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Abstract. We prove that the ramification of the endomorphism algebra of the Grothendieck motive

attached to a non-CM cuspform of weight two or more is completely determined by the slopes of the

adjoint lift of this form, when the slopes are finite. We treat all places of good and bad reduction,

answering a question of Ribet about the Brauer class of the endomorphism algebra in the finite slope

case.

1. Introduction

Let f =
∑∞
n=1 anq

n be a primitive non-CM cusp form of weight k ≥ 2, level N ≥ 1 and character ε,

and let Mf be the motive attached to f . If f has weight 2, Mf is the abelian variety attached to f by

Shimura [Sh71], and for weights larger than 2, Mf is the Grothendieck motive attached to f by Scholl

in [Sc90]. In all cases, Mf is a pure motive of rank 2, weight k − 1, with coefficients in the Hecke field

E = Q(an) of f . Let End(Mf ) denote the ring of endomorphisms of Mf defined over Q̄ and let

Xf = End(Mf )⊗Z Q

be the Q-algebra of endomorphisms of Mf . One knows that Xf is a central simple algebra over a subfield

F of E, and that the class of Xf in the Brauer group Br(F ) of F is 2-torsion. Ribet has remarked that

it seems difficult to describe this class by pure thought. The goal of this paper is to give a complete

description of the class of Xf in terms of the slopes of a functorial lift of f , under a finiteness hypothesis

on these slopes.

That Xf is a central simple algebra over F follows from an explicit structure theorem for Xf which

shows that Xf is isomorphic to a crossed product algebra. Let Γ ⊂ Aut(E) be the group of extra twists

of f . Recall that a pair (γ, χγ), where γ ∈ Γ ⊂ Aut(E) and χγ is an E-valued Dirichlet character, is

called an extra twist for f if fγ = f ⊗ χγ , i.e., aγp = ap · χγ(p), for all primes p - N . Define the E-valued

Jacobi sum 2-cocycle c on Γ by

c(γ, δ) =
G(χ−γδ )G(χ−1

γ )

G(χ−1
γ·δ)

∈ E,

for γ, δ ∈ Γ, where G(χ) is the usual Gauss sum attached to the character χ. Let X be the corresponding

crossed product algebra defined by:

X =
⊕

γ∈Γ
E · xγ ,(1.1)
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where the xγ are formal symbols satisfying the relations

xγ · xδ = c(γ, δ) · xγδ,

xγ · e = γ(e) · xγ ,

for γ, δ ∈ Γ and e ∈ E. Clearly X is a central simple algebra over F , the fixed field of Γ in E. A

fundamental result due to Momose [Mo81] and Ribet [Ri80] in weight 2, and [BG04] (see also [GGQ05])

in higher weight, says that Xf
∼= X. Moreover F ⊂ E is known to be the subfield generated by a2

pε
−1(p),

for primes p - N .

To study the Brauer class of X = Xf , the standard exact sequence from classfield theory

0→ 2Br(F )→ ⊕v 2Br(Fv)→ Z/2→ 0,

where v runs over all places of F , shows that it is enough to study the class of Xv = X⊗F Fv in Br(Fv),

for each place v. It is well known that 2Br(Fv) ∼= Z/2, including if v is infinite since F is totally real,

and Xv is a matrix algebra over Fv if the class of Xv is trivial, and is a matrix algebra over a quaternion

division algebra over Fv if the class of Xv is non-trivial. A theorem of Momose [Mo81] says that X

is totally indefinite if k is even, and totally definite if k is odd, giving complete information about the

Brauer class at the infinite places v. When v is a finite place, we shall prove in this paper that the class

of Xv in Br(Fv) is completely determined in terms of the parity of the slope at v of the adjoint lift of f

(when this slope is finite).

According to Langlands principle of functoriality, given two reductive algebraic groups H and G over

Q and a homomorphism between their L-groups u : LH → LG, there should be a way to lift cuspidal

automorphic representations π of H(AQ) to cuspidal automorphic representation Π of G(AQ), so that

the Langlands L-functions of π and Π are related by the formula L(s,Π, r) = L(s, π, r ◦ u). In the case

that H = GL2 and G = GL3, and u is the adjoint map, it is (by now) a classical theorem of Gelbart

and Jacquet [GJ78] that every cuspidal automorphic form π on GL2(AQ) has a lift ad(π), called the

Gelbart-Jacquet adjoint lift, to an automorphic representation of GL3(AQ). If the Satake parameters

at an unramified prime p of π are αp and βp, then the Satake parameters of the adjoint lift ad(π) are
αp
βp
, 1,

βp
αp

.

Let now π = πf be the automorphic representation attached to the non-CM form f as above, and let

Ad(π) = ad(π)⊕ 1 be the automorphic form on GL4(AQ) obtained from the Gelbart-Jacquet adjoint lift

by adding the trivial representation. Finally let

Π = Ad(π)(k − 1)

be the automorphic representation on GL4(AQ) obtained by taking the (k − 1)-st twist of Ad(π).

The following meta-theorem may be considered as a summary of all the results of this paper.

Theorem 1. If v is a finite place of F , then the class of Xv in Br(Fv) is determined by the parity of

the slope mv ∈ Z ∪ {∞} of Π at v, when this slope is finite.

Before we proceed further, we wish to remark that the theorem above is another instance of a recurring

theme in the theory of the arithmetic of automorphic forms, wherein arithmetic information about an



ADJOINT LIFTS AND MODULAR ENDOMORPHISM ALGEBRAS 3

object attached to a form (in this case the endomorphism algebra) is contained in the Fourier coefficients

of a suitable lift of the original form (in this case the twisted adjoint lift). The most striking example

of this theme occurs in the correspondence between forms of even integral weight k and forms of half-

integral weight (k + 1)/2 as in [Sh73], [Wa81], [KZ91]. Here, twisted central critical L-values of the

original form on PGL2 occur as Fourier coefficients of the Shimura-Shintani-Waldspurger lift of this

form to the metaplectic group S̃L2. The meta-theorem above establishes another instance where this

theme is played out.

The slope mv of Π at a place v | p of F in Theorem 1 is defined to be a suitably normalized

v-adic valuation of the trace of Frobenius at p in the Galois representation corresponding to Π. In

general, the trace depends on a choice of Frobenius, but is independent of this choice for primes of

semistable reduction. Equivalently, on the automorphic side, the slope mv may also be defined as a

suitably normalized v-adic valuation of the sum of certain parameters coming from the local automorphic

representation of Π at p. Though the shape of the trace of Frobenius, or the shape of the specific

parameters, vary in different cases, they can be made completely precise. As a result we obtain various

explicit versions of the above meta-theorem which we state now.

For instance, suppose that v | p with p - N , so that πp is an unramified representation. Then the

slope mv of Π at v is the (normalized) v-adic valuation of the sum of the Satake parameters of Πp. Since

Ad(π) has Satake parameters
αp
βp
, 1,

βp
αp
, 1, we have

mv := [Fv : Qp] · v
(

(
αp
βp

+ 1 +
βp
αp

+ 1) · pk−1

)
= [Fv : Qp] · v

(
(αp + βp)

2

αpβp
· pk−1

)
= [Fv : Qp] · v(a2

pε
−1(p)) ∈ Z ∪ {∞},

where v is normalized so that v(p) = 1. We remark that F may be considered as the Hecke field of the

adjoint lift Π, since it is generated by the quantities a2
pε
−1(p), for p - N . Moreover, the slope mv of Π

at v is an integer because of the local degree term [Fv : Qp] (unless of course ap = 0, in which case mv

is infinite). We prove (cf. Theorem 10):

Theorem 2 (Spherical case). Assume gcd(p,N) = 1. Let v be a place of F lying over p. Assume

ap 6= 0. Then Xv is a matrix algebra over Fv if and only if mv = [Fv : Qp] · v(a2
pε(p)

−1) ∈ Z is even.

The case k = 2 and mv = 0 (good, ordinary reduction) is due to Ribet [Ri81]. The general case for

odd primes, and for p = 2 when F = Q, was proved in [BG04] and [GGQ05, Thm. 2.2], under a mild

hypothesis. Here we include the case p = 2 for all F , and remove this hypothesis. The proof we give in

this paper is much simpler, and was motivated by the recent proof of an analogous theorem for weight

one forms [BG11] (this is also where the idea of using the adjoint lift in higher weight germinated).

However, the main point of this article is to treat completely the primes of bad reduction, i.e., the

primes v | p of F with p | N . Let Np ≥ 1 be the exponent of the exact power of p dividing N . Let

C denote the conductor of ε and let Cp ≥ 0 be the exponent of the exact power of p dividing C. Note

Np ≥ Cp. Since p | N , we no longer have the Satake parameters of πp at our disposal. However, we can

replace these numbers by the corresponding eigenvalues of `-adic Frobenius in the `-adic Weil-Deligne

representation corresponding to πp, for ` 6= p, or equivalently by [Sa97], with the eigenvalues of crystalline
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Frobenius on the filtered (ϕ,N)-module attached to πp as in [GM09], and can still compute the slope of

Π at v.

For example, in the case that Np = 1 and Cp = 0, it is well known that πp is an unramified twist of

the Steinberg representation. In this case, the eigenvalues of `-adic Frobenius are nothing but αp = ap

and βp = pap, up to multiplication by the same constant. We thus have:

mv := [Fv : Qp] · v
(

(αp + βp)
2

αpβp
· pk−1

)
= [Fv : Qp] · (k − 2) ∈ Z.

In Theorem 15 we prove:

Theorem 3 (Steinberg case). Suppose v | p with Np = 1 and Cp = 0. Then Xv is a matrix algebra over

Fv if and only if mv = [Fv : Qp] · (k − 2) ∈ Z is even.

