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1. Introduction

The classical Iwasawa main conjecture identifies two seemingly rather different

power series in one variable over a p-adic integer ring, up to multiplication by a unit

power series. One is the characteristic power series of a Selmer group, the other is a

p-adic L-function. The conjecture over Q was proved by Mazur and Wiles, and over

totally real fields by Wiles in [Wil90].

The purpose of these notes is to provide some background on Λ-adic forms to the

extent they are used in Wiles’ approach in [Wil90] to the proof of the main conjecture,

assuming that the totally real base field is Q. We first describe some general results

about Λ-adic forms and their Galois representations, and then give an exposition of

some specific results about Λ-adic forms in Sections 3 and 4 of [Wil90].

We leave it to the other articles in this volume (especially [CS10]) to explain how

the material in these notes is used in the proof of the main conjecture (over Q). How-

ever, some brief remarks on how Λ-adic forms enter the proof might be in order. To

prove the main conjecture, it suffices to show that the two power series mentioned

above have the same zeros, with multiplicity. Iwasawa had already shown that the

sum of the multiplicities of the zeros is the same. Thus it suffices to show that the

multiplicity of a specific zero of one of the power series (in practice one takes the

characteristic power series of the Selmer group) is greater than the corresponding

multiplicity of the corresponding zero of the other (the p-adic L-function). This is

done by Lambda-fying, so to speak, the classical argument of Ribet [Rib76] (see also

[Dal10]), proving the converse of Herbrand’s theorem, and goes roughly as follows.

The p-adic L-function turns out to be the constant term of a Λ-adic Eisenstein series

1This is a compilation of lecture notes given by the three authors at IIT Guwahati.
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(cf. Section 4). Thus, if a zero occurs in the p-adic L-function, then, going modulo

the corresponding divisor, one expects a congruence between the Λ-adic Eisenstein

series and a Λ-adic cuspidal eigenform F . The study of such congruences is made

more precise by introducing the Λ-adic Eisenstein ideal (described in Section 8). One

now uses the global Galois representation attached to the Λ-adic cusp form F , con-

structed in considerable detail in Section 6 (see especially Theorem 6.1), along with

some important local properties of this representation (Theorem 6.2), to show that

one can construct enough classes in the Selmer group so that a zero of greater multi-

plicity occurs in its characteristic power series. Thus, Λ-adic forms and their Galois

representations are used in a rather fundamental way in Wiles’ approach [Wil90] to

the proof of the main conjecture.

The material in these notes is taken mostly from the papers of Hida and Wiles.

For the background on Λ-adic forms and representations (described in Sections 2

through 6), we depend heavily on [Hid93, Chapter 7] and to some extent on [Wil88]

and [Hid86]. The material in Sections 7 and 8 is taken almost verbatim from Sections

3 and 4 of [Wil90], though we provide detailed proofs of some of the results.

2. Some notation

We start by recalling some notation from Iwasawa theory. Let p be a prime and

let Zp denote the ring of integers of Qp. If p = 2, set q = 4, and if p > 2 set q = p.

Let W = 1 + qZp. Then the units of Z×
p decompose as:

Z×
p = (Z/q)× ×W

x = ω(x)× 〈x〉,

where ω and 〈 〉 are defined by the decomposition above.

Let u denote a topological generator of W . Let log be the usual p-adic logarithm

from W to qZp.

Lemma 2.1. If z ∈ W = 1 + qZp, then z = us(z), where s(z) = log(z)
log(u)

∈ Zp.

Proof. Let exp be the p-adic exponential map. Then

us(z) = exp(s(z) log(u)) = exp

(
log z

log u
· log u

)
= exp(log z) = z.
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Here we are using the fact that exp induces an isomorphism between qZp and 1+ qZp

with inverse log. �

Let N be an integer prime to p. It will denote tame level. We introduce three

Dirichlet characters that occur throughout the exposition.

• χ will denote a fixed Dirichlet character of level Nq.

• ω above may be viewed as a Dirichlet character of conductor q. When p is odd,

ω is just the mod p cyclotomic character. If p = 2, then ω is the non-trivial

character of conductor 4.

• χζ is a Dirichlet character of conductor pr associated to a p-power root of unity

as follows. If ζ has exact order pr−1 with r ≥ 1 if p is odd, or exact order pr−2

with r ≥ 2 if p = 2, define χζ by mapping the image of u ∈ W = 1 + qZp in

(Z/pr)× to ζ.

Finally let νp denote the p-adic cyclotomic character, defined by ζg = ζνp(g), for all g

in Gal(Q̄/Q) and all p-power roots of unity ζ.

Let Λ = Zp[[X]] be the power series ring in one variable X over Zp. This is the

usual Iwasawa algebra. If s ∈ Zp, then the coefficients of the power series

(1 +X)s =
∞∑

m=0

(
s

m

)
Xm

belongs to Zp, i.e., (1 + X)s ∈ Λ. Indeed if P (s) ∈ Qp[s] is a polynomial in s, then

it is easy to check that P (s) is a continuous function from Zp to Qp. In particular,

the map s 7→
(
s
m

)
is a continuous function from Zp to Qp. This map takes N to N.

But N is dense in Zp. So this map induces a continuous function from Zp to Zp. In

particular, |
(
s
m

)
|p ≤ 1 if s ∈ Zp.

Let κ : W = 1 + qZp → Λ× be the character which maps u to 1 +X, i.e., for each

s ∈ Zp,

κ(us) = (1 +X)s =
∞∑

m=0

(
s

m

)
Xm ∈ Λ×.

The character κ may also be viewed as a Galois character via the natural map

Gal(Q̄/Q) ։ Gal(Q∞/Q) = W , where Q∞ is the cyclotomic Zp-extension of Q.

The character κ plays a central role in the subject. It is the universal deformation

of the trivial mod p character; roughly it plays the role of the Λ-adic analogue of the

cyclotomic character νp.
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3. Λ-adic forms

Let p be an odd prime and let N be an integer prime to p. Let K be a finite field

extension of the quotient field of Λ, and let I denote the integral closure of Λ in K.

Observe that I is a complete local noetherian ring and is an integrally closed domain

of Krull dimension 2. We remark that since I is a normal ring of dimension 2, it is

Cohen-Macaulay [Mat86, Exer. 17.3], but unlike Λ, I is not necessarily regular.

Definition 3.1. A Λ-adic form F of level N and character χ : (Z/Np)× → C× is a

formal q-expansion

F =
∞∑

n=0

an(F )qn ∈ I[[q]]

such that for all specializations ν : I → Q̄p, extending the usual specializations

νk,ζ : Λ → Q̄p

X 7→ ζuk − 1,

where k > 1 and ζ ∈ µpr−1 with r ≥ 1, the specialized q-expansion

fν = ν(F ) =
∞∑

n=0

ν(an(F ))qn ∈ Q̄p[[q]]

is the image under a fixed embedding Q̄ →֒ Q̄p of the q-expansion in Q̄[[q]] of a

classical modular form of

• weight k,

• level Npr, and,

• character χν = χω−kχζ .

Note that the character χν has level Npr with r ≥ 1.

Thus a Λ-adic form is a family of classical forms of varying weights and level

divisible by Np, with identical residual q-expansions. Explicit examples of Λ-adic

forms are CM families (see, for instance, [Gha05, Sec. 5]) and Eisenstein families

(described in Section 4).

Remark 3.2. Λ-adic forms may be defined for p = 2 as well. The definition is similar

to the one given above for odd primes p, with some minor changes: one needs to

replace p by q = 4 in the levels of χ and ω, and now ζ ∈ µpr−2 , r ≥ 2, so that χζ
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has level divisible by q. In particular, χν has level Npr with r ≥ 2. We will treat

the case p = 2 in the next section, but will later avoid p = 2 in these notes. We also

remark that the symbol ‘q’ has two meanings: it is an odd prime or 4, and also e2πiz

in various q-expansions. Since both usages are standard, we let this be; in any case

which meaning is implied should be clear from the context.

Remark 3.3. Wiles uses a slightly different normalization in his papers [Wil88], [Wil90]

when he defines a Λ-adic form. His specialization map νk,ζ mapsX to ζuk−2−1, rather

than ζuk − 1, and his fν is a weight k, level Npr form, as above, but with character

χν = χω2−kχζ . Further, some authors (cf. Skinner’s Hangzhou lectures notes [Ski04])

specialize X to ζuk−1 − 1 (with χν now χω1−kχζ). We point out that all the above

normalizations are in fact equivalent and one may go between them by a suitable

automorphism of Λ. Indeed, we have the useful fact [Hid93, p. 199]:

Lemma 3.4. The map induced by X 7→ aX + b, where a, b ∈ Zp, and |a|p = 1 and

|b|p < 1, is an automorphism of Λ.

The different normalizations explain the occasional appearance of the terms u2 (in

Wiles’ papers) or u (in Skinner’s notes) in some of the formulas. As an aside, one may

ask which normalization is best. It appears that the choice of k − 2 is historical and

was used originally by Hida and then by Wiles, whereas the choice of k seems easiest

for bookkeeping purposes, and is what we shall mainly try and use in these notes.

However, we shall eventually switch to k − 2 when exposing Wiles’ results on Λ-adic

forms from [Wil90, Sec. 4] in Section 8, to avoid introducing errors when changing

normalizations. We also remark that some formulas, such as those for the Eisenstein

family in the next section, or for the determinants of Λ-adic Galois representations,

seem to be the most natural when one uses k−1, but we will not use this normalization

in these notes.

Remark 3.5. There is no condition on the weight 1 specializations in the definition of

a Λ-adic form, and the study of such specializations is an interesting area of research

(cf. [MW86], [GV04]).

A Λ-adic form with q-expansion in I[[q]] is sometimes more precisely referred to

as an I-adic form. We shall use both terminologies. Let us write M(N,χ, I) for the
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I-module of I-adic forms of tame level N and character χ. Let

M(N, I) =
⊕

χ

M(N,χ, I)

be the I-module of all I-adic forms (of some character χ).

Definition 3.6. A Λ-adic form F is cuspidal if all the specializations fν above are

cusp forms.

We have the corresponding decomposition:

S(N, I) =
⊕

χ

S(N,χ, I)

of the I-module of I-adic cusp forms.

4. Families of Eisenstein series

The aim of this section is to give an example of a Λ-adic form that is used extensively

in Wiles’ proof of the Iwasawa main conjecture. This form interpolates a family of

Eisenstein series.

