
ALGORITHMS FOR MATRIX MULT~~WATION

BY

R. P. BRENT

STAN-CS-70-157
MARCH 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

/
/

W

ALGORITHMS FOR MATRIX MULTIPLICATION

BY

R. P. Brent

March 1970

Reproduction in whole or in part is permitted

for any purpose of the United States Government.

The preparation of this manuscript was supported in part by the Office
of Naval Research (NR 044 211), the Na.tional Science Foundation (GJ 798),
and the Atomic Energy Commission (Stanford PA #18).

Contents

1/ Introduction

2/ Known results

3/ Error analysis

4/ Implementation

5/ Strassen-like methods

6/ Search for new methods

7/ Conclusion

8/ References

9/ Appendix: ALGOLW procedures

ii

1.1

1. Introduction

If A = (aij) is an m x n matrix, and B = (b.
Jk

) is an n x p matrix,

then the matrix product C = A.B is the m x p matrix (cik) defined by

n

Cik =
a
ijobjk

forl<_i<_m, llklp.

Matrix multiplication and its special cases occur very frequently

in numerical analysis. For example: the inner-product of two vectors

(the case m = p = 1), matrix times vector multiplication (the case p = 1),

back substitution when solving linear systems, iterative refinement (per-

haps with several right hand sides at once), the power method for eigen-

values, in least squares problems, and many more. Hence, it is interesting

to investigate algorithms for matrix multiplication, and in particular to

see in what circumstances it is possible to do better than the straight-

forward implementation of the definition (1.01).

It is clear that advantage may often be taken of special properties

of A, B or C, e.g. sparseness or symmetry, if such properties are known

a priori. We shall only consider the general case where no such helpful

properties are known. For practical applications, we need only consider

matrices over the rational, real and complex fields, although the definition

above makes sense for matrices over any ring. The algorithms described will

all be applicable to the problem of multiplication 01' matrices over an

arbitrary commutative ring, and it will later be important tha.t, for some

of the algorithms, the ring need not even be commutative.

-

1

(1.01)

1.2

If the algorithms are to be implemented on a digital computer,

then simply counting arithmetic operations can be rather misleading,

for loads, stores and address computations are also important. The

best test is to implement the algorithms and see how fast they actually

run, and even then the conclusion may depend on the programmer, compiler

and machine used. Also, from a practical point of view, stora.ge re-

quirements and roundoff errors may be vitally important. Hence, after

describing several different algorithms in Sec. 2, I shall discuss

their numerical properties in Sec. 3; and descri‘be some experimental

results in Sec. 4. In Sections 5 and 6 an attempt to find some new

algorithms is described, and in Sec. 7 the results are summarized and

some conclusions drawn. The notation of the definition (1.01) will be

used in Sets. 2 to 4*

2.1

2. Kixmn Results

2.1 The Normal Method

To evaluate the inner-product in the definition (1.01) takes n

multiplications and n - 1 additions. Hence, the m.p elements cik can

be found in mnp multiplications and m(n - 1)p additions, and about the

same number of loads, stores and address computations.

If we count only multiplications <hen this straightforward method

is known to be optimal in some important special cases. Ifm=p=l

then we have the case of a vector inner-product, and a simple dimensionality

argument shows that, in general, n multiplications are necessary. Ifp=l

then we have the case of matrix times vector multiplication, and mn mul-

tiplications are necessary in general (Winograd, see Cl]). In the general

case, however, less than mnp multiplications are necessary: Strassen's ,

method shows this even when m = n = p = 2. Dimensionality arguments give

the lower bound max (mn, np, pm), but usually this is too low, and the

best possible result is not known. For more details, see Sees. 5 and 6.

2.2 Winograd's Method

Winograd [7] has given a method based on the following identity:

l/Jn 2
c
j=l -

aijbjk = Cj=l cai + +9 2-j a- 1 b2j 9 k)Cai 7 2j b2j - 1 9 k)

iT?J2 L/J122

c b
j=l ai,2j-lai,2j - c

j=l 2j-l,kb2j,k

(2.21)

Here LXJ means the greatest integer y < x, and analogously [xl mea.ns

the least integer y > x .
3

2.2

i

t
t

L
t

e
Ic

1
i

i

i

i.

i

If n is even, the left side of (2.21) is just cik, but if n is odd,

the term a.inbnk must be added to give c
ik* The point of Winograd's method

is that the last two sums in (2.21) can be precomputed and, once this has

been done, roughly half the usual number of multiplications are required

to compute each cik using (2.21).