The proof of Theorem 3 uses the structure of the `-adic Galois representation attached to f at p, for

` 6= p, due to Langlands. The case k = 2 is due to Ribet [Ri81], who in fact showed that the algebra

X is trivial in the Brauer group of F , using the fact that the corresponding residual abelian variety has

toric reduction. Ribet’s result was extended to forms of even weight k in [BG04, Thm. 1.0.6]. In this

paper examples were also given of forms of odd weight for which the endomorphism algebra is ramified

at Steinberg primes. The above theorem gives a complete criterion for the ramification of X at Steinberg

primes in all weights k.

We now turn to the very interesting case when Np = Cp ≥ 1 and πp is in the ramified principal series.

The behaviour of the local Brauer class in this case is mysterious, but has now become possible to treat

using the adjoint lift. The eigenvalues of `-adic or crystalline Frobenius are not well-defined in this case

since the Weil-Deligne parameter corresponding to πp is ramified. However, one more or less canonical

choice is αp = ap and βp = āpε
′(p), where we decompose ε = ε′ · εp into its prime-to-p conductor and

p-power conductor parts. We then have:

mv := [Fv : Qp] · v
(

(αp + βp)
2

αpβp
· pk−1

)
= [Fv : Qp] · v(a2

pε
′(p)−1 + 2p(k−1) + ā2

pε
′(p)) ∈ Z ∪ {∞}.

It can be checked that the three term expression in the last line above is indeed an element of F . It is

clearly fixed by complex conjugation; it is in fact fixed by all elements of Γ (cf. Lemma 16). Note again

that mv ∈ Z (unless it is infinite). In view of the two previous theorems, one might conjecture:

(??) If mv <∞, then Xv is a matrix algebra over Fv if and only if mv is even.

We prove that (??) is essentially true. In particular, when the slopes of αp and βp are unequal, or

equivalently, when mv < [Fv : Qp] · (k − 1), we prove (in Theorem 22, for odd primes p, and in

Theorem 27, for p = 2) that:
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Theorem 4 (Ramified principal series unequal slope case). Assume that v | p and Np = Cp ≥ 1.

Suppose mv < [Fv : Qp] · (k − 1). Then Xv is a matrix algebra over Fv if and only if

mv = [Fv : Qp] · v

(
a2
p

ε′(p)
+ 2p(k−1) +

ā2
p

ε̄′(p)

)
∈ Z

is even.

We remark that while a partial result in the ‘if’ direction was proved in [GGQ05, Thm. 5.1], Theorem 4

gives complete information about the ramification of Xv in the unequal slope case.

When the slopes of αp and βp are the same, or equivalently, mv ≥ [Fv : Qp] · (k − 1), the guess (??)

is, somewhat surprisingly, false, even when mv <∞. Counterexamples are given in Examples 5-7 at the

end of the paper. This is related to the fact that the eigenvalues of `-adic Frobenius are not well-defined.

To salvage the situation, we introduce two new quantities m±v , which may be thought of as replacements

of mv. Let ev and fv be the ramification index and residue degree of v | p, let Gv be the decomposition

group of F at v, and set

m±v = ev · v((a2
pε
′(p)−1)fv ± 2p(k−1)fv + (ā2

pε
′(p))fv ) ∈ Z ∪ {∞},

where v is normalized so the v(p) = 1. Again the three term expression lies in F , so m±v are well-defined,

and at least one of m±v is finite. Then we prove (see Theorems 28, 30 and 32 for precise statements):

Theorem 5 (Ramified principal series equal slope case). Assume that v | p and Np = Cp ≥ 1. Suppose

mv ≥ [Fv : Qp] · (k − 1).

(1) If p is odd and the tame part of εp is not quadratic on Gv, then Xv is a matrix algebra over Fv

if and only if one of

m±v = ev · v

( a2
p

ε′(p)

)fv
± 2p(k−1)fv +

(
ā2
p

ε̄′(p)

)fv ∈ Z

is even.

(2) If p = 2 and ε2 is not quadratic on Gv, there exists an integer nv mod 2 depending only on ε2

such that Xv is a matrix algebra over Fv if and only if one of

m±v + nv ∈ Z

is even.

(3) Finally, if p is odd and the tame part of εp is quadratic on Gv, or if p = 2 and ε2 is quadratic

on Gv, then there is an integer nv mod 2 defined in terms of a Hilbert symbol (t, d)v, with t

depending only on εp and d on an explicit Fourier coefficient of f , such that Xv is a matrix

algebra over Fv if and only if a particular choice of

m±v + nv ∈ Z

is even.
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In parts (1) and (2), m±v have the same parity if both are finite (and if −1 lies in the image of εp).

Also, the theorem reduces to the previous theorem when the slopes are unequal. Indeed the quantities

m±v = mv coincide in the unequal slope case, since evfv = [Fv : Qp], and it turns out that nv = 0 as

well. Thus we may think of nv as an error term to the truth of (??) in the equal slope case.

The above results give a complete answer to Ribet’s question on the Brauer class of Xf = X in the

cases of finite slope. These results cover all forms f of square-free level, and more generally all forms f

for which Mf has either semistable or crystabelian (crystalline over an abelian extension of Q) reduction.

The remaining finite places of bad reduction occur when Np > Cp. In such cases ap = 0 and even the

slope of f is not finite. We hope to return to the infinite slope cases in subsequent work (for a weak

result, see Proposition 33).

In closing, we note that although Theorems 2 through 5 are proved separately, there is the tantalizing

possibility that there is a more uniform, conceptual proof of these results along the following lines. The

Tate conjecture for the motive Mf says that the natural map Xf ⊗Q` → End(M`)
H is an isomorphism,

for any prime `, and for a sufficiently deep finite index subgroup H of the full Galois group GQ (cf. [Ri80]

and [GGQ05]). Here M` is the `-adic realization of Mf . Now GQ acts via the adjoint (conjugation)

action on M`, so clearly the local algebra X ⊗Q` and certain fixed points in the adjoint representation

of M` are related. Moreover, Pink [Pi98] has shown that a compact subgroup of GLn over a local field is

essentially determined by its sln-adjoint representation. It would be interesting to see if these remarks

can be made into a direct proof of Theorem 1.

2. Functoriality and the Adjoint Lift

We start by recalling a few more details about the adjoint lift mentioned above.

2.1. Functoriality. Let H and G be reductive algebraic groups defined over Q, and let LH = LH0 oGQ

and LG = LG0 o GQ be the corresponding L-groups. Let u : LH → LG be an L-homomorphism (this

map is identity on the second factor). According to Langlands’ principle of functoriality there should be

a way to lift automorphic forms on H(AQ) to those on G(AQ), using the map u.

The lifting is in fact done locally. Let Gp ⊂ GQ be the decomposition subgroup at the prime p.

The corresponding local L-groups are LHp = LH0 o Gp ⊂ LH and LGp = LG0 o Gp ⊂ LG. Let

up : LHp → LGp be the local L-homomorphism obtained by restricting u on the second factor to Gp.

We now define the local lift with respect to the local L-homomorphism up. Let πp be an irreducible

admissible representation of H(Qp), with parameter an admissible homomorphism φp : W ′p → LHp,

where W ′p is the Weil-Deligne group at p. The composition φ′p = up ◦ φp is an admissible (if G is

quasi-split) homomorphism of W ′p to LGp. Then φ′ (conjecturally) parametrises a local L-packet and

the elements of this L-packet are the local functorial lifts Πp of πp.

Let now π = ⊗′πp be an irreducible automorphic representation of H(AQ). An automorphic repre-

sentation Π = ⊗′Πp of G(AQ) is a weak functorial lift of π with respect to u, if for all but finitely many

places p, Πp is a local functorial lift of πp with respect to up. Similarly, we call Π a strong functorial lift

of π, if Πp is a local functorial lift of πp, for all places p. By definition, if Π is a weak lift of π then for
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all representations r : LG→ GLn(C), we have the identity of partial Langlands L-functions

LS(s, π, r ◦ u) = LS(s,Π, r),

where S is a finite set of places where we do not know how to locally lift πp. Note S = ∅ if Π is a strong

functorial lift of π.

2.2. Adjoint lift. Now suppose that H = GL2 and G = GL3 are defined over Q. By definition, the

connected parts of the corresponding L-groups are LH0 = GL2(C) and LG0 = GL3(C). The adjoint

action of GL2(C) on the Lie algebra of SL2(C), namely the trace zero matrices of M2×2(C), induces

L-homomorphisms u, and up, for each prime p. On diagonal elements (of the first factor) the map up is

easily checked to be given by (
α 0

0 β

)
7→


α
β 0 0

0 1 0

0 0 β
α

 .

By a classical theorem of Gelbart and Jacquet [GJ78], every automorphic representation of H has a

strong lift to G. If π = πf is the automorphic representation of GL2(AQ) corresponding to f ∈ Sk(N, ε),

let ad(π) denote the automorphic lift to G(AQ). The image of arithmetic Frobenius Frobp at p under φp

is of the form ((
αp 0

0 βp

)
, Frobp

)
.

If p - N is an unramified prime, αp and βp are the Satake parameters of πp. Then by definition of up it

is clear that the image of Frobp under φ′p is a diagonal matrix with entries
αp
βp
, 1,

βp
αp

(on the first factor,

and just Frobp on the second factor).

It is more convenient to work with Π = (ad(π) ⊕ 1)(k − 1), the (k − 1)-th twist of the automorphic

representation on GL4(AQ) obtained by adding the trivial representation to ad(π). We define the slope

mv of Π at v | p to be

mv := [Fv ·Qp] · v(tp),

where v is normalized so that v(p) = 1 and tp ∈ F is defined to be the sum of the four parameters of

Πp, namely

tp =

(
αp
βp

+ 1 +
βp
αp

+ 1

)
· pk−1 =

(αp + βp)
2

αpβp
· pk−1.

We note that tp can be computed easily in various cases. When p - N an easy check shows

tp =
a2
p

ε(p)
.