4.1. Classical Eisenstein series. Recall that if k is an even integer greater than

or equal to 4, then the (normalized) Eisenstein series of weight k, level 1 and trivial

character has q-expansion given by

Ek =
ζ(1− k)

2
+

∞∑

n=1

σk−1(n)qn,

where σk−1(n) =
∑

d|n d
k−1 is the usual arithmetic function, and ζ(s) is the Riemann

zeta function.

Let p be a prime. Since the forms Ek are of level 1 they cannot lie in a p-adic family

(as we have seen forms fν in a p-adic family have level at least p, not to mention the

fact that the character χν depends on k, and cannot be uniformly trivial). Also, the

Eisenstein series Ek of weight 2 and level 1 is not even holomorphic. However, for all

even k ≥ 2, the p-stabilized form E
(p)
k = Ek(z)− p

k−1Ek(pz) is holomorphic and is of

level p.

More generally, for any k ≥ 1 and character ψ mod Npr, with ψ having the same

parity as k, consider the Eisenstein series of weight k, level equal to cond(ψ), and
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character ψ, given by:

Ek,ψ =
L(1− k, ψ)

2
+

∞∑

n=1

σk−1,ψ(n)qn,

where σk−1,ψ(n) =
∑

d|n ψ(d)dk−1 and L(s, ψ) is the Dirichlet L-series attached to ψ.

Again, if ψ has level N (i.e., it has trivial p-part), then Ek,ψ has level N , which is not

divisible by Np. But, its p-stabilization, namely:

E
(p)
k,ψ = Ek,ψ(z)− ψ(p)pk−1Ek,ψ(pz),

which has q-expansion:

E
(p)
k,ψ =

L(p)(1− k, ψ)

2
+

∞∑

n=1

σ
(p)
k−1,ψ(n)qn,

where

σ
(p)
k−1,ψ(n) =

∑

d|n

(d,p)=1

ψ(d)dk−1,

and

L(p)(s, ψ) = (1− ψ(p)p−s)L(s, ψ)

is the Dirichlet L-series attached to ψ deprived of the Euler factor at p, has level

divisible by Np. NB: E
(p)
k,ψ = Ek,ψ, if ψ already has conductor divisible by p. Given

these remarks it seems that one should try and interpolate p-stabilized Eisenstein

series. Before we do this we recall some classical facts about p-adic L-functions for

GL1/Q, which will be needed to interpolate the constant terms.

4.2. Kubota-Leopoldt p-adic L-function. Let χ be an arbitrary even Dirichlet

character. The Kubota-Leopoldt p-adic L-function Lp(s, χ) attached to χ is a con-

tinuous function for s ∈ Zp \ {1} (also continuous at s = 1, if χ is non-trivial), which

satisfies the interpolation property

Lp(1− k, χ) = (1− χω−k(p)pk−1)L(1− k, χω−k),(4.1)
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for k ≥ 1. Say χ is of type W if χ factors through W (that is, as a Galois character,

χ factors through the Galois group Gal(Q∞/Q), where Q∞ is the cyclotomic Zp-

extension of Q). NB: the trivial character is of type W . Set

Hχ(X) =




χ(u)(1 +X)− 1 if χ is of type W ,

1 otherwise.

Iwasawa showed [Was96, Thm. 7.10] that there exists a unique power series Gχ(X) ∈

Iχ := Zp[χ][[X]] such that

Lp(1− s, χ) =
Gχ(u

s − 1)

Hχ(us − 1)
.(4.2)

Moreover, if ρ is a character of type W , then (cf. [Wil90, (1.4)]):

Gχρ(X) = G(ρ(u)(1 +X)− 1).(4.3)

This can be proved using [Was96, Thm. 7.10]; see also [Ven10, Prop. 2.1].

4.3. Λ-adic Eisenstein series. We are now ready to begin interpolating p-stabilized

Eisenstein series. Recall that

• q = p if p is odd, and,

• q = 4 if p = 2.

Fix an even character χ of conductor Nq. This will be the character of the Λ-adic

form we construct (in the sense of Definition 3.1). For each k > 1 and

• ζ ∈ µpr−1 , with r ≥ 1, if p is odd, and,

• ζ ∈ µpr−2 , with r ≥ 2 if p = 2,

let ψ = χν = χω−kχζ be the character of level Npr, which is the character of the form

fν (see Definition 3.1). NB: Since χ is even, ψ has the same parity as k. Consider

the corresponding Eisenstein series E
(p)
k,ψ attached to ψ = χω−kχζ . This is a modular

form in Mk(Np
r, ψ).

Proposition 4.4. Set Iχ = O[[X]] with O = Zp[χ]. If χ 6= 1, then there is a Λ-adic

form

Eχ =
∞∑

n=0

An,χ(X)qn ∈ Iχ[[q]],
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which specializes to E
(p)
k,ψ, with ψ = χω−kχζ, under the homomorphism of Iχ to Q̄p

induced by νk,ζ, for k > 1, ζ as above. If χ = 1, then Eχ still exists, but it is strictly

speaking not a Λ-adic form, since the constant term of Eχ has denominator X.

Proof. We first interpolate the non-constant terms. As remarked earlier, if s ∈ Zp,

then

(1 +X)s =
∞∑

m=0

(
s

m

)
Xm ∈ Λ×.

By Lemma 2.1, if d is an integer with d ≡ 1 mod q, then d = us(d) for s(d) ∈ Zp.

Hence, if we set

Ad(X) =
1

d
(1 +X)s(d) ∈ Λ,

then

Ad(u
k − 1) =

us(d)k

d
= dk−1.

This basic computation hints at what we should do for general d (coprime to p).

Recall Z×
p = (Z/q)× × W with x = ω(x) · 〈x〉. Given d with (d, p) = 1, we have

〈d〉 ∈ W . So define

Ad(X) =
1

d
(1 +X)s(〈d〉).(4.5)

Then

Ad(ζu
k − 1) =

ζs(〈d〉)uks(〈d〉)

d
=
χζ(〈d〉)〈d〉

k

d
= ω−k(d)χζ(d)d

k−1.

Now introduce the character χ of level Nq. For n ≥ 1, set

An,χ(X) =
∑

d|n

(d,p)=1

χ(d)Ad(X).

Then

An,χ(ζu
k − 1) =

∑

d|n

(d,p)=1

ψ(d)dk−1 = σ
(p)
k−1,ψ(n),

where ψ = χω−kχζ . Thus we have successfully interpolated the non-constant terms

of E
(p)
k,ψ.

Now we need to interpolate the constant terms, that is, we need to find A0,χ(X) ∈ Iχ

such that

A0,χ(ζu
k − 1) =

L(p)(1− k, ψ)

2
.
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But such a power series is furnished by the Kubota-Leopoldt p-adic L-function at-

tached to χ. We define:

A0,χ(X) =
1

2

Gχ(X)

Hχ(X)
.

Recall that in the present setting our χ has conductor Nq. If either the N -part or

the p-part of χ is non-trivial, then χ is not of type W , and so if χ is non-trivial then

Hχ(X) = 1. If χ is trivial, then it is trivially of type W and Hχ(X) = X. Thus

A0,χ(X) ∈ Iχ if χ 6= 1, and XA0,χ(X) ∈ Iχ if χ = 1. Now:

A0,χ(ζu
k − 1) =

1

2

Gχ(ζu
k − 1)

Hχ(ζuk − 1)

=
1

2

Gχχζ
(uk − 1)

Hχχζ
(uk − 1)

by (4.3)

=
Lp(1− k, χχζ)

2
by (4.2)(4.6)

=
(1− (χω−kχζ)(p)p

k−1) · L(1− k, χω−kχζ)

2
by (4.1)

=
L(p)(1− k, ψ)

2
,

as desired.

Thus, if we define Eχ =
∑∞

n=0An,χ(X)qn, then Eχ ∈ Iχ[[q]] if χ 6= 1 (and XEχ ∈

Iχ[[q]] if χ = 1), and Eχ has the desired interpolation property. �

4.4. Cuspidal families. In this section we construct a cuspidal Λ-adic form starting

with a classical cusp form of weight 1, and the Λ-adic form Eχ just constructed. The

argument is somewhat artificial so we will be brief.

Let f1 ∈ S1(Nq, ψ1) be a fixed cusp form of weight 1. Recall

Eχ(ζu
k−1 − 1) = E

(p)
k−1,ψ ∈Mk−1(Np

r, ψ)

where ψ = χω1−kχζ . Thus the product f1 · E
(p)
k−1,ψ is a cusp form:

f1 · E
(p)
k−1,ψ ∈ Sk(Np

r, χ′ω−kχζ),

with χ′ := ψ1χω. We show f1 · E
(p)
k−1,ψ are the specializations at X = ζuk − 1 of a

cuspidal Λ-adic form F of level N and character χ′ for k > 1 and ζ as above.
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Assume that the q-expansions of f1 and ψ1 are both Zp[χ]-rational (otherwise ex-

tend scalars). Then we may formally multiply the q-expansions in Iχ = Zp[χ][[X]]

of f1 and Eχ. Say the resulting q-expansion is f1 · Eχ =
∑∞

n=0 an(X)qn, for some

an(X) ∈ Iχ. Now define

F :=
∞∑

n=0

an(u
−1X + u−1 − 1)qn,

noting that the substitution made above is an automorphism of Iχ (cf. Lemma 3.4).

Then on substituting X = ζuk − 1 we get

F (ζuk − 1) =
∞∑

n=0

an(ζu
k−1 − 1)qn = f1 · Eχ(ζu

k−1 − 1) = f1 · E
(p)

k−1,χω1−kχζ
.

So F is the desired cuspidal family.

4.5. Wiles’ normalizations. As mentioned in Remark 3.3, Wiles’ normalization

involves substituting X = ζuk−2 − 1, rather than X = ζuk − 1. This changes the

definition of Eχ slightly. Since we will also work with Wiles’ Eχ below let us point out

the changes that need to be made in the old definition:

(1) The denominator of d in (4.5) gets shifted to the numerator (i.e., multiply the

old Ad(X) by d2) so that now

Ad(X) = d(1 +X)s(〈d〉),

and An,χ(X) for n ≥ 1 is now defined with this new Ad(X). We remark here

that with ‘Skinner’s normalization’ X = ζuk−1 − 1 one could simply drop the

d altogether from Ad(X), and so this normalization gives the neatest formula!.