Supposing for simplicity that n is even, let us calculate the number

of multiplications and additions involved in the computation of C by

Winograd's method. We shall never distinguish between additions and sub-

tractions. To compute n/2 -
X. =

1 c "i,Zj-l"i,2j
j=l

requires n/2 multiplications and (n/2 - 1) additions, and similarly for

42
yk = c b

j=l 2j-l,kb2j,k .

Hence, to precompute x1, x2, . . . , xm and yl, y2,... , yp takes (m + p)n/2

multiplica.tions and (m + p)(n/2 - 1) additions*

(2.22)

(2.23)

Given xi and yk, to compute cik using (2.21) takes n/2 multiplications

and (3n/2 + 1) additions. Thus the computation of the entire matrix pro-

duct C takes (mp + m + p)n/2 multiplications and (3mp + m + p)n/2 + mp - m - p

additions. From Sec. 2.1, we have saved (mp - m - p)n/2 multiplications at

the expense of (mp + m + p)n/2 + 2mp - m - p additions, in comparison with

the normal method.

Since mp - m - p = (m - l)(p - 1) - 1, there is no gain at a.11 if

m = lorp= 1, so the remarks above on the minimal number of multiplications

required for matrix times vector multiplication are not contradicted.

4

c

2.3

Supposing for simplicity that m = n = p > 1, Winograd's method saves

b - 2)n2/2 multiplications, at the expense of (n2 + 6n - 4)n/2 additions.

Hence, there is a. saving in the number of multiplications if n > 4 (recall

that we assumed that n was even, but it may easily be verified that there

is no saving for n = 1 or 3). 3If n is large then about n /2 multiplications

have been tra.ded for additions. If a multiplication takes w times as long

as an addition, we see that Winograd time = w+3+ a-h 9
Normal time 2(wt-1)

so the most we can expect is a gain of nearly 50% if w and n are large.

Since (2.24) neglects loads, stores etc. the gain will proba.bly be rather

less than this. Typically we might have w = 2 (say real multiplication)

or w = 4 (say complex multiplication), giving savings of up to 17s and

30s respectively. In Sec. 4 we shall discuss how large n has to be for

any gain in practice, and the important question of roundoff error will

be discussed in Sec. 3.

(2.24)

2.4

2.3 Strassen's Method

Suppose there is an algorithm for the multiplication of no x no

matrices, for a certain fixed no > 1, taking M multiplications and A

additions. Suppose further that this algorithm is applicable for ma-

trices over an arbitrary ring. In particular, we are not allowed to

assume the commutative law for multiplication, so, for example, Winograd's

method is excluded.

Let v(k) and w(k) be the number of multiplications and additions,

respectively, required to multiply nk x ni matrices, for k = 0, 1, 2

We have v(0) = 1, w(0) = 0,

~(1) 5 M, w(l) < A.
>

(2.31)

k+lNow consider no x nrl matrices partitioned into n: blocks, each

block an nk x n: matrix. Our matrices may be regarded as no x no matrices

with elements in the (noncommuta,tive) ring of n: x nk
0 matrices, so our

algorithm is applicable. Applying it will take M multiplications, and A

additions, of nk kx n
0 0

matrices.

Hence v(k + 1) 5 M.v(k)

and 2kw(k + 1) G M.w(k) + A.no .-

From (2.31) and (2.32) it follows by induction on k that

v(k) <, Mk

and w(k)<l (Mk - no'")
- (M-n:)

for any k:b 0- (provided that M f n:, but M < n: is impossible for_

no > 1 anyway).

6

>

(2.32)

>

(2.33)

2.5

Now, in order to multiply n x n matrices for any n > 1, just take

k =
k krlogn d and embed the n x n matrices in n, x n, matrices with the

II

0 ” ”

last n: - n rows and columns zero, and use the above method

the number of arithmetic operations required is

O(Mlognon) = O(nlognoM) asn+a.

For example, 3the normal method with any no > 1 has M = no,

giving O(d) operations, which is no surprise.

. From (2.33) y

(2.34)

log
nO

M = 3,

From (2.34), square matrix multiplication can be done in O(n')

operations, where p = log M = (log M)/(log n)
0 .

nO
(It is interesting

to note that @ is independent of A.) Clearly there is a constant

8, = inf { B 1 O(Z) operations suffice] .

The normal method, and Winograd's method, both show that 8, 5 3, while

the results discussed in Sec. 2.1 show that 8, > 2. The actual value of-

80 is not known. While it might be considered "intuitively obvious" that

@O = 3, this is false: as Strassen [5] has shown,

8, < log27/L 2.8 .