When p | N and Np = 1 and Cp = 0, it is known that αp = ap and βp = pap (up to multiplication by a

constant), and so

tp = pk−2(p+ 1)2.
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Finally, if Np = Cp, then a natural choice is αp = ap and βp = āpε
′(p) (again up to multiplication by a

constant), so

tp =
ap

2

ε′(p)
+ 2pk−1 +

ā2
p

ε̄′(p)
,

noting |ap|2 = pk−1. In fact the Weil Deligne parameter in this case is ramified at p, so there are other

choices for αp and βp and hence for tp. This causes some complications in the statements and the proofs

of results in this case.

2.3. Galois representations. All the above formulas can be computed on the Galois side as well. Let

ρf : GQ → GL2(Eλ) be an `-adic Galois representation attached by Deligne to f , for a prime λ | ` of E

with ` 6= p. Let λ(x) be the unramified character which takes arithmetic Frobenius Frobp to x ∈ Eλ.

Theorem 6 (Langlands). The local behaviour of ρf |Gp at a decomposition group Gp at p is as follows.

• If p - N , let αp and βp be roots of the polynomial x2 − apx+ ε(p)pk−1. Then

ρf |Gp ∼

(
λ(βp) 0

0 λ(αp)

)
.

• If Np = 1 and Cp = 0, let αp = ap and βp = pap. Then

ρf |Gp ∼

(
λ(βp) ∗

0 λ(αp)

)
.

• If Np = Cp ≥ 1, let αp = ap and βp = āpε
′(p). Then

ρf |Gp ∼

(
λ(βp) · εp 0

0 λ(αp)

)
.

• If Np ≥ 2 > Cp and p > 2, and πp is supercuspidal, then ρf |Gp ∼ Ind
Gp
GK

χ, for a quadratic

extension K of Qp, and a character χ of GK .

Let π = πf be the automorphic representation corresponding to f . Then ρπ, the Galois representation

attached to π, differs a bit from ρf (e.g., the Satake parameters differ from the roots of the polynomial

x2−apx+ε(p)pk−1 by a factor of p(k−1)/2, and similarly the L-functions satisfy L(s, f) = L(s− k−1
2 , π, 1).

However the resulting adjoint Galois representation obtained by making GQ act by conjugation on

M2×2(Eλ) is the same, and we let

ρAd(π) : GQ → GL4(Eλ)

be defined by ρAd(π)(g)(X) = ρπ(g)Xρπ(g)−1, for all X ∈ M2×2(Eλ) and g ∈ GQ. Finally, let

ρΠ = ρAd(π) ⊗ χk−1
`

be the representation obtained by taking the (k−1)-fold twist of the adjoint representation by the `-adic

cyclotomic character.

Corollary 7. We have

• If p - N , then trace(ρΠ(Frobp)) = a2
p/ε(p).
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• If Np = 1 and Cp = 0, then trace(ρΠ(Frobp)) = pk−2(p+ 1)2.

• If Np = Cp ≥ 1, then in many cases there exists an arithmetic Frobenius Frobp such that

trace(ρΠ(Frobp)) = a2
p/ε
′(p) + 2pk−1 + ā2

p/ε̄
′(p).

Proof. If

ρπ(Frobp) ∼

(
αp 0

0 βp

)
,

then

ρAd(π)(Frobp) ∼


αp
βp

0 0 0

0 1 0 0

0 0
βp
αp

0

0 0 0 1


and χ`(Frobp)

k−1 = pk−1. Taking the trace of ρΠ(Frobp) gives the corollary. �

3. The Brauer class of X

3.1. Definition of α. Recall that for γ ∈ Γ, there is a unique E-valued Dirichlet character χγ such that

fγ = f ⊗ χγ , and hence ρfγ ∼ ρf ⊗ χγ . For γ, δ ∈ Γ, the identity

χγδ = χγχ
γ
δ

shows that γ 7→ χγ is a 1-cocycle. Specialising to g ∈ GQ, we see that γ 7→ χγ(g) is an E-valued 1-cocycle

as well. By Hilbert’s theorem 90, H1(Γ, E∗) is trivial, so there is an element α(g) ∈ E∗ such that

(3.1) α(g)
γ−1

= χγ(g),

for all γ ∈ Γ (cf. [Ri85]). Clearly, α(g) is completely determined up to multiplication by elements of F ∗.

Varying g ∈ GQ, we obtain a well defined map

α̃ : GQ → E∗/F ∗.

Since each χγ is a character, α̃ is a homomorphism.

We can and do lift α̃ to a map α : GQ → E∗. The following result summarizes some well-known

properties of these maps. The proofs given in [Ri75, Thm. 1.1], [Ri04, Thm. 5.5] for k = 2 (see also

[Ri85], [BG11, Lem. 9]) easily extend to higher weight.

Proposition 8 (Ribet). We have:

(1) α̃ : GQ → E∗/F ∗ is unramified at all primes p of semistable reduction.

(2) α2(g) ≡ ε(g) mod F ∗, for all g ∈ GQ.

(3) α(Frobp) ≡ ap mod F ∗, for primes p - N , if ap 6= 0.

(4) α(g) ≡ trace (ρf (g)) mod F ∗, for g ∈ GQ, if trace (ρf (g)) 6= 0.
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3.2. The 2-cocycle cα. By [Ri81, Prop. 1], whose proof holds for weights k ≥ 2 as well, the class of

X in Br(F ) = H2(GF , Q̄∗) is given by the 2-cocycle (g, h) 7→ χg(h), for g, h ∈ GF , where χg := χγ

for γ the image of g in Γ. By the definition of α, this 2-cocycle is the same as the 2-cocycle given by

(g, h) 7→ α(h)g

α(h) , which differs from the 2-cocycle

cα(g, h) =
α(g)α(h)

α(gh)
(3.2)

by a coboundary. Hence, the class of X is given by the 2-cocycle cα(g, h) above.

Observe that the class of cα is independent of the lift α of α̃. Suppose α′ is another lift of α̃. Then

α′(g) = α(g)f(g), for some map f : GF → F ∗. Then cα and cα′ differ by the map (g, h) 7→ f(g)f(h)
f(gh) ,

which is clearly a 2-coboundary.

We also note that the class of cα (hence X) is 2-torsion in the Brauer group of F , since c2α(g, h) =
d(g)d(h)
d(gh) is a 2-coboundary, where d(g) := α2(g)/ε(g) ∈ F ∗, by part (2) of Proposition 8.

3.3. Invariant map. To study the Brauer class of X, it suffices to study the Brauer class of Xv :=

X ⊗F Fv in Br(Fv), for each place v of F . It is well known that if v is finite then

invv : Br(Fv) ' Q/Z

via the invariant map invv at v. Since the class of X is 2-torsion in the Brauer group of F , we have

that invv(Xv) ∈ 1
2Z/Z. Identifying this group with Z/2, we see that Xv is a matrix algebra over Fv if

invv(Xv) = 0 mod 2, and is a matrix algebra over a quaternion division algebra over Fv if invv(Xv) = 1

mod 2.

To aid in the computation of invv(Xv), for finite places v, it is useful to recall the explicit definition

of the invariant map, which we do now. Let Iv be the inertia subgroup of GF at the prime v. Let

Gal(F nr
v /Fv) be the Galois group of F nr

v , the maximal unramified extension of Fv, over Fv. The inflation

map

Inf : H2(Gal(F nr
v /Fv), F

nr
v )→ Br(Fv)

is well-known to be an isomorphism. Now, the surjective valuation v : F ∗ → Z can be extended uniquely

to (F nr
v )∗ which we continue to call v. This gives rise to a map

v : H2(Gal(F nr
v /Fv), F

nr
v )→ H2(Gal(F nr

v /Fv),Z)

which we again denote by v. Also, the short exact sequence of abelian groups

0→ Z→ Q→ Q/Z→ 0

gives rise to a long exact sequence of cohomology groups, with boundary map

δ : H1(Gal(F nr
v /Fv),Q/Z)→ H2(Gal(F nr

v /Fv),Z)

which is an isomorphism since Hi(Gal(F nr
v /Fv),Q) = 0 for i = 1, 2. We recall the definition of δ. If

χ : Gal(F nr
v /Fv)→ Q/Z is a homomorphism, and χ̃ is a lift of χ to Q, then δ(χ) is the Z-valued 2-cocycle

on Gal(F nr
v /Fv) given by

(g, h) 7→ χ̃(g)χ̃(h)

χ̃(gh)
.
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Finally, there is a map, say Ev (for evaluation)

Ev : H1(Gal(F nr
v /Fv),Q/Z)→ Q/Z

obtained by evaluating a homomorphism at the arithmetic Frobenius at v. Then, by definition, the

invariant map at v is given by

invv = Ev ◦ δ−1 ◦ v · Inf−1 : Br(Fv)→ Q/Z.

3.4. Local 2-cocycle. Now let K : Gv → F̄ ∗v be any map. Then

cK(g, h) =
K(g)K(h)

K(gh)

defines a local 2-cocycle on Gv, if cK(g, h) ∈ Fv, for all g, h ∈ Gv. We call it the local 2-cocycle defined

by the function K. The following general lemma regarding the Brauer class of this local 2-cocycle will

be very useful in computations.

Lemma 9. Let K : Gv → F̄ ∗v be a map and let t : Gv → F̄ ∗v be an unramified homomorphism such that

(1) K(i) ∈ F ∗v , for all i ∈ Iv,

(2) K(g)2/t(g) ∈ F ∗v , for all g ∈ Gv.

Then, for any arithmetic Frobenius Frobv at v, we have

invv(cK) =
1

2
· v
(
K(Frobv)

2

t(Frobv)

)
∈ 1

2
Z/Z,

where v : F ∗v → Z is the surjective valuation.

Proof. We will calculate invv(cK), step by step, using the definition of invv just recalled.