(2) Let

Ĝχ(X) = Gχω2(u2(1 +X)− 1),

Ĥχ(X) = Hχω2(u2(1 +X)− 1).

Then the new constant term is defined as

A0,χ(X) =
1

2

Ĝχ(X)

Ĥχ(X)
.
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It is easily verified that the Wiles’ Eisenstein family Eχ =
∑∞

n=0An,χ(X)qn interpo-

lates the p-stabilized Eisenstein series E
(p)
k,ψ with ψ = χω2−kχζ (note the 2− k instead

of the −k) when one specializes at X = ζuk−2 − 1. This is more or less obvious for

the non-constant terms; for the constant term we simply note:

A0,χ(ζu
k−2 − 1) =

1

2

Ĝχ(ζu
k−2 − 1)

Ĥχ(ζuk−2 − 1)

=
1

2

Gχω2(ζuk − 1)

Hχω2(ζuk − 1)

=
1

2

Gχω2χζ
(uk − 1)

Hχω2χζ
(uk − 1)

by (4.3)

=
L(p)(1− k, χω2−kχζ)

2
as in (4.6).

5. Hida theory

In this section we mention some facts from Hida theory. From this point on, the

prime p will be an odd prime. We start with some definitions.

Definition 5.1. A Λ-adic form is a newform if each fv is N -new.

Note that we do not require fv to be p-new; indeed the specializations fν may be

p-old if r = 1.

The spaces M(N, I) and S(N, I) have a natural action of the Hecke operators Tq

for q ∤ Np and Uq for q|Np, given by the usual formulas. Sometimes we just write Tn

for the n-th Hecke operator (including at the primes dividing Np). The Hecke action

commutes with specialization.

Definition 5.2. A Λ-adic form F is an eigenform if it is an eigenfunction of the Hecke

operators. Equivalently, F is an eigenform if each specialization fν is an eigenform

for the Hecke operators (in particular each fν is a Up-eigenform).

We now define the Λ-adic Hecke algebra h(N,Λ) to be the Λ-subalgebra of the

Λ-algebra EndΛ(M(N,Λ)) generated by all the Hecke operators above. We define

h(N, I) by h(N,Λ) ⊗Λ I. There is a bijection between I-algebra homomorphisms of

h(N, I) with values in I, and I-adic cuspidal Hecke eigenforms normalized to have first

Fourier coefficient 1, induced by the map (λ : h(N, I)→ I) 7→ (F =
∑∞

n=1 λ(Tn)q
n).
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Definition 5.3. A Λ-adic form is primitive if it is an eigenform, a newform, and

normalized such that a1(F ) = 1.

The spacesM(N, I) and S(N, I) of I-adic forms are not in general finitely generated

as I-modules, even if one restricts to the new part. Put another way, the number of

primitive I-adic forms of tame level N is not necessarily finite. Hida realized that just

as holomorphic forms are more manageable in the class of real-analytic forms, in the

p-adic world, ordinary forms are better behaved in the class of algebraic holomorphic

forms.

Definition 5.4. A Λ-adic form F is ordinary if fv is ordinary (that is, ap(fν) is a

p-adic unit), for all ν as above.

Note the Eisenstein family Eχ is ordinary, since Ap,χ(X) = 1.

The sum of ordinary forms in the above sense (whether classical or Λ-adic) is not

again necessarily ordinary in the above sense. To rectify this, Hida introduced a

projector e = limn→∞ Un!
p , and using e, defined the spaces of ordinary Λ-adic forms

as follows:

Mord(N, I) = eM(N, I),

Sord(N, I) = eS(N, I).

Since e(F ) = F if F is ordinary in the sense of the previous definition, the sum of

ordinary forms is now ordinary in the more general sense above. One of the key

reasons the ordinary part is important is because of the following theorem.

Theorem 5.5. Mord(N, I) is finitely generated as an I-module.

Proof. We prove this when I = Λ since the proof is easily modified for general I.

Note that after specialization at ν = νk,1, Λ-adic forms in Mord(N,Λ) wind up in the

classical space Mord
k (Γ1(Np),Zp) = eMk(Γ1(Np),Zp). The proof now involves two

parts. One first shows that the spaces Mord
k (Γ1(Np),Zp) have rank independent of k.

One then shows that this forces Mord(N,Λ) to be finitely generated as a Λ-module.

Let us deal with the first part first. By duality it suffices to show that the Hecke al-

gebra acting on Mord
k (Γ1(Np),Zp) has rank independent of k. By the Eichler-Shimura

isomorphism it further suffices to show that H1(Γ1(Np), L(n,Zp)) has rank indepen-

dent of n, where n = k − 2, and L(n,A) = Symn(A2)∗ is the space of homogeneous
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polynomials in two variables with coefficients in A. But now a pretty cohomological

argument (see [Hid93, p. 203]) shows that the rank is in fact bounded by dimension

eH1(Γ1(Np),Fp). We remark that since Fp = L(0,Fp) = L(2 − 2,Fp), the number

of ordinary forms of all weights and level Np is controlled by the weight 2 ordinary

forms.

Now say that M is a finitely generated free submodule of Mord(N,Λ). Choose a

basis F1, F2, . . . , Fd. Choose integers n1, n2, . . . nd such that det(ani
(Fj)) 6= 0 in Λ.

By the Weierstrass preparation theorem, there is a k > 1 such that the specializa-

tion of det(ani
(Fj)) at uk − 1 is also not 0. Let f1, f2, . . . , fd be the correspond-

ing specializations at νk,1; by hypothesis they generate a free rank d submodule of

Mord
k (Γ1(Np),Zp). But as we have mentioned above this last module has bounded

rank, and so d is bounded from above. In particular the maximal rank free submodule

of Mord(N,Λ) has bounded rank, say r.

Now we can show that Mord(N,Λ) is finitely generated as a Λ-module. Suppose

F1, F2, . . . , Fr is a maximal linearly independent set of elements in Mord(N,Λ). Then

these elements form a basis of Mord(N,Λ)⊗ΛQ(Λ), where Q(Λ) is the quotient field of

Λ. Thus, every element of F ∈Mord(N,Λ) is a linear combination F =
∑r

i=1 xiFi of

these Fi’s with coefficients xi ∈ Q(Λ). For any set of r natural numbers n1, n2, . . . , nr,

we have the matrix equation

AX = B

where A = (ani
(Fj)), X = (x1, x2, . . . , xr)

t and B = (an1
(F ), . . . , anr

(F ))t. Choose

the ni such that D = det(A) ∈ Λ is non-zero. Multiplying the above matrix equa-

tion by the adjoint matrix of A, we see that Dxi ∈ Λ, for i = 1, . . . , r. Hence

DMord(N,Λ) ⊆ ΛF1+· · ·+ΛFr. It follows that Mord(N,Λ)∼=DMord(N,Λ) is finitely

generated as a Λ-module, since is isomorphic to a submodule of a finitely generated

Λ-module, and Λ is noetherian. �

Remark 5.6. Clearly since M(N,Λ) is a submodule of Λ[[q]] it is torsion-free. With

a bit more effort one can show that the finitely generated torsion-free Λ-module is in

fact Λ-free (see [Hid93, p. 209]).

We now define the ordinary Λ-adic Hecke algebra hord(N,Λ) to be the Λ-subalgebra

of EndΛ(Mord(N,Λ)) generated over Λ by all the Hecke operators above. Similarly

we define hord(N, I) by hord(N,Λ)⊗Λ I. The finiteness of the space of ordinary Λ-adic
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forms was initially proved by Hida who showed that hord(N,Λ) is finitely generated

as a Λ-module. This statement already implies the first part of the following theorem

which summarizes some of the main results of Hida theory.

Theorem 5.7 (Hida, Wiles). Let p be an odd prime.

(1) There are finitely many primitive, ordinary Λ-adic forms F of tame level N .

(2) Each classical, p-stabilized, primitive, ordinary form lives in some primitive,

ordinary form F .

(3) The form F in part (2) is unique up to Galois conjugacy.

(4) Given a normalized, ordinary, Λ-adic eigenform F , one may associate a Galois

representation ρF to it, with several natural properties.

Parts (2) and (3) follow from what is usually referred to as Hida’s control theorem

and are not proved in these notes. The representation ρF in part (4) was constructed

by Hida. In the next few sections we explain an alternative method of Wiles for

constructing ρF . We also describe the local behaviour of ρF (a result of Wiles). This

last result plays a key role in the proof of the Iwasawa main conjecture.

6. Ordinary Λ-adic Galois representations

The goal of this section is to construct Galois representations attached to ordinary

Λ-adic eigenforms. All the material here is either taken directly (or modified slightly)

from [Hid93] or [Wil88].

In this section p is an odd prime. Recall Λ denotes the power series ring Zp[[X]],

K is a finite extension of the field of fractions of Λ, and I denotes the integral closure

of Λ in K. We shall explain Wiles’ method of attaching a Galois representation into

GL2(K) to a normalized ordinary I-adic cuspidal eigenform F .

6.1. Results. We first state the precise result.

Theorem 6.1 (Hida, Wiles). Let F be a normalized I-adic eigenform of level N

in Sord(N,χ, I), and let λ denote the corresponding I-algebra homomorphism λ :

hord(N,χ; I) → I. Then there exists a unique Galois representation ρF : GQ =

Gal(Q̄/Q)→ GL2(K) such that

(1) ρF is continuous and absolutely irreducible,

(2) ρF is unramified outside Np,
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(3) for each prime q ∤ Np, we have

det(1− ρF (Frobq)T ) = 1− λ(Tq)T + (χκν−1
p )(q) T 2,

where Frobq is the Frobenius element at q and κ : W = 1 + pZp → Λ× is the usual

character, and for any x ∈ Z∗
p, 〈x〉 := ω(x)−1x ∈W .

As mentioned above, the global representation ρF is absolutely irreducible. However

the local representation obtained by restricting ρ = ρF to a decomposition group Dp

at the prime p, is reducible. More precisely, we have:

Theorem 6.2 (Wiles). Maintaining the same notations as above, the restriction of

ρF to Dp is given up to equivalence by

ρF |Dp
∼

(
ǫ1 ∗

0 ǫ2

)
,

where ǫ2 is unramified and ǫ2(Frobp) = λ(Tp).

