znγ ))z′nγ
. Now

(NFv/Qp(znγ ), tγ)p = (p, tγ)
vp(NFv/Qp (znγ ))
p (z′nγ

, tγ)p =

(
tγ
p

)vp(NFv/Qp (znγ ))

,

since both z′nγ
and tγ are prime to p = 2 and so (z′nγ

, tγ) = 1. Indeed, since tγ’s are

discriminants of number fields, so by Stickelberger’s criteria, tγ’s are congruent to 0

or 1 mod 4. Since the conductor of χγ divides N , so the conductor of ψγ divides N .

So tγ divides N , hence is prime to 2, since N is odd. Hence if p = 2, then tγ ≡ 1

(mod 4), for all γ ∈ Γ0. Hence by the formulas in [Se79, p. 212] we get (z′nγ
, tγ) = 1.

Also, by [Se79, Corollary 4, p. 29],

(
tγ
p

)vp(NFv/Qp (znγ ))

=

(
tγ
p

)fvvπ(znγ )

.

Here π is a uniformiser of Fv such that vπ(π) = 1. So

cores(znγ , tγ)v = (NFv/Qp(znγ ), tγ)p =

(
tγ
p

)fvvπ(znγ )

.

By Lemma 10.0.3,

(10.0.1) invL(znγ , tγ)v = invKcores(znγ , tγ)v =

(
tγ
p

)fvvπ(znγ )

.

Now the theorem can be proved exactly as [GGQ05, Theorem 4.1.11].

10.0.8 Steinberg primes

Lemma 10.0.5. Suppose q is a prime such that q ∤ M , aq 6= 0 and zq =
a2q
ǫ(q)

. For

each γ ∈ GF , there exists a unique quadratic character ψγ such that

γ(
√
zq) = ψγ(q)

√
zq.

In addition, {ψγ|γ ∈ GQ} is the group of characters of GQ which factorise through

Gal(K/Q). Here d is the homomorphism as defined in 5.2.2 and K is the field cut

out by kernel of d.
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Proof. For each γ ∈ GF , there exists a unique character χγ such that (γ|E, χγ) is an

extra twists of f .

By Lemma 7.2.2, we have γ(ap) = χγ(p)ap. Hence γ(aq) = χγ(q)aq, for all q ∤ M

and aq 6= 0. In other words for all q ∤M and aq 6= 0,

γ(
√
zq) =

χγ(q)
√
zq
√
ǫ(q)

γ(
√
ǫ(q))

.

The conductor of ǫ is C which divides M . So for all n such that (n,C) = 1, the

function n 7→
√

ǫ(n)

γ(
√

ǫ(n))
defines a Dirichlet character modulo C. The map defined by

ψγ(n) = χγ(n)
γ(
√
ǫ(n))√
ǫ(n)

is a quadratic character. Uniqueness of ψγ follows from the uniqueness of extra

twists corresponding to γ. Now according to Proposition 7.2.3 and Lemma 5.2.1,

α(Frobq) ≡ aq (mod F ∗) for all primes q ∤M with aq 6= 0. So

d(Frobq) ≡
α2(Frobq)

ǫ(Frobq)
≡ zq mod F ∗2.

Suppose q ∤M with aq 6= 0. Let σq ∈ GQ be the Frobenius at the prime q. If γq ∈ GF

with zq ∈ F ∗2 then ψγ(q) = 1. We deduce that ψγ factorise through Gal(K/Q). By

Chebotarev density theorem zq 6= 0 generate the group d(GQ) in F ∗/F ∗2. So the

number of different ψγ is equal to the order of the group d(GQ) which in turn is equal

to the order of the group Gal(K/Q).

Theorem 10.0.6. Suppose q ∤ M and {ψi}mi=1 is a basis of the group of quadratic

characters {ψγ, γ ∈ GQ}. Let Q(
√
ti) be the quadratic fields cut out by ker ψi. Suppose

p1, . . . , pm are prime numbers such that pi ∤ M and api 6= 0 with ψi(pj) = δij. Then

the Brauer class of X is

[X] = [cǫ](t1, zp1) · · · (tn, zpn).

Proof. The existence of the prime number satisfying the property is a consequence

of the Chebotarev density theorem and the fact that f is a non-CM form. Sup-

pose γ1, . . . , γn ∈ GQ are the Frobenius elements at the primes p1, . . . , pn. By

Lemma 10.0.5, the elements of Gal(K/Q) obtained by restricting γi’s to K, form

a basis of the the group Gal(K/Q). By definition

σi(
√
tj) = ψj(γi)

√
tj = δij

√
tj.
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We use the form of X deduced in Lemma 1 of [Qu98]. Since d(γi) ≡ upi mod F ∗2, we

obtain the formula as in the theorem.

We define zn = a2n
ǫ(n)

for all n such that (n,M) = 1. Then

Theorem 10.0.7. For k ≥ 2

X = [cǫ]⊗
⊗

γ∈Γ0

(znγ , tγ),

up to Brauer equivalence. Here znγ , tγ are as defined in [GGQ05].

Proof. The proof follows exactly in the same way as [GGQ05, Theorem 4.1] by ap-

plying Theorem 10.0.6 and replacing N by M .

Using the above theorem we will give an alternative proof of the Theorem 7.2.4.

Theorem 10.0.8 (Steinberg). Let Np = 1, Cp = 0 and let v be a prime of F lying

above p. Then Xv is a matrix algebra over Fv if and only if mv = [Fv : Qp](k − 2) is

even.

Proof. Note that [cǫ]v = 1 if and only if ǫv(−1) = 1. Since f has a Steinberg reduction

at the prime p, so ǫv(−1) = 1 and hence [cǫ]v = 1. So using Theorem 10.0.7,

Xv =
⊗

γ∈Γ0

(znγ , tγ)v.

Now

(znγ , tγ)v =

(
tγ
p

)fv ·v(znγ )

by equation (9.0.1). So if ψγ(p) =
(

tγ
p

)
= 1 for all γ ∈ Γ0 then Xv = 1 as desired.

Suppose on the other hand the subset T of the set {tγ|γ ∈ Γ0} consisting of those

tγ for which ( tγ
p
) = −1 is nonempty. Write the elements of T as t1, t2, . . . , tm with

m ≥ 1. Define distinct prime rj for j = 0, . . . , rm−1 as follows: set r0 = p and define

rj as in [GGQ05]. Now corresponding to ti ∈ T we choose ni just as in [GGQ05].

Notice that the only difference is that now the ni’s are prime to M , instead of N . So

the proof will follow exactly as in [GGQ05] and noting that a2p = ǫM(p)pk−2 by [Mi89,

Theorem 4.6.17 ].
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