Replacing the induced homomorphism K : Gv → F̄ ∗v /F
∗
v with another lift K : Gv → F̄ ∗v which we

again call K does not change the cohomology class of cK . By property (1) we may choose a lift K

such that for g ∈ Gv, K(gi) = K(g), for all i ∈ Iv. Denote the image of g under the projection map

Gv → Gv/Iv = Ẑ by ḡ. Define cK̄ : Ẑ×Ẑ→ F ∗v by cK̄(ḡ, h̄) = cK(g, h). Then cK̄ is clearly a well-defined

2-cocycle on Ẑ whose image under the inflation map is cK .

Now, by definition, v(cK̄) is the 2-cocycle defined by

(g, h) 7→ v

(
K(g)K(h)

K(gh)

)
∈ Z,

for g, h ∈ Gv.
By property (2), d(g) = K2(g)/t(g) ∈ F ∗v , for g ∈ Gv. The 2-cocycle above is the same as the

2-cocycle induced by

(g, h) 7→ 1

2
· v
(
d(g)d(h)

d(gh)

)
∈ Z.

Consider now the map χ : Gal(F nr
v /Fv)→ Q/Z defined by

χ(g) =
1

2
· v(d(g)) mod Z.
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Under the boundary map δ the 1-cocycle χ maps to the 2-cocycle above, so (δ−1 ◦ v ◦ Inf−1)(cK)) is just

χ. Hence

invv(cK) = (Ev ◦ δ−1 ◦ v ◦ Inf−1)(cK) = χ(Frobv) =
1

2
· v
(
K(Frobv)

2

t(Frobv)

)
mod Z.

�

4. Good primes

Theorem 10. Assume gcd(p,N) = 1 and assume ap 6= 0. Let v be a place of F lying over p. Then Xv

is a matrix algebra over Fv, if and only if the slope

mv = [Fv : Qp] · v(a2
p/ε(p)) ∈ Z

is even, where v is normalized such that v(p) = 1.

Proof. This follows immediately from the lemma above taking K = α and t = ε. Indeed, we have

invv(cα) = 1
2v(α2(Frobv)/ε(Frobv)) mod Z, and α(Frobv) ≡ afvp mod F ∗, by part (3) of Proposition

8. �

For the cases where ap = 0 we have the following criterion (which is not in terms of a slope). Let

p† - N be a prime such that p† ≡ p mod N and ap† 6= 0. Let

m†v := [Fv : Qp† ] · v(a2
p†/ε(p

†)) ∈ Z,

where v is normalized so that v(p) = 1.

Theorem 11. Let gcd(p,N) = 1 and suppose ap = 0. Let v be a place of F lying over p. Then Xv is a

matrix algebra over Fv if and only if m†v ∈ Z is even.

Proof. The proof is similar to that of the previous theorem, with minor changes. Note that p† ≡ p mod

N implies χγ(p) = χγ(p†), for all γ ∈ Γ. So, if Frobp and Frobp† denote the Frobenii at the prime p and

p†, then by (3.1), we have α(Frobp) ≡ α(Frobp†) ≡ ap† mod F ∗. Hence

invv(cα) =
1

2
v

(
α2(Frobv)

ε(Frobv)

)
=

1

2
· fv · v

(
α2(Frobp)

ε(p)

)
=

1

2
· fv · v

(
a2
p†

ε(p†)

)
mod Z.

�

5. Steinberg primes

Let now turn to the cases where p | N . In this section we assume that Np = 1 and Cp = 0. Thus

N = Mp, where M is a positive integer with (M,p) = 1, and ε is a character mod M .

Lemma 12. If (γ, χγ) is an extra twist for f , then the conductor of χγ divides M .
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Proof. A general result due to Atkin-Li [AL78, Thm. 3.1] allows one to calculate the exact level of the

newform attached to a twisted form f ⊗χ. We recall this now. Let f ∈ Sk(N, ε) be a newform of weight

k ≥ 2, and nebentypus ε. In the notation of loc. cit., let q | N be a prime and let Q be the q-primary

factor of N . So N = QM , with (M, q) = 1. Let the conductor of εQ, the q-part of ε, be qα, for α ≥ 0.

Let χ be a character of conductor qβ , with β ≥ 1. Set

Q′ = Max{Q, qα+β , q2β}.

According to the theorem, the level of the newform attached to f ⊗ χγ is Q′M , provided that

• max {qα+β , q2β} ≤ Q, if Q′ = Q, or

• Conductor of εQχ = max {qα, qβ}, if Q′ > Q.

In our case, taking Q = q = p, we have εQ = εp = 1. We let χ be the p-part of χγ . Suppose towards

a contradiction that χγ has level divisible by p. Then α = 0 and β = 1. Then Q′ = p2 > Q = p and

the Q-part of the conductor of εQχγ = χγ is p. So the second condition above is satisfied and we get

the p-part of the level of the newform attached to f ⊗ χγ is p2. On the other hand, f ⊗ χγ = fγ has

the same level as f namely Mp, which is not divisible by p2, a contradiction. Thus the p-part of the

conductor of χγ must be trivial, as desired. �

Recall that aγ` = a` · χγ(`) for all primes ` - N . We show that this also holds for p||N .

Lemma 13. aγp = χγ(p) · ap, for all γ ∈ Γ.

Proof. We use the precise form of the local Galois representation at p from Langlands’ theorem (Theorem

6, see also [Hi00, Thm. 3.26]). We have

ρf |Gp ∼

(
λ(pap) ∗

0 λ(ap)

)
,

where λ(x) : Gp −→ Z∗l is the unramified character taking arithmetic Frobenius to x. Note that both

characters make sense since both pap and ap are `-adic units. By the previous lemma, the conductor

of χγ , for γ ∈ Γ, is prime to p and so χγ(p) makes sense, and is an `-adic unit, and locally we have

χγ |Gp = λ(χγ(p)). Applying Langlands’ theorem for fγ , we get

ρfγ |Gp ∼

(
λ(paγp) ∗

0 λ(aγp)

)
.

Since fγ = f ⊗ χγ , implies ρfγ ∼ ρf ⊗ χγ , we have locally that(
λ(paγp) ∗

0 λ(aγp)

)
∼

(
λ(pap)λ(χγ(p)) ∗

0 λ(ap)λ(χγ(p))

)
.

An important part of Langlands’ theorem (not mentioned explicitly above) is that ∗ 6= 0, since the

inertia group Ip acts unipotently with infinite image. Thus comparing like diagonal entries, we see that

aγp = χγ(p) · ap. �
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Recall that the map α̃ : GQ → E∗/F ∗ is unramified at primes of semistable reduction, and α(Frobp) ≡
ap mod F ∗ at primes of good reduction (cf. Proposition 8). We now observe that this last formula

continues to hold for primes of semistable reduction.

Proposition 14. Suppose p is a prime such that Np = 1 and Cp = 0. Then α(Frobp) ≡ ap mod F ∗.

Proof. Since, for γ ∈ Γ, the conductor of χγ is prime to p, we have χγ(i) = 1, for i ∈ Ip. By (3.1),

we deduce α(i) ∈ F ∗, for all i ∈ Ip. Thus we recover the fact that α̃ is unramified at the Steinberg

primes for any k ≥ 2. In any case, it makes sense to speak of α(Frobp) mod F ∗. By Lemma 13, we have

aγ−1
p = χγ(p), for γ ∈ Γ. By (3.1), α(Frobp)

γ−1 = χγ(p). Since these identities hold for all γ ∈ Γ, we

deduce that α(Frobp) ≡ ap mod F ∗. �

Theorem 15. Let Np = 1 and Cp = 0 and let v | p be a prime of F . Then Xv is a matrix algebra if

and only if [Fv : Qp] · (k − 2) is even.

Proof. Applying Lemma 9 to K = α and t = ε, we get invv(cα) = 1
2v(α

2(Frobv)
ε(Frobv) ) mod Z. By the

previous proposition, α(Frobv) = afvp mod F ∗. Thus invv(cα) = 1
2 · fv · v(

a2p
ε(p) ). By Theorem 4.6.17

[Mi89],
a2p

εM (p) = pk−2. Also we may replace the valuation v by ev · v, where the second v is normalized

such that v(p) = 1. We obtain that invv(cα) = [Fv : Qp] · (k − 2) mod 2, as desired. �

6. Ramified principal series primes

We now assume that Np = Cp ≥ 1. Let v be a place of F lying above p. Let ev and fv be the

ramification degree and inertia degree of v over p. Recall that in this case πp is in the ramified principal

series.

Recall that ε = ε′ · εp is a decomposition of the nebentypus ε into its prime-to-p part and p part.

We use repeatedly a fundamental theorem of Langlands (Theorem 6), which states that the local Galois

representation at the prime p is given by

ρf |Gp ∼

(
λ(āpε

′(p)) · εp 0

0 λ(ap)

)
.

where λ(x) is the usual local unramified character.

Lemma 16. Let µ =
a2p
ε′(p) and ν = µ̄ =

ā2p
ε̄′(p) . Then µf + νf ∈ F , for all integers f ≥ 1.

Proof. Let (γ, χγ) be an extra twist for the form f . Thus we have ρfγ ∼ ρf ⊗χγ . Hence, by Langlands’

theorem, locally on Gp we have(
λ(āγpε

′(p)γ) · εγp 0

0 λ(aγp)

)
∼

(
λ(āpε

′(p)) · εp · χγ 0

0 λ(ap) · χγ

)
.

One of the two characters on the left is unramified and the other one is ramified. Thus the same must

be true on the right hand side. Moreover, the unramified characters on both sides must be equal and

the ramified characters must also be equal.
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We decompose χγ into its prime-to-p and p parts, namely χγ = χ′γ · χγ,p. First, assume that χγ is

unramified at p. Then, χγ = χ′γ = λ(χγ(p)), and comparing unramified characters, we get aγp = χγ(p)ap.