We shall prove Theorem 6.1 over the next several sections. Before we start, let

us explain the strategy of the proof. Starting with a family of representations

ρi : GQ → GL2(Mi), where Mi is a finite extension of Qp, we wish to construct a

Λ-adic representation ρ : GQ → GL2(K) such that the ‘reduction’ of the representa-

tion ρ (see §6.3 below) at certain height 1 prime ideals {Pi}
∞
i=1 is isomorphic to ρi

(over some finite extension of Qp). In our case, the representations {ρi}
∞
i=1 come from

the representations associated to the classical specializations F (Pi) (see §6.5 below),

where Pi’s are height 1 primes that are the kernels of the specialization maps ν = νi

considered earlier; the resulting representation ρ will be ρF . In order to patch the

representations {ρi}
∞
i=1 into a Λ-adic representation, a new notion was introduced by

Wiles in [Wil88], namely that of a pseudo-representation (see §6.6 below). The im-

portance of this notion lies in the fact that it is easier to patch pseudo-representations

than it is to patch usual representations.

6.2. Continuity of the Galois representation. Before we prove Theorem 6.1, let

us comment on what it means for a Λ-adic Galois representation ρ : GQ → GL2(K)

to be continuous.

Definition 6.3. A Galois representation ρ : GQ → GL2(K) is said to be continuous if

there is an I-submodule L of K2 (called a lattice) such that L is of finite type over I,
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L⊗I K = K2, L is stable under ρ, and as a map ρ : GQ → AutI(L), ρ is continuous,

where AutI(L) is equipped with the projective limit topology

AutI(L) = lim
←−
i

AutI(L/m
iL)

for the unique maximal ideal m of I.

Remark 6.4. [Hid93, §7.5]. Since I is a ring of Krull dimension 2, its field of fractions

K is not locally compact in any non-discrete topology on K (cf. Bourbaki, Commu-

tative Algebra, §9.3). This implies that the image of a continuous representation of

GQ into GL2(K), with non-discrete topology on K, is small. This is why one takes

the m-adic topology on EndI(L) to define the continuity of ρ.

Remark 6.5. It is easy to see that an I-module L as above exists. However, L may not

be free over I, and so one takes the projective limit topology on AutI(L). One thinks

of the projective limit topology as a slight generalisation of the ‘usual topology’ on

GL2(I), which is induced from the product topology on I4, since if L is a free module

of rank 2 over I, then the projective limit topology on AutI(L) coincides with the

‘usual topology’. Also, the continuity of the representation does not depend on the

choice of the lattice L, because of the Artin-Rees lemma, according to [Hid93, p. 228].

6.3. Reduction of the representation ρF modulo a non-zero prime ideal P .

We wish to speak of the reduction of ρF modulo a non-zero prime ideal P , even before

we have constructed the representation ρF . For any prime ideal P of I, let Q(I/P )

denote the field of fractions of I/P .

Definition 6.6. A Galois representation ρF (P ) into GL2(Q(I/P )) is called a resid-

ual representation of ρF at P , if ρF (P ) is continuous under the m-adic topology of

Q(I/P ), it is semi-simple, and it satisfies the following properties:

• ρF (P ) is unramified outside Np,

• For any prime q ∤ Np,

det(1− ρF (P )(Frobq)T ) = 1− λ(Tq)(P )T + ((χκν−1
p )(q))(P )T 2.

6.4. Existence of the residual representation at a non-zero prime P . A priori

it is not clear that the residual representation ρF (P ) attached to ρF exists. However,

for any non-zero prime ideal, the residual representation exists.
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Theorem 6.7. For every prime ideal P of height 1, the residual representation ρF (P )

of ρF exists and it is unique up to an isomorphism over Q(I/P ).

Proof. Let L be a lattice such that the image of ρF is a subset of AutI(L). We know

that I is a noetherian integrally closed domain of dimension 2. Let P denote a prime

ideal of height 1. Let IP denote the localisation of I at P . It is easy to see that IP is

a DVR. Since IP is a PID, LP = L ⊗I IP becomes a free module of rank 2 over IP .

Identifying LP with I2
P we can view the representation ρF as ρF : GQ → GL2(IP ).

Reducing ρF modulo P , and noting IP/PIP = Q(I/P ), we get

ρP : GQ → GL2(Q(I/P )).

Let ρF (P ) be the semi-simplification of ρP . This is a candidate for the residual

representation of ρ at P . Clearly, ρF (P ) satisfies the conditions mentioned in Defi-

nition 6.6, since ρF does. For example, the continuity of ρF (P ) follows from that of

ρF , noting that after localizing LP becomes free module over IP , hence the projective

limit topology and the usual topology coincide. The uniqueness of the representation

ρF (P ) follows from the fact that the semi-simplification of a representation over a

field of characteristic 0 is completely determined by its traces (see Lemma 6.8 below).

The same result shows that ρF (P ) is independent of the choice of lattice L. �

Lemma 6.8 ([Ser89, Chap. 1, §2]). Let G be a group, K be a field of characteristic

0 and let ρ1 and ρ2 be two finite dimensional linear representations of G over K. If

ρ1 and ρ2 are semi-simple and Trace (ρ1(g)) = Trace (ρ2(g)),∀ g ∈ G, then ρ1 and

ρ2 are isomorphic over K.

Remark 6.9. By induction on the height of prime ideals, one can define the residual

representation for prime ideals of height 2 as well. For further details, see [Hid93,

§7.3].

6.5. Identifying the residual representations ρF (P ) for arithmetic prime P .

We will in particular be interested in identifying the reductions of ρF at certain special

height one prime ideals of I. Let

Ξ(I) = {P : P = kernel of a specialization map ν : I → Q̄p as in definition 3.1}.

The elements of Ξ(I) are clearly height one prime ideals of I and are called arithmetic

primes. We sometimes identify the homomorphisms ν with their kernels P .
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Any element α ∈ I can be viewed as a function on Spec(I)(Q̄p) = Hom(I, Q̄p)

by α(P ) := P (α) = α (mod P ). In particular F (P ) gives a formal q-expansion in

Q̄p[[q]]. If P is an arithmetic prime, then F (P ) is by definition a classical cuspidal

eigenform of weight at least 2, and so there is a classical Galois representation ρF (P )

attached to F (P ) by Deligne. We show that this representation agrees with the

residual representation ρF (P ) attached to ρF .

First let us recall the definition of Galois representations attached to classical cusp

forms. Let ψ be a character of conductor Npr. Define

Sk(Γ0(Np
r), ψ;A) := Sk(Γ0(Np

r), ψ; Z[ψ])⊗Z[ψ] A,

for any algebra A in C or Q̄p, containing Z[ψ]. Let hk(Γ0(Np
r), ψ;A) denote the

corresponding Hecke algebra. We have the following duality between cusp forms and

the Hecke algebra:

HomZ[ψ](hk(Γ0(Np
r), ψ;A), A) ∼−→ Sk(Γ0(Np

r), ψ;A)

ϕ 7→
∞∑

n=1

ϕ(T (n))qn.
(6.10)

Under this duality normalized eigenforms correspond to Z[ψ]-algebra homomorphisms

from hk(Γ0(Np
r), ψ;A) to A. Let f be a normalised eigenform in Sk(Γ0(Np

r), ψ;Kf )

where Kf denotes the number field generated by {an(f)}∞n=1. Let λf denote the

corresponding algebra homomorphism hk(Γ0(Np
r), ψ;Kf ) → Kf . Then we have the

following:

Theorem 6.11. For each maximal ideal ℘ of OKf
lying over p, there exists a unique

2-dimensional Galois representation ρf,℘ : GQ → GL2(Kf,℘) such that

(1) ρf,℘ is continuous and absolutely irreducible,

(2) ρf,℘ is unramified outside Np,

(3) for each prime q ∤ Np, we have

det(1− ρf,℘(Frobq)T ) = 1− λf (Tq)T + ψ(q)qk−1T 2.

The existence of such a representation was proved by Eichler-Shimura when k = 2,

and by Deligne for k ≥ 2.

As mentioned above, the representation ρf,℘ is irreducible. However the local rep-

resentation obtained by restricting ρf,℘ to a decomposition subgroup Dp at the prime
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p, is reducible. More precisely, we have:

(6.12) ρf,℘ |Dp
∼

(
ψνk−1

p λ(ap)
−1 ∗

0 λ(ap)

)
,

where λ(a) is the unramified character of Dp taking Frobp ∈ Dp/Ip to a and νp is the

p-adic cyclotomic character.

Now let P be a prime corresponding to ν extending νk,ζ , i.e., an arithmetic prime.

Let f = fν = F (P ). Let ℘ be the prime of Kf induced by the fixed embedding

Q̄ →֒ Q̄p. By the computations in (6.14) below, we see that Kf,℘ ⊆ Q(I/P ) and

hence OKf,℘
⊆ Ĩ/P , where Ĩ/P is the integral closure of I/P in Q(I/P ). We can

state a refined version of Theorem 6.11, for f = F (P ), as follows:

Corollary 6.13. There exists a unique, odd, Galois representation ρF (P ) : GQ →

GL2(Q(I/P )), and hence into GL2(Ĩ/P ), with the properties mentioned in Theo-

rem 6.11.

We can now show that the residual representation ρF (P ) attached to ρF is nothing

but Deligne’s representation ρF (P ), as Galois representations into GL2(Q(I/P )). To

do this it is enough to show that the characteristic polynomials of the Frobenius

elements outside Np coincide (by Lemma 6.8, and noting that the Frobenius elements

outside Np are dense in GQ). We compare the polynomials in Definition 6.6 and

Theorem 6.11. Recall that for an integer n prime to p, we defined s(〈n〉) ∈ Zp so that

〈n〉 = us(〈n〉). Now

κ(〈n〉)(ζuk − 1) = κ(us(〈n〉))(ζuk − 1) = (ζuk)s(〈n〉) = χζ(n)ω−knk,

since χζ(n) = χζ(〈n〉) = ζs(〈n〉) and 〈n〉 = ω−1(n)n. Hence, if P |Λ = ker(νk,ζ), then

(6.14)
λ(Tq)(P ) = aq(F )(P ) = aq(F (P )) = aq(fν), and

((χκν−1
p )(q))(P ) = (χω−kχζ)(q)q

k−1 = χν(q)q
k−1,

as desired.

