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Basic example

1. R = ring  adjunction diagram:

ModR

fgt

��

Ab

induction = R⊗−

::

Hom(R,−) = co-induction

dd

2. A ring is equivalent to “such a” diagram.

3. Enveloping principle: Any gadget (group, Lie algebra,. . . )
acting on an abelian group should act via some associated
ring (group algebra, enveloping algebra,. . . ), which is typically
the closure of the gadget under pointwise addition and
composition.

4. So, a ring is the ultimate gadget that knows what it means to
act on an abelian group.

5. This principle holds in other categories, but it almost
completely unknown!



Main points

1. Such an adjunction diagram can be generalized from Ab to
any category C that is “algebraic” in the sense that it consists
of sets with n-ary operations satisfying universal identities:
groups, abelian groups, K -modules, K -algebras, semirings, Lie
algebras over K , Jordan rings, heaps, loops, . . .

2. ∴ we can produce generalized symmetry objects, the ultimate
gadgets that knows what it means to act on an object of C.
They play the role in C that rings do in Ab.

3. One can produce them from familiar symmetry objects
(groups, . . . ) by taking the closure under the operations of C
applied pointwise and composition (if necessary).

4. For some C, all generalized symmetry objects are built out of
familiar symmetry objects.

5. For other C, there are genuinely new symmetry objects.

6. If you want to understand a particular C, it is imperative that
you know the structure of its generalized symmetry objects!



Composition objects and representable comonads

1. Today’s focus: co-induction Hom(R,−), viewed as a functor
Ab→ Ab

2.

{abelian groups} Yoneda= {representable functors Ab→ Set}op

exercise
= {representable functors Ab→ Ab}op

⊗! composition

3.

{rings} := {⊗−monoids} = {representable comonads on Ab}op

4. Def: A composition structure on an object P of an algebraic
category C is the structure of a comonad on HomC(P,−).

5. So {composition abelian groups} = {rings}



An example in CAlgZ=Commutative rings

1. A ∈ CAlgZ. A function d : A→ A is a derivation if

d(x+y) = d(x)+d(y), d(xy) = xd(y)+yd(x), d(1) = 0.

2. Differential ring := commutative ring with derivation

Diff-rings

fgt

��

CAlgZ

free = “D �−”

::

HomCAlgZ
(D,−)

dd

D = free differential ring on one generator e

= Z[e, d , d◦2, . . . ] = all polynomial differential operators.

3. Then HomCAlgZ(D,A)
∼→
{∑

n≥0 an
tn

n!

}
, an = ϕ(d◦n),

d = d/dt



4. Hom(D,−) should be a representable comonad on CAlgZ.

Q: What does the ring structure on Hom(D,A) correspond to
on D?
A: D is a co-CAlgZ object in CAlgZ:

Coaddition:

∆+ : D → D qD = D ⊗ D

d◦n 7→ d◦n ⊗ 1 + 1⊗ d◦n

d◦n(xy) = d◦n(x)1(y) + 1(x)d◦n(y) ← meaning

Comultiplication:

∆× : D → D qD = D ⊗ D

d◦n 7→
∑
i

(
n

i

)
d◦i ⊗ d◦n−i

d◦n(xy) =
∑
i

(
n

i

)
d◦i (x)d◦n−i (y) ← meaning

Comultiplication codistributes over coaddition, etc.

5. This is why we need C to be an algebraic category, one
defined by sets with n-ary operations satisfying identities.



1. The comonad structure on Hom(D,−)

! Hom(D,A) is naturally a differential ring

! D has a composition operation ◦
(the analogue of ◦ for C = Ab was the multiplication on R)

2. f ◦ g on D = Z[e, d , d◦2, . . . ] is just composition of
differential operators

3. Interpretation: A composition object P of C is a set of
abstract operators which

3.1 is closed under composition (and has an identity),
3.2 is closed under the operations of C pointwise, and
3.3 has generalized “Leibniz rules” for all operations m of C, i.e.

universal expressions saying how to calculate f (m(x , y , . . . )) in
terms of x , y , . . . and operators of P applied to them

4. A notable feature: elements of P have personalized Leibniz
rules: d ∈ D is a derivation, but e is a ring homomorphism
and 2(d◦2)3d◦7 − 3e is neither but has its own Leibniz rules



Representations of composition objects

1. P = composition object of C

X = object of C

2. An action of P on X := co-action of the comonad
HomC(P,−) on X

⇔ an action of the monoid (P, ◦) on X such that f ◦ x is a
C-morphism in f and satisfies the Leibniz rules of f in x

3. C = Ab, P = R: same as R-module structure on X

C = CAlg, P = D: same as a differential ring structure on X

4. Enveloping principle: All any gadget that knows what it
means to act on objects of C does it via a composition object.

5. A composition object in C is the ultimate gadget that knows
what it means to act on objects of C.



Familiar examples

1. C = Set: composition sets = monoids

2. C = Ab: composition abelian groups = rings

3. C = ModK : composition K -modules = rings R plus a ring
map K → R

4. C= arbitrary, G=monoid: an action of G on X ∈ C is the
same as an action of the composition object FreeC(G )

4.1 The co-operations (i.e., Leibniz rules) of FreeC(G ) are
determined by the requirement that each g ∈ G acts
homomorphically, and composition is determined by g ◦h = gh.