Using the fact that χ2
γ = εγ−1, we have χ2

γ(p) = ε′(p)γ−1. Thus (µf )γ = µf and (νf )γ = νf , since Γ is

abelian, so complex conjugation commutes with γ. Hence, γ fixes µf + νf .

Now assume that χγ is ramified at p. Comparing ramified characters, we get, on Ip, that χγ,p = εγp and

εpχγ,p = 1. Thus ε̄p = εγp = χγ,p. Now, comparing unramified characters, we get aγp = āp · ε′(p) · χ′γ(p).

Again, since (χ′γ)2 = (ε′)γ−1, we deduce that

(a2
p)
γ

ε′(p)
γ =

ā2
p

ε̄′(p)
.

In other words, µγ = ν, and hence (µf )γ = νf , for all integers f ≥ 1. Applying complex conjugation we

see that similarly (νf )γ = µf . Hence again γ fixes µf + νf .

In both cases γ ∈ Γ = Gal(E/F ) is arbitrary, so µf + νf must belong to F , for all integers f ≥ 1. �

For later use we state the following generalization of Lemma 16 which can be proved in a similar

manner, or directly by noting that α2 ≡ ε mod F ∗.

Lemma 17. Let Frobv be an arithmetic Frobenius at v, and let ζ = εp(Frobv). Then µfv ·1/ζ+νfv ·ζ ∈ F .

6.1. Unequal slope. In this section, we assume that

v

(
a2
p

ε′(p)
+ 2p(k−1) +

ā2
p

ε̄′(p)

)
< k − 1.

Here v is the valuation such that v(p) = 1.

By an elementary calculation it can be shown that the above assumption is equivalent to the assertion

that for all place w of E lying over v, we have w(ap) 6= w(āp). Let Ov be the ring of integers of Fv. Let

Pv be the prime ideal of Ov and let πv be a prime element of Ov. Let U
(n)
v = 1 + Pnv , for n ≥ 1.

Lemma 18. µ and ν belong to Fv.

Proof. By Lemma 16, µ+ ν belongs to F . Consider the quantity

(µ− ν)2

(µ+ ν)2
= 1− 4

µ · ν
(µ+ ν)2

.

Now µν = p2(k−1). Since the slopes of µ and ν are not the same, the expression on the right hand side

belongs to U
(1)
v = 1 + πvOv, for p odd, and it belongs to U

(3ev)
v = 1 + π3ev

v Ov, for p = 2. It therefore

has a square root in U
(1)
v = 1 + πvOv, in both cases. Hence, µ−ν

µ+ν belongs to Fv. Since we have already

proved that µ + ν belongs to F , we see µ − ν belongs to Fv. Hence, individually, both µ and ν belong

to Fv. �

6.1.1. The case of odd primes. We now assume that p is an odd prime. We say that εp is tame if the

order of εp divides p− 1.
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Lemma 19. If εp is tame, then for any arithmetic Frobenius Frobv at v,

(afvp + εp(Frobv)(āpε
′(p))fv )2

a2fv
p + (āpε′(p))2fv

∈ F ∗v
2

is a square.

Proof. We may rewrite this expression as

µfv + ε2p(Frobv)ν
fv

µfv + νfv
·
(

1 + 2εp(Frobv) ·
p(k−1)fv

µfv + ε2p(Frobv)νfv

)
,

where µ and ν are as above. By the previous lemma, µ and ν belong to Fv. Since εp is tame, the

image of εp belongs to Qp, and hence to Fv. Thus all terms in the display above are in Fv. Now, since

p is odd, and the slopes are unequal, the second term (in parentheses) is in U
(1)
v , hence a square. If

w(ap) > w(āp), the first term is of the form ε2p(Frobv) times an element of U
(1)
v , and if w(ap) < w(āp),

then the first term is in U
(1)
v , so in both cases, the first term is also a square. �

Lemma 20. If εp is tame and Frobv is an arithmetic Frobenius at v, then

α2(Frobv) ≡ a2fv
p + (āpε

′(p))2fv mod F ∗2v .

Proof. If the trace of ρf (g) is non-zero, for g ∈ GQ, then (cf. part (4) of Proposition 8)

α2(g) ≡ (trace ρf (g))2 mod F ∗2.

Since w(ap) 6= w(āp), the trace of ρf (Frobv) is non-zero. Using Langlands’ theorem to compute the

trace we obtain

α2(Frobv) ≡ (afvp + εp(Frobv)(āpε
′(p))fv )2 mod F ∗2.

The lemma now follows from the previous lemma. �

Lemma 21. If εp is tame, then α(i) belongs to F ∗v , for i ∈ Iv.

Proof. If i ∈ Iv, and σv is an arithmetic Frobenius at v, then σ′v = σvi is also an arithmetic Frobenius

at v. By the lemma above, α(σv) ≡ ±α(σ′v) mod F ∗v . Since

cα(σ, i) =
α(σv)α(i)

α(σ′v)
∈ F ∗,

we see that α(i) belongs to F ∗v . �

Theorem 22. Let p be an odd prime such that p | N and Np = Cp. Let v be a place of F lying above p.

Let w be an extension of v to a place of E. If w(ap) 6= w(āp), then Xv is a matrix algebra if and only if

mv = [Fv : Qp] · v
(
µ+ 2pk−1 + ν

)
∈ Z

is even, where v is normalized so that v(p) = 1.
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Proof. Let L be the extension of Fv cut out by the wild part of εp. So εp, thought of as a character of

GL, is tame. Note that L/Fv is a totally ramified extension of odd (p-power) degree. By Lemma 21,

α̃ : GL → F̄ ∗v /F
∗
v is an unramified character. On GL, we have α2 ≡ ε′ mod F ∗v , since this is true with ε′

replaced with ε, and on GL we have ε′ ≡ ε mod F ∗v , since εp(GL) ⊂ Q∗p ⊂ F ∗v , since εp|GL is tame. We

calculate invL(resFv/Lcα) using Lemma 9 applied to K = α|GL and t = ε′|GL . Let u be the prime of L

lying over v and let Frobu be an arithmetic Frobenius at u. We obtain

invL(resFv/Lcα) =
1

2
· u
(
α2(Frobu)

ε′(Frobu)

)
mod Z ∈ 2Br(L).

Since fv is also the residue degree of u | p, by Lemma 20 we obtain

α2(Frobu) ≡ a2fv
p + (āpε

′(p))
2fv mod F ∗2v .

Hence
α2

ε′
(Frobu) ≡ µfv + νfv mod F ∗2v .

Now [L : Fv] · invvcα = invL(resFv/Lcα), and for x ∈ Fv, u(x) = [L : Fv] · v(x), where both u and v are

the surjective valuations onto Z. But [L : Fv] is a power of p, so is odd, and so in both cases can be

ignored. We obtain

invvcα =
1

2
· v
(
α2

ε′
(Frobu)

)
=

1

2
· v(µfv + νfv ) =

1

2
· v(µfv + νfv + 2p(k−1)fv ) mod Z.

Since the last three terms lie in F and have distinct valuations, replacing v with the valuation v satisfying

v(p) = 1, we obtain the theorem. �

6.1.2. The case of p = 2. We now assume that p = 2, so that N2 = C2 ≥ 2. We continue to assume that

w(a2) 6= w(ā2).

Lemma 23. There exists an arithmetic Frobenius Frobv such that εp(Frobv) = 1.

Proof. Let σv be an arithmetic Frobenius at v. Then εp(σv) = ζ2n , a 2n-th root of unity, for n ≥ 0. If

n = 0, we are done. Otherwise, since εp(Gv) = εp(Iv), there exists i ∈ Iv such that εp(σ
2n−1
v ) = εp(i).

Hence ε2np (σv) = 1 = εp(σv) · εp(i) = εp(σ̃v), where σ̃v = σvi is another arithmetic Frobenius at v. �

Lemma 24. If Frobv is an arithmetic Frobenius at v, then εp(Frobv) belongs to F ∗v .

Proof. Let σv = Frobv. Assume εp(σv) is a primitive 2m-th root of unity, for m ≥ 0. Let r ≥ 1 be such

that Fv contains a primitive 2r-th root of unity, but not a 2r+1-th root of unity. It is enough to prove

m ≤ r.
Assume, towards a contradiction, that m ≥ r+ 1. Then ε2

m−r−1

p (σv) is a 2r+1-th root of unity. Using

the fact that εp(Gv) = εp(Iv), we can find i ∈ Iv such that ε2
m−r−1

p (σv) = εp(σv · i) (see proof of previous

lemma). For example, if m = r + 1, we can take i = 1. Now σ′v = σvi is another arithmetic Frobenius

at v. Using Langlands’ theorem to compute the (non-zero) trace of ρf (σ′v) we obtain

α(σ′v) ≡ afvp + εp(σ
′
v)(āpε

′(p))fv mod F ∗.
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Since α2 ≡ ε mod F ∗, we deduce that

µfv + ε2p(σ
′
v)ν

fv

εp(σ′v)
∈ F ∗.

By lemma 18, µfv and νfv belong to Fv. Also, ε2p(σ
′
v) is a primitive 2r-th root of unity, so belongs

to Fv. We conclude that the primitive 2r+1-th root of unity εp(σ
′
v) = ε2

m−r−1

p (σv) belongs to Fv, a

contradiction. �

Lemma 25. If i ∈ Iv, then α(i) belongs to F ∗v .

Proof. If εp(Gv) = ±1, then by Langlands’ theorem

α(Frobv) ≡ afvp ± (āpε
′(p))fv mod F ∗.