6.6. Pseudo-representations. Let B be a commutative topological ring with unity

and assume that 2 is invertible in B. Further, if B is an integral domain, let Q(B)

denote the field of fractions of B.
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Definition 6.15. Let G be a pro-finite group with an identity e, and a special element

c of order 2. A pseudo-representation π from G to B, which shall be denoted by

π : G→ B, is a triple π = (A,D,X) of continuous maps

A : G→ B,

D : G→ B, and,

X : G×G→ B,

satisfying the following axioms:

(1) A(στ) = A(σ)A(τ) +X(σ, τ),

(2) D(στ) = D(σ)D(τ) +X(τ, σ),

(3) X(στ, γ) = A(σ)X(τ, γ) +D(τ)X(σ, γ),

(4) X(σ, τγ) = A(γ)X(σ, τ) +D(τ)X(σ, γ),

(5) A(e) = D(e) = A(c) = 1, D(c) = −1,

(6) X(σ, e) = X(e, σ) = X(σ, c) = X(σ, c) = 0,

(7) X(σ, τ)X(γ, η) = X(σ, η)X(γ, τ).

Remark 6.16. We denote A,D,X by Aπ, Dπ, Xπ, when we need to specify π explicitly.

The function X is in fact determined by the function A, since for any σ, τ ∈ G, we

haveX(σ, τ) = A(στ)−A(σ)A(τ). So it is possible to give an alternative description of

a pseudo-representation using only the maps A and D. However, the given definition

is convenient because it turns out to be important whether or not X(σ, τ) = 0.

The name pseudo-representation implies, of course, a relationship with representa-

tions. Suppose ρ is an odd, 2-dimensional representation from G to B. By this we

mean ρ : G → GL2(B) is a continuous homomorphism with ρ(c) = ( 1 0
0 −1 ). Letting

ρ(σ) =
(
a(σ) b(σ)
c(σ) d(σ)

)
, one verifies immediately that π = (A,D,X) given by

A(σ) = a(σ), D(σ) = d(σ), X(σ, τ) = b(σ)c(τ),

is a pseudo-representation from G to B.

Definition 6.17. If π : G → B is as above, then we say that π is the pseudo-

representation associated to ρ, or that π comes from ρ.

Given a pseudo-representation π, we can define the Trace and Determinant of π.

Definition 6.18. Tr(π)(σ) := A(σ) +D(σ), Det(π)(σ) := A(σ)D(σ)−X(σ, σ).
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Remark 6.19. It is clear that if π comes from a representation, then the definitions

of the Trace and Determinant of π coincide with that of the representation.

We have the following easily checked identities for A(σ) and D(σ), which play an

important role in the proofs:

A(σ) =
Tr(π)(σ) + Tr(π)(cσ)

2
, and,

D(σ) =
Tr(π)(σ)− Tr(π)(cσ)

2
.

(6.20)

Here is a natural question: When does a pseudo-representation come from a rep-

resentation? This question has an affirmative answer in some cases, as we see now.

Theorem 6.21. Let π be a pseudo-representation from G to B such that either X

is identically zero or X(h1, h2) ∈ B∗ for some h1, h2 ∈ G. Then π comes from a

2-dimensional odd representation ρ : G→ GL2(B).

Proof. Let us divide the proof into two cases:

Case (i): If X ≡ 0, then we can define ρ by letting, for g ∈ G,

ρ(g) =

(
Aπ(g) 0

0 Dπ(g)

)
.

Since X is identically zero, ρ is a representation from G→ GL2(B).

Case (ii): Suppose ∃ two elements h1, h2 ∈ G such that X(h1, h2) ∈ B
∗. We define

the representation ρ by setting, for g ∈ G,

ρ(g) =

(
a(g) b(g)

c(g) d(g)

)
,

with a(g) = A(g), d(g) = D(g), b(g) = X(g,h2)
X(h1,h2)

, c(g) = X(h1, g). It is easy to check

that ρ is a representation, by using the axioms for pseudo-representations (for the

calculations see [Hid93, §7.5, Prop 1]). �

Corollary 6.22. If B is a field, then the pseudo-representation π always comes from

a 2-dimensional, odd, representation.

Let us return to our situation where G = GQ and I is a finite extension of Λ. As

mentioned earlier, the proof of Theorem 6.1 depends on patching results for pseudo-

representations, which we describe now.
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Lemma 6.23. Let a and b be ideals of I. Let π(a) and π(b) be pseudo-representations

of G into I/a and I/b, which are compatible, i.e., there exist two functions T and D

on a dense subset Σ of G, with values in I, such that

Tr(π(a))(σ) ≡ T (σ) (mod a) and Tr(π(b))(σ) ≡ T (σ) (mod b),

Det(π(a))(σ) ≡ D(σ) (mod a) and Det(π(b))(σ) ≡ D(σ) (mod b),
(6.24)

for all σ ∈ Σ. Then, there exists a pseudo-representation π(a∩b) of G into I/(a∩b),

such that

Tr(π(a ∩ b))(σ) ≡ T (σ) (mod a ∩ b) and Det(π(a ∩ b))(σ) ≡ D(σ) (mod a ∩ b),

on Σ.

Proof. Let us briefly explain the proof. We have the following short exact sequence

0→ I/(a ∩ b)→ I/a⊕ I/b→ I/(a + b) → 0

ā 7→ (ā, ā)

(ā, b̄) 7→ a− b.

Consider the map π = π(a) ⊕ π(b) from G to I/a ⊕ I/b. Since, π(a) and π(b) are

pseudo-representations, it is easy to see π is also a pseudo-representation into I/a⊕

I/b. By (6.24), Tr(π) mod (a + b) vanishes identically on Σ, and hence Tr(π)(σ) ≡

T (σ) mod (a ∩ b), for all σ ∈ Σ. So π is a candidate for π(a ∩ b). It suffices to show

π takes values in I/a ∩ b. Since Tr(π) is a continuous map, the zero ideal is closed

in I/(a + b) and Σ is dense in G, Tr(π) mod (a + b) vanishes on G, and hence Tr(π)

indeed takes values in I/a ∩ b. Now, by (6.20), it is clear that the functions Aπ, Dπ,

Xπ corresponding to π, take values in I/a ∩ b, as desired. �

We wish to generalize the lemma to a countable collection of ideals. Before stating

this result, let us recall some results from commutative algebra.

Lemma 6.25. Let A be a complete semi local ring, m be the intersection of its

maximal ideals, and {an}
∞
n=1 be a decreasing sequence of ideals such that ∩∞

n=1an = 0.

Then there exists an integral valued function s(n) which tends to infinity with n, such

that an ⊆ms(n).

Proof. See [ZS60, Chap 8, §5, Thm 13]. �
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Lemma 6.26. Let {an}
∞
n=1 be a decreasing sequence of ideals in I such that ∩∞

n=1an =

0. Then the natural map η : I → lim
←−n

I/an is an isomorphism.

Proof. It is clear that ker(η) = ∩∞
n=1an, and this is zero by assumption. For the

surjectivity, we use Lemma 6.25. Let (ān) be an element of lim
←−
n

I/an. We need to prove

that there exists an element a ∈ I, such that η(a) = (ān), i.e., a− an ∈ an,∀ n ∈ N.

For every n ∈ N and j ≥ n, we have

aj − an ∈ an.

By the above lemma, aj − an ∈ ms(n), i.e., the sequence (ān) is a Cauchy sequence

with respect to the m-adic topology on I. Since I is complete with respect to this

topology, the sequence {an} converges to an element, say a, i.e., for every j ≥ 1, we

have

a− aj ∈ms(j).

Now we show that, for every n ∈ N, a − an ∈ an. Let us fix n. Adding the two

displays above for j ≥ n, we see a − an ∈ ∩
j≥n

(an + ms(j)). The ideal an is closed in

the m-adic topology of I [ZS60, Chap 8, §4, Thm. 9] and hence an = ∩
j≥n

(an+ms(j)).

Therefore, a− an ∈ an, for every n ∈ N. �

Lemma 6.27. Let R be a commutative noetherian integral domain. Let S denote a

countable collection of height 1 prime ideals in R. Then

∩
P∈S

P = 0.

Proof. Denote ∩
P∈S

P by J . In order to show J = 0, it suffices to show that any non-

zero element x of J is contained in only finitely many height 1 prime ideals of R.

Since R is noetherian, primary decomposition exists for ideals, and we can write

Rad(x) = ∩ni=1Qi,

where Rad(x) is the radical of (x) and {Qi}
n
i=1 are prime ideals of R. Observe that

the Qi’s are non-zero, because x is non-zero. Then

{P | P is a prime ideal of height 1 containing x} ⊆ {Q1, Q2, · · · , Qn}.

�

We now have:
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Theorem 6.28. Suppose {Pn}
∞
n=1 is a sequence of height 1 prime ideals of I. For

each n ≥ 1, suppose π(Pn) is a pseudo-representation of G into I/Pn. Suppose that

the π(Pn) are compatible on a dense subset Σ of G, i.e., there exist two functions T

and D on Σ, with values in I, such that for any n ≥ 1,

Tr(π(Pn))(σ) ≡ T (σ) (mod Pn),

Det(π(Pn))(σ) ≡ D(σ) (mod Pn),
(6.29)

for all σ ∈ Σ. Let an = ∩ni=1Pi. Then there exists a pseudo-representation π of G

into I, such that for all σ ∈ Σ, and n ≥ 1,

Tr(π)(σ) ≡ T (σ) (mod an),

Det(π)(σ) ≡ D(σ) (mod an),
(6.30)

and hence for every σ ∈ Σ,

Tr(π)(σ) = T (σ), Det(π)(σ) = D(σ).

Proof. First, we shall show that, for every n ≥ 1, there are pseudo-representations

π(an) : G→ I/an such that

Tr(π(an))(σ) ≡ T (σ) (mod an),(6.31)

for every σ ∈ Σ. We do this by induction on n. For n = 2, applying Lemma 6.23 for

the ideals P1, P2, and their associated pseudo-representations π(P1), π(P2), we get

that π(a2) exists with the property (6.31). Assume that, we can construct pseudo-

representations till n − 1, i.e., that we can construct π(a1), · · · , π(an−1) satisfying

(6.31). Now, applying Lemma 6.23 for the ideals an−1, Pn and their associated pseudo-

representations π(an−1), π(Pn), we get that π(an) exists satisfying (6.31). Hence, we

have constructed π(an) satisfying (6.31), for all n.