4.2 For C = Ab, this is just the usual monoid algebra of G .



Example 1: C=Groups

1. Theorem: (Kan) Every representable endofunctor on Groups is
of the form X 7→ X S−{∗} for some pointed set S .

2. Composition corresponds to smash product of S ’s.

3. Cor: Every representable comonad on Groups is of the form
W (X ) = XG for some monoid G .

4. I.e., every composition group P is of the form Freegroup(G ) for
a (unique) monoid G . An action of P on a group is the same
as an action of G .

5. Interpretation: Generalized symmetries for Groups all come
from monoids. So they are the same as usual symmetries.



Example 2: C=Monoids

1. New symmetries: anti-homomorphisms!

On a group, giving an anti-endomorphism ϕ is equivalent to
giving an endomorphism ψ: take ψ(x) = ϕ(x)−1. But this is
not true for monoids.

2. Let G → {±1} be a monoid map.

3. A signed action of G on a monoid X is an action of G on the
set underlying X such that elements of G+ act
homomorphically and those of G− act anti-homomorphically.

4. Then a signed action of G is the same as an action of the
composition algebra P = Freemonoid(G ), where composition is
defined using the multiplication on G and the Leibniz rules are
such that elements of G+ are homomorphisms and those of
G− are anti-homomorphisms.

5. OK, anti-homomorphisms are only slightly new. . .



Genuinely new symmetries on Monoids

1. Consider the category of monoids X equipped with
1.1 an endomorphism f and
1.2 an anti-endomorphism g such that
1.3 f (x)g(x) = 1 for all x ∈ X

2. Exercise: This is the category of representations of a
composition monoid P. It is not Freemonoid(G ) for any signed
monoid G → {±1}.

3. Theorem: (Bergman) Every monoid representing an
endofunctor is generated by homomorphic elements and
anti-homomorphic elements. All relations are of the form
fg = 1, describable by certain bipartite graphs.

4. Interpretation: There are genuinely new generalized symmetry
structures for monoids, but we do not need genuinely new
operators to generate them.

But it’s still not clear what form the relations can take. There
are probably strong restrictions, so the the full nature of
representation theory on monoids is still unresolved.



Example 3: C = CAlgQ=Commutative Q-algebras

1. Old: monoids acting by homomorphisms give rise to
composition objects in CAlgQ

2. Slightly new: So do Lie algebras acting by derivations,
P = SymQ(U(g)), all polynomials in U(g), which consists of
linear operators. Then P-actions = g-actions.

3. Common generalization: Polynomials in operators of any
cocommutative bialgebra H: P = SymQ(H)

4. Conjecture: Every composition object in CAlgQ arises in this
way.

5. Interpretation: There should be no genuinely new composition
objects in CAlgQ.

In fact, by Milnor–Moore, we probably only need monoids and
Lie algebras.

6. This should be provable! Bergman–Hausknecht can prove the
non-commutative analogue holds!



Example 4: C = CAlgZ=Commutative Z-algebras

1. A ∈ CAlgZ, prime p. Buium–Joyal p-derivation δ : A→ A

δ(x + y) = δ(x) + δ(y)−
p−1∑
i=1

1

p

(
p

i

)
x iyp−i

δ(xy) = δ(x)yp + xpδ(y) + pδ(x)δ(y)

δ(1) = 0.

Meaning: δ is a p-derivation ⇒ ψ(x) = xp + pδ(x) is a ring
map.

2. Λp = Z[e, δ, δ◦2, . . . ]. Define ∆+ and ∆× and ◦ in the evident
way from the Leibniz rules above.

3. Fact: The linear operators in Λp are the linear combinations of
the iterates of ψ = ep + pδ. They generate Λp over Z[1/p],
but not over Z.

4. ∴ integrality restrictions force non-linear operators on us!



Commutative Z-algebras, continued

5. The corresponding comonad Hom(Λp,−) is the p-typical Witt
vector functor. The non-linear nature of Λp is why it seems so
exotic and is hard to understand.

6. Conjecture: All composition objects in CAlgZ can be built
from linear ones and “similar congruence constructions”.

7. This should be provable! (once made precise. . . )



Example 5: C = CAlgN=commutative semirings

1. Q: Are there nonlinear composition objects in CAlgN?

A: Yes, in fact there are nonlinear ones over R≥0!

2. So, both positivity and integrality restrictions force us to
admit nonlinear operators!

3. Positivity is an analogue of integrality at the place ∞ of Q

4. Λ=symmetric functions in x1, x2, . . . .

I.e., Λ = Z[e1, e2, . . . ], where we imagine

e1 = x1 + x2 + · · · , e2 = x1x2 + x1x3 + · · · , . . .

5. ΛN=symmetric functions whose coeffs are ≥ 0.

∆+ : f 7→ f (. . . , xi ⊗ 1, 1⊗ xi , . . . )

∆× : f 7→ f (. . . , xi ⊗ xj , . . . )

f ◦
∑
i

mi = f (. . . ,mi , . . . ),

where the mi are monomials.



Commutative semirings, continued

6. Then ΛN is a composition object in CAlgN.

7. ∴ R≥0 ⊗N ΛN is a composition object in CAlgR≥0
.

8. Fact: Every generating set of R≥0 ⊗N ΛN must contain scalar
multiples of e2, e3, . . . , and hence many nonlinear operators.

9. The comonad on CAlgZ represented by Z⊗N ΛN is the big
Witt vector functor, which combines all the p-typical ones.

10. So the comonad on CAlgN represented by ΛN could be viewed
as incorporating further nonlinear structure, some “∞-typical”
Witt vector information.
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