Let i be an arbitrary element of Iv and let σv and σ′v = σvi be two arithmetic Frobenii at v. The above

congruence for α (and a calculation similar to that in Lemma 18 and Lemma 20 in the case of unequal

sign) guarantees that α(σv) ≡ α(σ′v) mod F ∗v . Since α(σv)α(i)/α(σ′v) ∈ F ∗, so α(i) ∈ Fv.
Let us assume now that εp(Gv) 6= ±1. We first show that if εp(i) 6= −1, then α(i) ∈ Fv. We first choose

an arithmetic Frobenius σv such that εp(σv) = 1, by Lemma 23. Then εp(i) = εp(σv) · εp(i) = εp(σ
′
v), for

σ′v = σvi. Hence εp(i) ∈ Fv, by Lemma 24. By Langlands’ theorem, we know α(i) ≡ 1 + εp(i) mod F ∗.

Hence, α(i) belongs to F ∗v . If εp(i) = −1, we choose j ∈ Iv such that εp(j) 6= ±1, using the fact that

εp(Gv) = εp(Iv). Since εp(j) and εp(ij) 6= −1, the previous argument shows that α(j) and α(ij) belongs

to Fv. Since α(i)α(j)/α(ij) ∈ F ∗, we see that α(i) ∈ F ∗v . �

Lemma 26. Let Frobv be an arithmetic Frobenius at v. Then

α2(Frobv) ≡ a2fv
p + (āpε

′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2v .

Proof. Let σv be a Frobenius as in Lemma 23, and let σ̃v be any arithmetic Frobenius at v. Then σv

and σ̃v will differ by an element of Iv. By Lemma 25,

α(σ̃v) ≡ α(σv) mod F ∗v .

Since εp(σv) = 1, we get by Langlands’ theorem

α2(σv) ≡ a2fv
p + (āpε

′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2.

Hence,

α2(σ̃v) ≡ a2fv
p + (āpε

′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2v .

�

Theorem 27. Let p = 2 and assume N2 = C2 ≥ 1. Let v | 2 be a place of F . Assume that w(a2) 6=
w(ā2). Then Xv is a matrix algebra over Fv if and only if

mv = [Fv : Q2] · v(µ+ 2pk−1 + ν) ∈ Z

is even, where v is normalized such that v(p) = 1.



ADJOINT LIFTS AND MODULAR ENDOMORPHISM ALGEBRAS 19

Proof. By Lemma 25, the map α : Gv−→F̄ ∗v /F ∗v is unramified. Applying Lemma 9 with K = α|Gv and

t = ε′|Gv , we have

invvcα =
1

2
· v
(
α2

ε′
(Frobv)

)
=

1

2
· v(µfv + 2p(k−1)fv + νfv ) mod Z,

where the last equality follows from Lemma 26. The theorem now follows replacing v by the valuation

v normalized such that v(p) = 1. �

6.2. Equal slope. In this section, we assume that

v

(
a2
p

ε′(p)
+ 2p(k−1) +

ā2
p

ε̄′(p)

)
≥ k − 1,

where v(p) = 1. So w(ap) = w(āp), for all place w of E lying above v. In this case it is possible for

mv = ∞. To avoid this we introduce a new quantity mζ
v, for any root of unity ζ in the image of εp,

defined by

mζ
v := ev · v

(
µfv · 1/ζ + 2p(k−1)fv + νfv · ζ

)
∈ Z ∪ {∞},

where v is normalized such that v(p) = 1. By Lemma 17, the three term expression above is in F , so

the above expression is well-defined. Moreover, for some ζ, the three term expression above is non-zero

and mζ
v ∈ Z is finite. When ζ ∈ F ∗v , e.g., if ζ is the value of the tame part of εp, then we may rewrite

mζ
v = ev · v

(
µfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}.

Note that in the unequal slope case mζ
v = mv, if ζ ∈ F ∗v , so the quantities mζ

v may be considered as

generalizations of mv in the equal slope case. In particular taking ζ = ±1 we have

m±v = ev · v
(
µfv ± 2p(k−1)fv + νfv

)
∈ Z ∪ {∞}.

We remark that m+
v is finite if and only if afvp + (āpε

′(p))fv 6= 0, and m−v is finite if and only if

afvp − (āpε
′(p))fv 6= 0, so that one of the two quantities m±v is always finite.

6.2.1. The case of odd primes. We now assume that p is odd and work under a condition on the tame

part of εp.

Theorem 28. Let p be an odd prime with Np = Cp ≥ 1 and v | p be a place of F . Assume that the

tame part of εp on Gv is not quadratic. Let ζ be in the image of the tame part of εp on Gv. Then the

parity of

mζ
v = ev · v

(
µfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}

is independent of ζ when it is finite, and then Xv is a matrix algebra over Fv if and only if mζ
v ∈ Z is

even.

Thus, if −1 lies in the image of the tame part of εp on Gv, and

• if afvp + (āpε
′(p))fv 6= 0, then Xv is a matrix algebra over Fv if and only if m+

v ∈ Z is even,

• if afvp − (āpε
′(p))fv 6= 0, then Xv is a matrix algebra over Fv if and only m−v ∈ Z is even,
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noting that one of m±v is always finite, and both have the same parity if both are finite. If −1 does not

lie in the image of the tame part of εp on Gv (e.g., if the tame part of εp is trivial on Gv) and if m+
v <∞,

then Xv is a matrix algebra over Fv if and only if m+
v ∈ Z is even.

Proof. The proof goes along the lines of the proof of Theorem 22, with a few modifications. We base

change to L so that εp|GL is tame, compute the invariant there, and then descend back to Fv.

We first show that α̃ : GL → F̄ ∗v /F
∗
v is unramified. If the trace of ρf (g) is non-zero, then α(g) ≡

trace ρf (g) mod F ∗, for g ∈ GL (cf. part (4) of Proposition 8). If the tame part of εp is trivial on

Gv, then by Langlands’ theorem α(i) ≡ 1 + εp(i) = 2 mod F ∗, for all i ∈ IL. So we may assume that

the tame part of εp is non-trivial on Gv. If εp(i) 6= −1, for i ∈ IL, then α(i) belongs to F ∗v . Indeed

by Langlands’ theorem again, α(i) ≡ 1 + εp(i) mod F ∗, and since εp is tame on GL, εp(i) ∈ Q∗p ⊂ F ∗v .

If εp(i) = −1, for i ∈ IL, we choose j ∈ IL such that εp(j) 6= ±1. Such a choice is possible since by

assumption the tame part of εp is not quadratic. The above argument shows that α(j) and α(ij) belong

to F ∗v , and since α(i)α(j)/α(ij) ∈ F ∗, α(i) ∈ F ∗v as well.

Write u for the prime of L lying over v and Frobu be an arithmetic Frobenius at u. We calculate

invL(resFv/Lcα) using Lemma 9 applied to K = α|GL and t = ε′|GL , and get

invL(resFv/Lcα) =
1

2
· u
(
α2

ε′
(Frobu)

)
mod Z.

Since [L : Fv] is odd (a power of p) we may descend to Fv as before to get

invvcα =
1

2
· v
(
α2

ε′
(Frobu)

)
mod Z.

Let ζ = εp(Frobu) ∈ Q∗p ⊂ F ∗v . Then the usual argument using Langlands’ theorem shows that

α2

ε′
(Frobu) ≡ µfv + 2ζp(k−1)fv + ζ2νfv mod F ∗2v

and replacing v with the valuation v such that v(p) = 1 we obtain the theorem. We note that the parity

of mζ
v is independent of ζ since α̃ is unramified on GL. �

6.2.2. The case of p = 2. We now show that if p = 2 and ε2 is not quadratic on Gv, then the ramification

of Xv is also determined by m±v , up to an error term nv which depends purely on the nebentypus ε2,

which we define now.

If ε2 is trivial on Gv, set nv = 0. If ε2 has order 2r on Gv, for r > 1, let Fv(
√
t)/Fv, for t ∈ F ∗v be the

quadratic extension of Fv cut out by the quadratic character ε2
r−1

2 on Gv. Let ζ2r be a primitive 2r-th

root of unity and define

z =
(1 + ζ2r )

2

ζ2r
∈ F ∗

noting that z ∈ F ∗ by Langlands’ theorem. Define nv mod 2 by

(−1)nv = εv(−1) · (t, z)v,

where εv is the restriction of ε2 to Gv and (t, z)v is the Hilbert symbol of t and z at v.
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Lemma 29. Assume ε2 has order 2r on Gv, for r > 1. Let h be the function on Gv defined by

h(g) =


1+ε2(g)√
ε2(g)

if ε2(g) 6= −1

1 if ε2(g) = −1,

and let ch be the corresponding F -valued 2-cocycle on Gv. Then the class of ch in 2Br(Fv) is given by

the symbol (t, z)v.

Proof. We first claim that if −1 6= ζ = ε2(g) is not a primitive 2r-th root of unity, then 1+ζ√
ζ
∈ F ∗. Indeed,

choose g ∈ Gv such that ε2(g) = ζ2r , where ζ2r is a primitive 2r-th root of unity. We may assume g ∈ Iv,
and applying Langlands’ theorem we obtain that (1+ε2(g))2

ε2(g) ∈ F ∗, and hence that
1+ζ2r−1√
ζ2r−1

∈ F ∗, where

ζ2r−1 = ε2(g2) is a primitive 2r−1-th root of unity. Now set h = g2 ∈ Iv. Set d = α2

ε2
on Iv. Then by

Langlands’ theorem d(h) ∈ F ∗2. Since d : Iv → F ∗/F ∗2 is a homomorphism we see that d(ha) ∈ F ∗2,

for all integers a. Hence by Langlands’ theorem again we deduce that
(1+ζa

2r−1 )2

ζa
2r−1

∈ F ∗2, if it is non-zero.

Hence
1+ζa

2r−1√
ζa
2r−1

∈ F ∗, for all integers a, if it is non-zero, proving the claim. We now claim that if ε2(gb)

with b odd is any primitive 2r-th root of unity then h(gb) ≡ h(g) mod F ∗. Indeed by the discussion

above h(gb−1) ∈ F ∗ since b− 1 is even.