In order to define the pseudo-representation π, let us first define its trace Tr(π) as

follows:

Tr(π) : G→
∞∏

n=1

I/an

g 7→(Tr(π(an))(g)).

(6.32)
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By (6.31), all the π(an)’s are compatible (in the sense defined in Lemma 6.23), and

hence Tr(π)(Σ) ⊆ lim
←−
n

I/an. Now, by Lemma 6.26, Tr(π)(Σ) ⊆ I, and satisfies:

Tr(π)(σ) ≡ Tr(π(an))(σ) (mod an),(6.33)

for all σ ∈ Σ. Since I = lim
←−
n

I/an is closed in
∏∞

n=1 I/an, we get Tr(π)(G) ⊆ I, by

the continuity of trace and the density of Σ in G. Now, we can construct the map

π, from Tr(π), by defining A(g), D(g) as in (6.20). It is easy to check that π is a

pseudo-representation by using the fact that each π(an) is a pseudo-representation.

By (6.31) and (6.33), it is easy to see that (6.30) holds. The last statement follows

from Lemma 6.27. A similar argument works for the Det function. �

Corollary 6.34. Under the same assumptions as above, the pseudo-representation

π : G→ I, thought of as taking values in K, can be lifted to a representation ρ, such

that the trace of ρ is equal to the trace of π.

Proof. This follows from Corollary 6.22 and Remark 6.19. �

6.7. Existence of the representation ρF . In this section, given F as in §6.1, we

shall show the existence of the representation ρ = ρF . The strategy is to specialize

F at a countable subset of prime ideals P in Ξ(I) for which one has an associated

Galois representation by Corollary 6.13, and then to patch these representations to

construct ρ.

Theorem 6.35 (Wiles). Suppose that {Pn}
∞
n=1 is an infinite set of distinct prime

ideals of I of height one. Let Ĩ/Pn denote the integral closure of I/Pn in Q(I/Pn).

Suppose that, for each n, we are given a continuous, odd representation

ρn : GQ → GL2(Ĩ/Pn),

which is unramified outside Np. Suppose that for each prime q ∤ Np, there exist

elements aq and ǫq, in I, such that,

Trace ρn(Frobq) = aq (mod Pn), and

Det ρn(Frobq) = ǫq (mod Pn).

Then there exists a continuous, odd, representation

ρ : GQ → GL2(K),
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with

Trace ρ(Frobq) = aq,

Det ρ(Frobq) = ǫq,

for q ∤ Np. Also, ρ is irreducible and unique, if ρn is irreducible for some n.

Proof. Let c denote complex conjugation with determinant −1 in all ρn’s. Since Ĩ/Pn

is a discrete valuation ring, we can pick a basis of Ĩ/Pn
2

such that ρn(c) = ( 1 0
0 −1 ).

We fix a representation ρn with this property for each n. Now let

ρn(σ) =

(
a

(n)
σ b

(n)
σ

c
(n)
σ d

(n)
σ ,

)

for each σ ∈ GQ. Let πn denote the pseudo-representation associated to ρn (see

Definition 6.17 in §6.6). A priori πn is a pseudo-representation from GQ to Ĩ/Pn.

What is important for us is that ρn is actually a pseudo-representation into I/Pn.

Let us explain this point more clearly.

In general, if ρ(c) = ( 1 0
0 −1 ), then the pseudo-representation ρ only depends on

Trace(ρ). In our case, by assumption, Trace(ρn) belongs to I/Pn. Hence, we have a

sequence of pseudo-representations from GQ into I/Pn. Take Σ := {Frobq | q ∤ Np}.

We know, by the Chebotarev density theorem, that Σ is dense GQ. We are now in

a position to apply Theorem 6.28 to get a pseudo-representation π from GQ into I

such that

Tr(π)(Frobq) = aq and Det(π)(Frobq) = ǫq,

for all q ∤ Np. Now think of π as taking values in K. Then, by Corollary 6.34, we can

lift this pseudo-representation π to a representation ρ such that both have the same

traces and determinants on Σ. It is clear that ρ is irreducible, if ρn is irreducible for

some n. Also, the representation ρss is unique, by Lemma 6.8. Hence the theorem is

proved. �

Remark 6.36. The above theorem can be found in a more general form in [Wil88,

Lem. 2.2.3], where one works outside an analytic density zero set of primes.

As a consequence of the above theorem, we can finally prove Theorem 6.1:

Proof. We can take a countable collection of prime ideals of I, say {Pn}
∞
n=1, of height

1 from Ξ(I). We can take ρn to be the representation associated to F (Pn), which
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exists by Corollary 6.13. Maintaining the same notations as above, for every prime

q ∤ Np, take

aq = λ(Tq) ∈ I and ǫq = (χκν−1
p )(q) ∈ I.

By the computations in (6.14), for every q ∤ Np, aq and ǫq satisfy the conditions

mentioned in the above theorem. Hence, we have a representation ρ, such that for

each prime q ∤ Np

det(1− ρ(Frobq)T ) = 1− λ(Tq)T + (χκν−1
p )(q) T 2,

We call this ρ as ρF . Hence, we have proved Theorem 6.1. �

Remark 6.37. The same proof works for the prime p = 2, with a slight modification

in the definition of the pseudo-representation. For further details, see [Wil88].

This finishes the proof of Theorem 6.1. Let us now prove Theorem 6.2.

6.8. Proof of Theorem 6.2. Define a continuous semi-simple representation ρ0 from

Dp to GL2(I) as follows: for g ∈ Dp set

ρ0(g) =

(
A(g) 0

0 D(g)

)
,

where A = (χκν−1
p ) · λ(ap(F ))−1 and D = λ(ap(F )). Note that A and D take values

in I since ap(F ) is a unit in I. Indeed, ap(F ) is a unit in I/Pi, for infinitely many

height 1 prime ideals {Pi}
∞
i=1 of I, and I× = lim

←−
n

(I/
n
∩
i=1

Pi)
×.

We shall show that ρ0 and (ρF |Dp
)ss have the same traces. To prove this, the

following observations are useful:

• Let ρ be a representation from GQ to GL2(K) and let P be any height 1 prime

ideal of I. Take a GQ-stable lattice L over I. With respect to L⊗I IP , we may

view ρ as a representation ρ : GQ → GL2(IP ). Let ρP = ρ modulo PIP . (The

residual representation ρ(P ) of ρ at P is, by definition, the semi-simplification

of ρP .) Similarly, define ρ|Dp,P
to be ρ|Dp

modulo PIP . Clearly

(6.38) ρ|Dp,P
= ρP |Dp

.

• It is known that Deligne’s representation ρF (P ) is equivalent to the residual

representation ρ(P ) attached to ρ = ρF at an arithmetic prime P , i.e., ρF (P ) ∼
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ρ(P ). Since Deligne’s representation ρF (P ) is irreducible, we further have

ρF (P ) ∼ ρP . In particular, we have

(6.39) ρF (P )|Dp
∼ ρP |Dp

.

Returning to the proof, let {Pn}
∞
n=1 be a sequence of arithmetic height 1 prime ideals

of I. Since the traces of ρ0 and (ρF |Dp
)ss belongs to I, it is enough show that they

are equal mod Pn, because ∩
n≥1

Pn = 0, by Lemma 6.27. But this follows, since mod

Pn, we have:

trace(ρ0)
(6.14)
≡ trace(ρF (Pn)|Dp

)
(6.39)
= trace(ρPn|Dp

)
(6.38)
= trace(ρ|Dp,Pn

).

Thinking of ρ0 as a representation into GL2(K), we conclude that ρ0 ∼ (ρF |Dp
)ss, by

Lemma 6.8.

By using the above description of the representation (ρF |Dp
)ss, there are two possi-

bilities for the representation ρF |Dp
, up to isomorphism, namely:

(1) ρF |Dp
∼

(
A U

0 D

)
, or,

(2) ρF |Dp
∼

(
A 0

U D

)
,

where U is a continuous map. These cases are not mutually exclusive. If the first case

holds then we immediately obtain Theorem 6.2. In the second case, we shall show

that ρF |Dp
is semi-simple (i.e., U can be taken to be 0), proving the theorem in this

case as well.

Indeed, suppose that ρF |Dp
is non-split (i.e., not semi-simple). In particular, one

knows that F is not of CM type [GV04, Prop. 12]. By an argument on [GV04, §4, p.

2161], we know that ρF (Pn)|Dp
does not split for all but finitely many specializations.

We now show that all the ρF (Pn)|Dp
split, an obvious contradiction. Hence, ρF |Dp

must

be split, as desired.

Lemma 6.40. For an arithmetic prime P of I, if the representation ρF |Dp
is an

extension of a ramified character by an unramified character, so is ρF (P )|Dp
.

Proof. By (6.39), it is enough to show that ρP |Dp
has an unramified subspace. This

can be shown as follows.
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By assumption, there exists a basis, say v1, v2, of K2 such that ρF |Dp
acts K-linearly

on v2 by the character D. Take any GQ-stable lattice L over IP . Since IP is a DVR,

there exists an IP basis w1, w2 of L, i.e., L = IPw1 + IPw2. Now look at Kv2 ∩ L.

There exists an integer r ∈ Z, such that πrv2 = aw1 + bw2, where π is a uniformizer

of IP , and a, b ∈ IP with aIP + bIP = 1. Clearly πrv2 ∈ Kv2 ∩ L. It is clear that

IP (πrv2) ⊆ IPw1 + IPw2. Since aIP + bIP = 1, we can find a vector ṽ1 ∈ IPw1 + IPw2,

such that IP (πrv2) + IP ṽ1 = IPw1 + IPw2 = L.

Let us look at the representation ρF with respect to the new lattice L2 = IP ṽ1 +

IP (πrv2). It is clear that L2 is GQ-stable lattice over IP . With respect to L2, the

representation ρF |Dp
looks like

(6.41)

(
A1 0

U1 D

)
∈ GL2(IP ).

Since trace of ρF |Dp
is A+D, it is easy to see that A1 = A. Now we have the following

isomorphisms / equalities over Q(I/P ),

ρF (P )|Dp

(6.39)
∼ ρP |Dp

(6.38)
= ρ|Dp,P

(6.41)
=
(
Ā 0
Ū1 D̄

)
,

where bar denotes mod P reduction. Since D is unramified, D̄ is also unramified.

