(1) Consider the composition ring \(\Lambda'_p = \colim_{n, \psi} \Lambda_{p,n} \) as defined in the lecture. There we considered two elements \(a, b \in \Lambda'_p \), where \(a \) comes from \(e \in \Lambda_{p,1} \) and \(b \) comes from \(-\delta \in \Lambda_{p,1} \). So formally we could write \(a = \psi^{\delta - 1}, \ b = -\psi^{\delta - 1} \circ \delta \). Then \(a \) and \(b \) satisfy the relation \(e + pb = a^p \), and \(a \) is \(\mathbb{Z} \)-algebra-like (in the sense of ex. 2, q. 4), and \(b \) has the Leibniz rules

\[
\begin{align*}
 b(x + y) &= b(x) + b(y) + \sum_{i=1}^{p-1} \frac{1}{i} \binom{p}{i} a(x)^i a(y)^{p-i} \\
 b(xy) &= a(x)^p b(y) + b(x)a(y)^p + pb(x)b(y) \\
 b(0) &= 0 \\
 b(1) &= 0.
\end{align*}
\]

The converse is also true—any two such operators \(a \) and \(b \) on a ring come from a unique \(\Lambda'_p \)-structure. Give a completely detailed proof of this.

(2) Let \(S \) denote the subring of the product ring \(\mathbb{Z}^N \) consisting of all \(\langle a_0, a_1, \ldots \rangle \) such that \(a_{n+1} = a_n \mod p^{n+1} \) for all \(n \geq 0 \). In lecture it was stated that the ghost map \(W(\mathbb{Z}) \to \mathbb{Z}^N \) (which is injective) has image \(S \), and hence that the ghost map induces an isomorphism \(W(\mathbb{Z}) \to S \). Give a direct proof of this as follows:

First, show that \(S \) is the largest sub-\(\psi \)-ring of \(\mathbb{Z}^N \) on which \(\psi \) is a Frobenius lift; in other words, \(S \) is the largest sub-\(\psi \)-ring which is also a \(\delta \)-ring. Then show that \(S \) satisfies the universal property of \(W(\mathbb{Z}) \), namely that for any \(\delta \)-ring \(R \), any ring map \(R \to \mathbb{Z} \) lifts uniquely to a \(\delta \)-morphism \(R \to S \).

Your proof should use as little of the material developed in the class as possible.

(3) Let \(\Lambda'_p \) be as in question 1, and let \(W' \) denote the associated Witt vector functor. Determine \(W'(\mathbb{F}_p) \) and \(W'(\mathbb{Z}) \). (They are both isomorphic to familiar concrete rings. Hint: Use the concrete descriptions of \(W_n(\mathbb{F}_p) \) and \(W_n(\mathbb{Z}) \).) Are there any nonzero \(\mathbb{F}_p \)-algebras that admit a \(\Lambda'_p \)-ring structure? (Hint: Use the concrete description of \(W'(\mathbb{F}_p) \).)

(4) The functor \(W \) preserves surjections, simply because \(W(R) = R^N \), as a set-valued functor. Does \(W' \) preserve surjections?

(5) In lecture it was shown that the map \(W(\mathbb{Z}_p) \to \mathbb{Z}_p \) sending a Witt vector with ghost components \(\langle a_0, a_1, \ldots \rangle \) to its \(p \)-adic limit \(\lim_n a_n \) induces a ring map \(W(\mathbb{F}_p) \to \mathbb{Z}_p \) and that this map is an isomorphism.

Prove the following more general version of this. Let \(F \) be an extension of \(\mathbb{F}_p \) of degree \(d \). The theory of local fields show there is a unique (up to unique isomorphism) complete discrete valuation ring \(R \) together with an isomorphism \(R/pR \to F \), and that \(R \) has a unique endomorphism \(\sigma \) lifting the Frobenius map. (For example, if \(p = 1 \), then \(F = \mathbb{F}_p \) and \(R = \mathbb{Z}_p \). If \(d = 2 \) and \(p = 3 \mod 4 \), then \(F = \mathbb{F}_p[\iota] \) and \(R = \mathbb{Z}_p[\iota] \).) Find, as above, a morphism \(W(R) \to R \) factoring through \(W(R) \to W(R/pR) \to W(F) \) to an isomorphism \(W(F) \to R \).

Can you generalize this to where \(F \) is allowed to be an arbitrary perfect field of characteristic \(p \)?