The two claims above show that the 2-cocycle ch is cohomologous to the 2-cocycle cl where

l(g) =

1 if ε2
r−1

2 (g) = 1,

1+ζ2r√
ζ2r

if ε2
r−1

2 (g) = −1.

Let σ be the non-trivial element of the Galois group Gal(Fv(
√
t)/Fv). Let z =

(
1+ζ2r√
ζ2r

)2

∈ F ∗. Then

the class of cl is completely determined by the table

1 σ

1 1 1

σ 1 z

which is precisely the symbol (t, z)v. �

Theorem 30. Let p = 2 and assume that ε2 is not quadratic on Gv. If ε2 is trivial on Gv and m+
v <∞,

then Xv is a matrix algebra if and only if m+
v ∈ Z is even. If ε2 on Gv has order 4 or more and if

• afvp + (āpε
′(p))fv 6= 0, then Xv is a matrix algebra if and only if m+

v + nv ∈ Z is even,

• afvp − (āpε
′(p))fv 6= 0, then Xv is a matrix algebra if and only if m−v + nv ∈ Z is even,

noting that if both afvp ± (āpε
′(p))fv 6= 0, then m±v have the same parity.

Proof. If ε2 is trivial on Gv, then by Langlands’ theorem, α(i) ≡ 2 mod F ∗, for all i ∈ Iv. Lemma 9

applies directly to prove the first statement. So we may assume that ε2 is not of order 1 or order 2 on Gv.

Hence there exists i ∈ Iv, such that ε2(i) =
√
−1. If ε2(j) = −1, for j ∈ Iv, then a short computation

using the fact that cα(i, j) ∈ F ∗ shows that α(j) ≡
√
−1 mod F ∗.
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We define a function f : Gv → E∗ by

f(g) =

1 + ε2(g) if ε2(g) 6= −1,
√
−1 if ε2(g) = −1.

Now define K : Gv → E∗ by K(g) = α(g)
f(g) , for g ∈ Gv. Then the cocycle cα can be decomposed as

cα = cKcf , where cK and cf are the cocycles corresponding to K and f respectively. That these are

indeed cocycles follows from the fact that they are F -valued, which can be proved using ε2(Gv) = ε2(Iv)

and Langlands’ theorem.

We first calculate invvcK . By choice of f , K(i) belongs to F ∗, for all i ∈ Iv. Since ε2(Gv) = ε2(Iv) a

computation using Langlands’ theorem shows that K2(g)
ε′(g) ∈ F

∗, for all g ∈ Gv. Let σv be the Frobenius

at the prime v. By Lemma 9 applied to K as above and t = ε′ we have

invvcK =
1

2
· v
(
K2

ε′
(σv)

)
mod Z.

Assume afv2 6= −(ā2ε
′(2))fv , then we choose σv in such a way that ε2(σv) = 1. Then α(σv) ≡ (afv2 +

(ā2ε
′(2))fv ) mod F ∗, so that K2

ε′ (σv) ≡ µfv + νfv + 2p(k−1)fv mod F ∗2. Finally, the valuation considered

in the statement of the theorem is normalized so that v(2) = 1, and differs from the valuation used in

the proof by ev. Noting evfv = [Fv : Q2], we obtain

invvcK =
1

2
·m+

v mod Z.

If afv2 = −(ā2ε
′(2))fv , then we choose σv in such a way that ε2(σv) = −1. Then α(σv) ≡ (afv2 −(ā2ε

′(2))fv )

mod F ∗, so that K2

ε′ (σv) ≡ µfv + νfv − 2p(k−1)fv mod F ∗2. We obtain

invvcK =
1

2
·m−v mod Z.

We also remark that since K2/ε′ : Gv → F ∗/F ∗2 is an unramified homomorphism, invvcK does not

depend on the choice of arithmetic Frobenius at v, and in particular m±v have the same parity if both

are simultaneously finite.

Now we calculate invv(cf ). Let cε be the cocycle

cε(g, h) =

√
ε(g)

√
ε(h)√

ε(gh)
,

for g, h ∈ GQ. We have invvcf = invvch + invvcε, where h is the function defined in the previous

lemma. The theorem now follows from the previous lemma and the fact that invvcε is trivial if and only

if εv(−1) = 1 [Qu98]. �

Corollary 31. Assume that p = 2 and ε2 is not quadratic on Gv. Assume also that F = Q. Then:

(1) If ε2(−1) = 1, then Xv is a matrix algebra over Fv if and only if one of m±v ∈ Z is even.

(2) If ε2(−1) = −1, then Xv is a matrix algebra over Fv if and only if one of m±v ∈ Z is odd.

Proof. We show that the symbol (t, z)v vanishes when F = Q, so that nv = 0 mod 2 if and only if

ε2(−1) = 1. Note that Q has three quadratic extensions of absolute discriminant a power of 2, namely
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Q(i), Q(
√

2) and Q(
√
−2), but only the middle one is cut out by the quadratic character ε2

r−1

2 , since it

is a even character of level 8. It follows that t = 2 ∈ Q2 and (t, z)v = (t,NFv/Q2
(z))2.

To compute the norm, we assume F is general. Now NQ(ζ2r )/Q(ζ2r) = 1 and NQ(ζ2r )/Q(1 + ζ2r ) = 2

for all r > 1, since the minimal polynomial of 1 + ζ2r is (x− 1)2r−1

+ 1 = 0. Since the local norm is the

same as the global norm, we have NQ2(ζ2r )/Q2
(z) = 4. We have Q2 ⊂ Q(z)v ⊂ Q2(ζ2r ). Noting that the

second index is 2, by the transitivity of the norm in towers we have NQ(z)v/Q2
(z)2 = 4, and we obtain

NQ(z)v/Q2
(z) = ±2. Since z ∈ F , by the transitivity of the norm again, we obtain NFv/Q2

(z) = (±2)d

where d = [Fv : Q(z)v].

Thus (t, z)v = (t,NFv/Q2
(z))2 = (2,±2)d2 = 1, since (2,±2)2 = 1, as one can check directly. �

The corollary predicts that when p = 2 and F = Q, there is a switch in the parity of m±v in determining

the triviality of the class of Xv, when ε2 moves from even to odd characters. For a numerical example

of this interesting phenomenon, see Example 3 at the end of the paper.

6.2.3. Remaining quadratic cases. If the tame part of εp is quadratic on Gv for an odd prime p or if

p = 2 and ε2 is quadratic on Gv we again show that Xv is determined completely by m±v up to an extra

Hilbert symbol. The following results are quite general and hold for the unequal slope case also. In the

case of unequal slope the extra symbol is trivial.

We need some notation.

Assume that the quadratic extension cut out by the tame part of εp if p is odd, or by εp if p = 2, is

Fv(
√
t), for some t ∈ F ∗v .

Define

a =
µfv + νfv + 2p(k−1)fv

µfv + νfv − 2p(k−1)fv
∈ F ∗ ∪ {0,∞}.

Note a ∈ F ∗ if and only if afvp 6= ±(āpε
′(p))fv . In this case define the integer nv mod 2 by (−1)nv = (t, a)v.

Let p† - N be an auxiliary prime such that ap† 6= 0 and such that, for all γ ∈ Γ,

χγ(p†) =

-1 if χγ is ramified at p,

1 if χγ is unramified at p.

We can always choose p† as above, since f is a non-CM form. Since ε−1 is an extra twist, we have

ε(p†) = −1. Let

b = a2
p† = −

a2
p†

ε(p†)
∈ F ∗.

If afvp = (āpε
′(p))fv , define an integer nv mod 2 by (−1)nv = (t, b)v, and if afvp = −(āpε

′(p))fv , define nv

by (−1)nv = (t, b)v · (−1)(evv(b)).

Theorem 32. Assume that the tame part of εp is quadratic for an odd prime p, or p = 2 and ε2 is

quadratic.

(1) Assume that a ∈ F ∗. Then, Xv is a matrix algebra over Fv if and only if

m+
v + nv

is even.
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(2) If afvp = (āpε
′(p))fv , then Xv is a matrix algebra over Fv if and only if

m+
v + nv

is even.

(3) If afvp = −(āpε
′(p))fv , then Xv is a matrix algebra over Fv if and only if

m−v + nv

is even.

Proof. If εp(i) = −1, for i ∈ Iv, then α2(i) ∈ F ∗. We claim that the image of α(i)2 in F ∗v /F
∗2
v is constant,

i.e., there exists d ∈ F ∗v such that α2(i) ≡ d mod F ∗2v . Indeed, a priori α(i) =
√
t(i)d(i), for some t(i),

d(i) ∈ F ∗v . If j ∈ Iv with εp(j) = −1, then by Langlands’ theorem, since εp(ij) = 1, α(ij) ∈ F ∗. Since

cα(i, j) ∈ F ∗, we get
√
t(i) ≡

√
t(j) mod F ∗v , as desired. Thus

√
t(i) ≡

√
d mod F ∗v for all i ∈ Iv such

that εp(i) = −1. We compute d and show that the ramification of Xv is controlled by m±v , and an extra

Hilbert symbol involving d. In case (1) we show we can take d = a, whereas in case (2) and (3) we show

take d = b.

For p odd, we do a base change as in Theorem 22 and assume without loss of generality that εp is

tame (and quadratic).

Assume we are in case (1), so that a ∈ F ∗. Let σv be an arithmetic Frobenius at v, such that

εp(σv) = 1. Let i ∈ Iv be such that εp(i) = −1. By Langlands’ theorem,

α(σv)

α(σvi)
≡
√
a mod F ∗.

Since cα(σv, i) ∈ F ∗, and a belongs to F ∗, we have α(i) ≡
√
a mod F ∗. We define a function f on Gv

by

f(g) =

1 if εp(g) = 1,
√
a if εp(g) = −1.