Also since P is an arithmetic prime, ĀD̄ is ramified by (6.12), noting k ≥ 2 there.

Hence, Ā is ramified. This shows that the representation ρF (P )|Dp
is an extension of

a ramified character by an unramified character. �

By the above lemma, ρF (Pn)|Dp
is an extension of a ramified character by an un-

ramified character. But by (6.12), it is also an extension of an unramified character

by a ramified character. Hence the ρF (Pn)|Dp
split, for all n. This completes the proof

of Theorem 6.2.

7. Constructing cusp forms out of semi-cusp forms

Definition 7.1. A classical form f (respectively Λ-adic form F ) is said to be a semi-

cusp form if the constant term a0(f) = 0 (respectively a0(F ) = 0).

When there is more than one cusp, a semi-cusp form, whether classical or Λ-adic, is

not necessarily a cusp form. At one stage in the proof of the Iwasawa main conjecture
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(see [Wil90, sec. 3]), Wiles needs to create a Λ-adic cusp form out of a Λ-adic semi-

cusp form F . We describe a criterion in [Wil90, sec. 3] which achieves this. This

criterion is used at a key point in the next section.

Let φ denote the Euler φ-function. Define the following Hecke operator (cf. [Wil90,

p. 506]):

w := e · TN ·
∏

ℓ|N

(T
φ(Np)
ℓ − (κ(〈ℓ〉)l−1)φ(Np)).

Remark 7.2. In Wiles’ definition of w on [Wil90, p. 506], there is a Λ-adic diamond

operator 〈ℓ〉 which is essentially our κ(〈ℓ〉)ℓ. The discrepancy of ℓ2 in our definition of

w comes from the fact that in this section we are working with the usual normalization

X 7→ ζuk−1 and not with Wiles’ normalization X = ζuk−2−1. However, in the next

section, we use Wiles’ normalization, and so need to use the operators w with κ(〈ℓ〉)ℓ,

rather than κ(〈ℓ〉)ℓ−1. Also, strictly speaking, in our notation we should really be

writing Uℓ instead of Tℓ.

In any case, we have the following result [Wil90, Lem. 3.2]:

Proposition 7.3. Suppose p is odd and χ is a primitive character of level Np. If

F ∈M(N,χ, I) is a semi-cusp form, i.e., a0(F ) = 0, then wF is a cusp form.

Proof. The proof we give is more explicit that the one given in [Wil90]. We take

advantage of the assumption made in these notes that the base field is Q.

Let fν be the specialization of F at ν, lying over νk,ζ . We must show that wfν is

a cusp form. Recall that fν ∈ Mk(Np
r, χν), and this last space has a Hecke-stable

decomposition:

Mk(Np
r, χν) = Sk(Np

r, χν)⊕ E(Np
r, χν),

where E(Npr, χν) is the Eisenstein part of Mk(Np
r, χν). Thus, we may accordingly

write:

fν = gν + Eν .

Since fν is a semi-cusp form by hypothesis, we note Eν has the important property

that the constant term of Eν vanishes. Applying w to the above decomposition, we

get

wfν = wgν + wEν .
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Since wgν is a cusp form, we are reduced to showing that wEν = 0. We do this by

analyzing the various possibilities for the basis elements that occur when one expands

Eν in a given basis, and by showing that (a part of) w kills each such basis element.

Recall that Ek(Np
r, χν), for k ≥ 2, has the well-known basis (see, for instance,

Section 4.7 of Miyake’s book Modular Forms):

Ek(χ1, χ2)(mz)

where

• χ1 and χ2 are characters with χ1χ2 = χν , and,

• If M1 = cond(χ1) and M2 = cond(χ2), then mM1M2

∣∣Npr.
When k = 2 and both χ1 and χ2 are trivial, the basis element E2(χ1, χ2) has to be

modified slightly: in this case instead of M1 = M2 = 1, one takes M1 = 1 and M2 to

be a prime number. Here Ek(χ1, χ2) is the Eisenstein series defined by the identities:

L(Ek(χ1, χ2), s) = L(s, χ1)L(s− k + 1, χ2),

that is,

an(Ek(χ1, χ2)) =
∑

d|n

χ1

(n
d

)
χ2(d)d

k−1, for n ≥ 1,

and,

a0(Ek(χ1, χ2)) =





0 if χ1 6= 1,
−Bk,χ

2k
otherwise (except it’s

M2−1
24

when k = 2, and χ1, χ2 are trivial).

In particular Ek(χ1, χ2)(mz) has vanishing constant term iff χ1 6= 1.

Write Eν as a linear combination of the above basis elements. Since Eν has zero

constant term, not all the basis elements can occur. If the p-part of χν = χω−kχζ is

primitive (e.g., if r > 1 or the p-part of χ is not ωk), then χν is primitive of level Npr,

so m = 1, and there is only one basis element with non-zero constant term, namely

Ek(1, χν)(z). Thus, the only basis elements that can occur in Eν are the Ek(χ1, χ2)(z)

with χ1 6= 1. Now assume that r = 1 and the p-part of χν is trivial. Think of χν as

a character of level N , and note Ek(1, χν) has level N (instead of Np). In this case
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there are two basis elements with non-zero constant term, namely Ek(1, χν)(z) and

Ek(1, χν)(pz). Change basis and replace these forms by their p-stabilizations:

E
(p)
k (1, χν)(z) = Ek(1, χν)(z)− χν(p)p

k−1Ek(1, χν)(pz)

F
(p)
k (1, χν)(z) = Ek(1, χν)(z)− Ek(1, χν)(pz).

These have p-th Fourier coefficients 1, and χν(p)p
k−1, respectively. Clearly E

(p)
k has

non-zero constant term, whereas F
(p)
k has zero constant term. Thus again in this

new basis the only basis elements that occur in this linear combination of Eν are the

Ek(χ1, χ2)(mz) with χ1 6= 1 and m = 1 or p, and F
(p)
k .

Thus it suffices to show that w kills the basis elements Ek(χ1, χ2)(mz) with χ1 6= 1,

and F
(p)
k . We do this case by case. First note that Hida’s idempotent e, hence w, kills

F
(p)
k , since ap(F

(p)
k ) is not a p-adic unit. Similarly if m > 1, then ap(Ek(χ1, χ2)(mz)) =

0, so again w kills Ek(χ1, χ2)(mz). Thus it suffices to show that w kills the basis

elements Ek(χ1, χ2)(z) with χ1 6= 1, i.e., with M1 6= 1. We have the further cases:

(1) Suppose ℓ|M1 and ℓ|M2, for some ℓ|Npr: In this case aℓ = χ1(ℓ)+χ2(ℓ)ℓ
k−1 = 0.

If ℓ|N , then aℓ|aN and aN = 0, so TN kills Ek(χ1, χ2). If ℓ = p, then ap = 0 in which

case e does the trick.

(2) Suppose ℓ|M1 but ℓ ∤ M2, for some ℓ|Npr. Write Ek for Ek(χ1, χ2), for simplicity.

There are two further sub-cases:

(i) Suppose ℓ 6= p. In this case aℓ = χ1(ℓ) + χ2(ℓ)ℓ
k−1 = χ2(ℓ)ℓ

k−1. Thus

TℓEk = aℓEk = ǫ1l
k−1Ek,

where ǫ1 is a φ(N)-th root of unity. Now as we have checked many times before

κ(〈ℓ〉)l−1 specializes under ν to ω−kχζ(ℓ)l
k−1, so

(κ(〈ℓ〉)l−1)Ek = ǫ2ζ
s(〈ℓ〉)lk−1Ek,

for some φ(p)-th root of unity ǫ2. Thus:

(T
φ(Np)
ℓ − (κ(〈ℓ〉)l−1)φ(Np))Ek = (1− ζ ′)(lk−1)φ(Np)Ek,

for some p-power root of unity ζ ′. But note that 1 − ζ ′ is not a p-adic unit (though

the power of ℓ is), so further composing with e kills Ek. (NB: The last part of the

argument just given corrects the somewhat incorrect hint on [Wil90, p. 506, line 19],

which claims that the previous line is already identically 0; this seems to us to hold

only in the special case when ζ and hence ζ ′ are 1).
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(ii) Finally suppose ℓ = p. Then aℓ = ap = χ2(p)p
k−1 is not a p-adic unit, so again

eEk = 0.

Since, in all cases w kills the basis elements in Eν , we are done. �

8. Eisenstein ideals and p-adic L-functions

In Mazur’s famous paper [Maz77], key use is made of the so called Eisenstein ideal.

This ideal measures congruences between cusp forms of weight 2 for Γ0(p) and the

(unique, normalized) Eisenstein series of weight 2 for Γ0(p). As with many things in

[Wil90], Wiles defines a Λ-adic analogue of this ideal (cf. [Wil90, Sec. 4]), and proves

a result which shows that it measure congruences between Λ-adic cusp forms (of

some tame level N and character χ), and the Λ-adic Eisenstein series Eχ introduced

in Section 4. We describe Wiles’ result in this section.

8.1. Classical Eisenstein ideal. As motivation, we first recall some facts about the

classical Eisenstein ideal.

We have the standard decomposition of forms of level p and trivial nebentypus:

M2(p, 1) = S2(p, 1)⊕ E2(p, 1),

where the space of cusp forms S2(p, 1) has dimension equal to the genus of X0(p),

and E2(p, 1) is one-dimensional spanned by the Eisenstein series that was earlier called

E
(p)
2 (this is also E2(χ1, χ2) of the last section, with χ1 trivial of conductor 1, and χ2

trivial of conductor p). As mentioned in the last section, E
(p)
2 has q-expansion:

E
(p)
2 =

p− 1

24
+

∞∑

n=1

σ
(p)
1 (n) qn.

One is interested in studying congruences between cuspidal eigenforms f2 and E
(p)
2 ,

i.e., congruences of the form

f2 ≡ E
(p)
2 mod ℓ,

where ℓ is a prime (call such primes ℓ Eisenstein congruence primes). Heuristically,

one can write down such congruences by noting that if ℓ divides the constant term

of E
(p)
2 , then E

(p)
2 mod ℓ looks like a mod ℓ cuspidal eigenform, and so should lift

to a characteristic zero cuspidal eigenform. This is in fact what happens. To make

this precise, we need the notion of a congruence module. Let TM2
, respectively, TS2

,

TE2
, be the Hecke algebras acting on the three spaces in the decomposition above.
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There are natural projection maps TM2
։ TS2

and TM2
։ TE2

, and these induce the

natural map TM2
→֒ TS2

⊕ TE2
.