Let K(g) = α(g)
f(g) on Gv. Then the cocycle cα can be decomposed as cα = cKcf . Clearly K(i) belongs

to F ∗v , for all i ∈ Iv. Using Lemma 9 applied to K and t = ε′, we have invvcK = 1
2 · v

(
K2

ε′ (σv)
)

=
1
2 ·m

+
v mod Z. To compute invvcf , let σ be the nontrivial element of Gal(Fv(

√
t)/Fv). Then the cocycle

table of the cocycle cf is given by

1 σ

1 1 1

σ 1 a

which gives the symbol (t, a)v. This proves (1).

We now turn to parts (2) and (3). We wish to find d ∈ F ∗, such that α(i) ≡
√
d mod F ∗v , if εp(i) = −1.

We cannot take d = a in parts (2) and (3) since a = 0 or ∞. So we argue a bit differently.

Let i ∈ Iv with εp(i) = −1. We claim that α(i) ≡ ap† mod F ∗. By (3.1) and the proof of Theorem 16,

if χγ is unramified at p, then α(i)γ = α(i). Similarly, if χγ is ramified at p, then α(i)γ = χγ(i)α(i) =
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εp(i)α(i) = −α(i). Thus, if Frobp† is an arithmetic Frobenius at the prime p†, then α(i) ≡ α(Frobp†) ≡
ap† mod F ∗, as claimed. Define f on Gv by

f(g) =

1 if εp(g) = 1,

ap† if εp(g) = −1.

Let K(g) = α(g)
f(g) on Gv. Then the cocycle cα can be decomposed as, cα = cKcf . We now proceed as in

the proof of part (1). If afvp + (āpε
′(p))fv 6= 0, the cocycle cK has invariant invvcK = 1

2 ·m
+
v mod Z. If

afvp − (āpε
′(p))fv 6= 0, then we get an extra term on evaluating α at an arithmetic Frobenius Frobv for

which εp(Frobv) = −1, and get invv(cK) = 1
2 · (m

−
v − ev · v(b)). It remains to calculate invvcf . Let σ be

the nontrivial element of the Galois group of the quadratic field cut out by εp. The table for the cocycle

cf is given by

1 σ

1 1 1

σ 1 b

which is clearly the symbol (t, b)v. This proves (2) and (3). �

The above theorem shows that the ramification of X at the place v is determined by m±v and one

extra Hilbert symbol. We can calculate those symbols using the formulas of page 211-212 of [Se80],

except if p = 2 and Fv 6= Q2, in which case we can use the formulas stated, e.g., in [Sn81] and [FV93].

7. Supercuspidal primes

We assume in this section that p is an odd prime, Np ≥ 2 and Np > Cp, and prove a weak result on

the ramification of Xv. Since ap = 0, results of the kind proved so far, relating the ramification to the

valuations of expressions involving the Fourier coefficients at p, are no longer possible.

Note that when the local Galois representation is a twist of cases already treated above we can often

predict the ramification since the Brauer class of the endomorphism algebra is invariant under twist.

Thus we may assume that the local Galois representation is supercuspidal, and is induced by a character

χ of an index two subgroup GK of the local Galois group Gp = GQp , i.e.,

ρf |Gp ∼ Ind
Gp
GK

χ.

We manage to sometimes predict the ramification of Xv in terms of this character. Let σ be the non-

trivial automorphism of K/Qp. We define an extension L of Fv and for an arithmetic Frobenius Frobu

of L set

mv := ev · v
(

(χ(Frobu) + χσ(Frobu))2

ε′(p)fv

)
∈ Z ∪ {∞},

where v is normalized such that v(p) = 1. Note mv <∞, if χ(Frobu) + χσ(Frobu) 6= 0.

Proposition 33. Assume Fv contains K. If mv is finite, then Xv is a matrix algebra over Fv if and

only if mv is even.
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Proof. Since Fv contains K, we have

ρf |Iv ∼

(
χ 0

0 χσ

)
.

So if i ∈ Iv and χ(i) 6= −χσ(i), then by part (4) of Proposition 8

α(i) ≡ (χ(i) + χσ(i)) mod F ∗.

If K = Qp2 is unramified, then we may write χ|IK = ωj2χ1χ2, where, following the notation of [GM09,

§3.3], ω2 is the fundamental character of level two and χi, for i = 1, 2, are characters of p-power order. On

the other hand if K/Qp is ramified then, in the notation of [GM09, §3.4], we may write χ|IK = ωjχ1χ2,

where ω is the Teichmüller character and again the χi have p-power order. Choose an extension L of

odd degree over Fv such that εp is tame and χi, for i = 1, 2, are trivial, when restricted to IL. In the

unramified case, ωσ2 = ωp2 , and we get α(i) ≡ ωj2(i) + ωpj2 (i) mod F ∗, for i ∈ IL such that the expression

on the right is non-zero. Since ω2 takes value in the (p2 − 1)-th roots of unity and Fv contains Qp2 , we

see that α(i) ∈ F ∗v , for i ∈ IL, under the non-vanishing assumption. Since, α̃ is a homomorphism, we

can show α(i) belongs to F ∗v even if the expression on the right vanishes, by the usual argument. In the

ramified case, ω = ωσ, and we have α(i) ≡ (ωj(i) + ωσj(i)) = 2ωj(i) mod F ∗, for i ∈ IL. Since ω takes

values in the (p− 1)-th roots of unity, we again deduce that α(i) ∈ F ∗v , for i ∈ IL.

Let u be the prime of L lying over v. By Lemma 9 applied to K = α and t = ε′, both restricted to

GL, we have

invL(resFv|Lcα) =
1

2
· u
(
α2

ε′
(Frobu)

)
mod Z.

Here as usual since εp is tame when restricted to L, εp(g) ∈ Q∗p, and since α2

ε (g) ∈ F ∗, we get α2

ε′ (g) ∈ F ∗v ,

for all g ∈ GL. If [L : Fv] = pt, then invL(resFv|Lcα) = pt · invvcα, so Xv is a matrix algebra over Fv if

and only if eL/Fv · v(α
2

ε′ (Frobu)) is even, where eL/Fv = pt is the degree of the totally ramified extension

L/Fv and v is the surjective valuation of F ∗v onto Z. If we choose the valuation v such that v(p) = 1,

then Xv is a matrix algebra if and only if ev · v(α
2

ε′ (Frobu)) is even. Since, the inertia degree of L/Fv is

also fv, we get the desired result. �

8. Numerical Examples

We end this paper with some examples. For forms of quadratic nenbetypus, the examples were

generated by the program Endohecke due to Brown and Ghate, which was made by suitably modifying

the C++ program Hecke created by W. Stein. The notation for the nebentypus is the one used in these

programs (and not that used in [GGQ05]). For forms of non-quadratic nebentypus, we used tables of

Quer [Qu05]. The first example is a Steinberg case, the next two are unequal slope ramified principal

series (RPS) cases, whereas the remaining examples are equal slope RPS cases.

(1) Let f ∈ S5(15, [2, 1]) be the unique primitive form. It is Steinberg at the prime 5 since N5 = 1

and C5 = 0. F is a cubic extension of Q. Now, 5 decomposes into two distinct primes v1, v2 in

F with ramification index and inertia degree (1, 1) and (2, 1) respectively. It turns out that Xv1

is ramified but Xv2 is not ramified, as predicted by Theorem 15.
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(2) Let f ∈ S3(35, [2, 2]) be the unique primitive form of orbit size 4. F = Q and X is ramified at

the RPS prime 5. Also v5(µ+ ν) = v5(µ+ ν + 10) = 1, corroborating Theorem 22.

(3) Let f ∈ S2(88, [2, 2, 2]) be the unique primitive form of orbit size 4. Then F = Q(
√

2) and X is

ramified at the unique prime v of F lying above the RPS prime 2. One checks µ+ ν = −
√

2 so

v(µ+ ν) = v(µ+ ν + 4) = 1/2, hence mv = [Fv : Q2] · 1/2 = 1 is odd, supporting Theorem 27.

(4) Let f ∈ S2(35, [4, 2]) be the unique primitive form of orbit size 4. Then F = Q and X is

ramified at the RPS prime 5 (and also at the good prime 2). One checks µ = −ν = −5i, so

v5(µ+ ν + 10) = 1, hence m+
v = 1 is odd, supporting Theorem 28.

(5) Let f ∈ S2(112, [2, 4, 2]) be the primitive form of orbit size 4 with a2 = 1 + i. Then F = Q and

p = 2 is an RPS prime, since ε2 has level 16, with ‘tame’ part of order 2, and ‘wild’ part of order

4. Now µ = −ν = 2i, so v(µ + ν ± 2p) = v(±4) = 2 is even, yet X is ramified at 2 (X is also

ramified at 3). This interesting ‘switch in parity’ is predicted by part (2) of Corollary 31. We

thank E. González-Jiménez for finding this example.

(6) Let f ∈ S2(363, [2, 2]) be the unique eigenform of orbit size 4. Then F = Q and X is ramified at

the RPS prime 3. Yet mv = m+
v = v3(µ+ ν + 6) = 2 is even. This is an equal slope case, so we

use Theorem 32. We compute that a = −3 and t = −3. Since (−3,−3)3 = −1, we have nv = 1

mod 2. Thus part (1) of Theorem 32 holds, and explains the switch in parity.

(7) Let f ∈ S3(91, [2, 2]) be the eigenform of orbit size 4. Then F = Q and X is not ramified at

the RPS prime 7. Now a7 = ±7i = ā7ε
′(7), so we cannot use part (1) of Theorem 32, since

µ = ν = 49 and a = ∞. We use part (2) instead. We take p† = 3 and see b = a2
3 = −26. Also

t = −7 and m+
v = 2 is even. We have (−26,−7)7 = 1, so nv = 0. This corroborates part (2) of

Theorem 32.
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