Definition 8.1. Let

C(T) =
TS2
⊕ TE2

TM2

be the congruence module with respect to the decomposition above.

It is easy to see that |C(T)| <∞ and ℓ
∣∣ |C(T)| iff there is a congruence of the form

we are interested in. Thus the Eisenstein congruence primes are exactly the primes

in the support of |C(T)|.

There is another way to write down C(T), that is completely intrinsic to TS2
. This

uses the Eisenstein ideal I, an ideal of TS2
. Noting that aq(E

(p)
2 ) = q + 1 for primes

q 6= p and ap(E
(p)
2 ) = 1, one defines:

Definition 8.2. The Eisenstein ideal I is the ideal of TS2
spanned by Tq− (q+1) for

all q 6= p, and by Up − 1.

Lemma 8.3. The natural map TS2
→֒ TS2

⊕ TE2
induces an isomorphism

TS2

I

∼
−→ C(T).

In view of the lemma we deduce that the Eisenstein congruence primes are those

in the support of TS2
/I. But now, we have (cf. [Maz77, Prop. 9.7]):

Theorem 8.4. Let n be the numerator of
(
p−1
12

)
. Then

TS2

I

∼
−→

Z

n
.

In particular we see that n ∈ I (compare with the definition of I below).

One concludes that the Eisenstein congruence primes are exactly the prime divisors

of the numerator of (twice) the constant term of E
(p)
2 .

8.2. Λ-adic Eisenstein ideal. Following Wiles, we wish to ‘Λ-fy’ the previous dis-

cussion. Let p be an odd prime and let χ be a fixed non-trivial, even, primitive

Dirichlet character of level Np. In Section 4, we had introduced the Λ-adic Eisen-

stein series Eχ attached to χ. This has q-expansion in Iχ[[q]] where Iχ = Zp[χ][[X]]

(not to be confused with I, which in this section is reserved for the Eisenstein ideal).
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To avoid errors in what follows we work with Wiles’ normalization, so in particular,

we take Eχ as modified in Section 4.5. Consider the direct sum

Sord(N,χ, Iχ)⊕ Iχ · Eχ

inside the space Mord(N,χ, Iχ). As before, we wish to understand congruences be-

tween ordinary Λ-adic cuspidal eigenforms, and Eχ. Let TSord denote the Λ-adic Hecke

algebra acting on Sord(N,χ, Iχ). Noting that an(Eχ) = An,χ(X) ∈ Iχ, for all integers

n ≥ 1 (where An,χ(X) is modified as in Section 4.5), we define (cf. [Wil90, eq. (4.2)]):

Definition 8.5. The Λ-adic Eisenstein ideal is the ideal in TSord generated by

• Tq − Aq,χ(X) for prime q ∤ Np,

• Uq − Aq,χ(X), for prime q|Np, and,

• Ĝ0
χ(X).

Recall that Ĝχ(X) is the numerator of (twice) the constant term of Wiles’ Eχ.

Here Ĝ0
χ(X) is the power series constructed from Ĝχ(X) by dividing out any possible

factors of the form (1 +X − ζu−1) occurring in Ĝχ(X). As Wiles remarks, one takes

the modified p-adic L-function Ĝ0
χ(X) in I in order to avoid certain zeros which cause

later complications in his proof of the Iwasawa main conjecture.

The main result of this section is the following theorem (cf. [Wil90, Thm. 4.1]):

Theorem 8.6. Let χ0 denote the trivial character of conductor p. Suppose that either

χ 6= ω−2 or Lp(1, χ0) =∞. Then

TSord

I

∼
−→

Iχ

(Ĝ0
χ(X))

.

Before we begin the proof, we need the following abstract lemma.

Lemma 8.7. Let b = (G0) be a principal ideal of Iχ, and say that F ∈ Sord(N,χ, Iχ)

is a mod b eigenform. Assume that (G0, a1(F )) = 1 so that a1(F ) is invertible in

Iχ/b. Then the map

λ : TSord → Iχ/b

Tm 7→
am(F )

a1(F )

is a surjective Iχ-algebra homomorphism.
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Proof. When F is normalized, i.e., a1(F ) = 1, this is immediate by the correspondence

between normalized eigenforms, and homomorphisms of the Hecke algebra. When F

is not normalized, we leave the proof that the given map is still a homomorphism as

an exercise. �

Proof. Returning to the proof of the theorem, we wish to apply the above lemma

with G0 = Ĝ0
χ and F = F ′, a certain non-normalized mod b cuspidal eigenform of

Eisenstein type. We construct F ′ explicitly now.

Let ψ be an auxiliary even character of conductor Npr. Let E1(1, ψω
−1) be the

Eisenstein series defined in the previous section, but for k = 1. Write the constant

term in lowest terms as g1,ψω−1/h1,ψω−1 . Set

Jχ,ψ := E1(1, ψω
−1) · Eχψ−1(u−1(1 +X)− 1).

Here are some remarks.

• Jχ,ψ ∈ M(N,χ, Iχ) is a Λ-adic form in the sense of Wiles. Indeed the first

term lies in M1(Np
r, ψω−1) and the second term, after specialization at X =

ζuk−2− 1, lies in Ek−1(Np
r, χψ−1ω2−(k−1)χζ), so the product (after specializa-

tion) lies in Mk(Np
r, χω2−kχζ), as desired.

• The constant term of Jχ,ψ is

1

2
·
g1,ψω−1

h1,ψω−1

·
Ĝχψ−1(u−1(1 +X)− 1)

Ĥχψ−1(u−1(1 +X)− 1)
.

Following Wiles, define the following two expressions in Iχ:

h1,ψ = Ĥχ(X) · g1,ψω−1 · Ĝχψ−1(u−1(1 +X)− 1),

h2,ψ = Ĝχ(X) · h1,ψω−1 · Ĥχψ−1(u−1(1 +X)− 1),

and set

F = 2 (h1,ψEχ − h2,ψJχ,ψ) .

Then by construction F is a Λ-adic semi-cusp form in M(N,χ, Iχ), i.e., a0(F ) = 0.

By Proposition 7.3, the form F ′ = wF is a cusp form. We use the operator w

as described in Remark 7.2, since in this section we are using Wiles’ normalization.
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Noting that h2,ψ is divisible by Ĝ0
χ(X), we compute:

F ′ = 2h1,ψ · wEχ − 2h2,ψ · wJχ,ψ

≡ 2h1,ψ ·


e · TN ·

∏

ℓ|N

(T
φ(Np)
ℓ − (κ(〈ℓ〉)l)φ(Np))


 Eχ mod (Ĝ0

χ)

≡ 2h1,ψ ·


∏

ℓ|N

(1− (κ(〈ℓ〉)l)φ(Np))


 Eχ mod (Ĝ0

χ),

since

eEχ = Eχ,

TNEχ = Eχ, and,

TℓEχ = Eχ,

for all ℓ|N .

Thus if b = (Ĝ0
χ), then F ′ ≡ cEχ mod b, with

c = 2h1,ψ ·


∏

ℓ|N

(1− (κ(〈ℓ〉)l)φ(Np))


 .

In particular F ′ is a (non-normalized) mod b cuspidal eigenform. To apply Lemma 8.7

we need to further note:

Lemma 8.8. The following hold:

(1) There is a ψ such that h1,ψ has no zero in common with Ĝχ(X), except possibly

those of Ĥχ(X).

(2) If χ 6= ω−2 or Lp(1, χ0) =∞, then Ĝχ(X) has no zero in common with Ĥχ(X).

(3) For ℓ|N , the power series 1−(κ(〈ℓ〉)l)φ(Np) has no zero in common with Ĝ0
χ(X).

In particular, for appropriate ψ, which we fix once and for all, and under the hypothe-

ses of the theorem, c has no zero in common with Ĝ0
χ(X).

Proof. We prove the statements one by one.

(1) Let ψ−1 = χζ . Then, a short computation using (4.3) shows that

Ĝχψ−1(u−1(1 +X)− 1) = Gχ(ζu
−1(1 +X)− 1).
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By choosing ζ of sufficiently large order we see that we may assume this power

series has no zeros in common with Ĝχ(X), from which (1) follows.

(2) If χω2 6= 1, then χω2 is not of type W , so Ĥχ(X) = Hχω2(u2(1 +X)− 1) = 1

and the claim follows trivially. If χω2 = 1 then Ĥχ(X) = u2(1 +X)− 1, and

the only root is X = u−2 − 1. But on substituting X = u−2 − 1, we have:

Ĝχ(X)

Ĥχ(X)
=
Gχ0

(u2(1 +X)− 1)

Hχ0
(u2(1 +X)− 1)

=
Gχ0

(u0 − 1)

Hχ0
(u0 − 1)

= Lp(1− 0, χ0) =∞,

by hypothesis, so the numerator of the LHS does not have a zero at X =

u−2 − 1.

(3) Since ω(ℓ)φ(p) = 1 and 〈ℓ〉 = us(〈ℓ〉) we have

(κ(〈ℓ〉)l)φ(Np) = ((1 +X)s(〈ℓ〉)〈l〉)φ(Np) = ((1 +X)u)s(〈ℓ〉)φ(Np) = 1

iff X = ζu−1 − 1. But these were precisely the zeros that were removed from

Ĝχ(X) to get Ĝ0
χ(X).

�

Applying Lemma 8.7 to to b = (Ĝ0
χ), and F ′ with a1(F

′) = c, which as we have

just noted is coprime to Ĝ0
χ, we get the last isomorphism of the following sequence of

surjective Iχ-algebra homomorphisms:

Iχ

(Ĝ0
χ(X))

։
TSord

I
։

TSord

ker(λ)

∼
−→

Iχ

(Ĝ0
χ(X))

.

The second surjection arises by noting that I ⊂ ker(λ), since by Lemma 8.7, the

homomorphism λ takes Tn to an(F
′)/c ≡ An,χ mod b. Finally, the first surjection

arises from the structure map Iχ → TSord by noting that Ĝ0
χ(X) ∈ I.

But a surjective endomorphism of a noetherian ring is an isomorphism, proving the

theorem.

�
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