Strassen's idea is to give an algorithm for the multiplication of 2 x 2

(2.35)

(2.36)

matrices over an arbitrary ring, with the algorithm involving 7 multipli-

cations (instead of the usual 8) and 18 additions (instead of the usual 4).

Putting no = 2, M = 7 and A = 18 in the above, his result follows.

:

I .

i

2.6

Strassen's algorithm is based on the following identities:

t.

then

and

Cl1 = 91 - q3 - q5 + 97 '

c12 = 4-4 - 91 '

“21 = q2+9 '3
Cl22 = -2 - q+ + q'j + Q '

where (21 = (all - a12)b 22 '
(42 = (a2l - "22)b11 '-
q3 = a22(bll + b21) '
94 = all 12(b +b 122 '
q5 = ("11 + a22Hb22 - bll) '

96
= (all + "21lb11 + b12) '

and
97

= ("12 + a22m21 + b2n)L l

Strassen in [5] gives no hint of how the identities (2.37) were

discovered, and they are certainly not immediately obvious. I shall give

a "graphical" method which makes the ideas clearer, and which enables

one to rediscover the identities (2.37) in a few minutes if they are not

at hand. We want the four sums of products

c -ab + a
ik = il lk i2b2k (i, k = 1, 2).

This might be represented diagrammatically thus:

b21

b22

bll

b
12

21 11

X 22 12

21 11 y

22 12
a21 "11 a22 a12

where we want the four

sums of products which

correspond to similarly

labelled squares.

2.7

c

A product (a21 + all)(bll + b
- 12

) might be represented as:

b21

b22

b
11

b
12

c 9

I 1

(the signs of the
terms are not
represented in the
diagram)

"21 "11 a22 al2

Now consider the representations of the seven products ql, . . . 47

of (2.37). For example,

and q4 + I .
I1
I

I

It is immediately obvious from the diagra.ms that we can combine ql and q4

linearly to give terms involving the products allb12' a12bP2, and allb22.

It is conceivable that for a suitable combination the allb22 term will

drop out and leave c12* If the reader now draws the representations of

91’ 92’ l ** 9 q7
and sees how they combine according to (2.37) to give

yy l l l 9 c2p he will see that one could reconstruct the identities

(2.37) from the easily remembered graphical representations, apart from

ambiguities in sign. A little thought and juggling of signs will then give

a set of identities equivalent to Strassen's (there may be 9 trivial

permutation of the suffices).

It is interesting to experiment with other graphical representations

and convince oneself that it is impossible to multiply 2 x 2 matrices in

less than seven multiplications. Winograd [8] claims to have proved this.

9

2.8

1
t

i

i
c

In Sec. 4 we shall discuss how to implement Strassen's method for

rectangular matrices, and how to avoid any wasteful "bordering" with

zeros. The question of roundoff errors will be discussed in Sec. 3.

10

3.1

3. Error Analysis

The most important case in practice is that of real matrices and

limited-precision floating-point computation. I shall use Wilkinson's

notation [6], and assume all arithmetic operations are done in t-digit
*

rounded binary arithmetic , except that some operations may be especially

noted to be done in double-precision (2t-digit). Wilkinson's assumptions

concerning the method of rounding or truncating will be made. Some of

these assumptions, e.g. binary arithmetic, do not hold for the IBM 360,

and this will be discussed later. For simplicity, all matrices will be

assumed to be square (n x n).

It will be convenient to use the norm

II IIXM = max I IX

l<,i,j<_n
ij

(note that \\xY/\~ 5 I\x~~,.~~Y~~~ is generally false). This norm will usually

be written just as \Ix\\ . The results obtained may be expressed in terms of

more usual matrix norms by using the attainable bounds

IIxIIM 5 /l'i(g 5 n* IIxl/M 5 (3.02)

where q stands for 1, 2, m , or E.

i

(3 l a

Wilkinson [6] defines numbers tl and t2 which are slightly less than t.

Wherever tl or t2 appear there is the implicit assumption that n.2-t < 0.1,

which is no restriction in practical cases.

I.

Ic
* The analysis is similar with any base

bounds will hold with 2
-t

replaced by

S 2 2, and in most cases the same
1 1-t
ES l For a discussion of Wino-

I
i

I
L-

- grad's method, and some further applications of (2.21), with base p > 2,

see [12] .
11

3.1 The Normal Method

Wilkinson [6] shows that if

C = fl(A.B) = A.B + E
4,

then IIEIIE L (2 ‘1 l n* Il~llE l IIBIIE l

He notes that if then the relative

error in C may be high. On the other hand, if the inner-products are

accumulated in double-precision,

then
-t

II II -EE<2 . AB E + $2II II
-2t2

l lkIIE* ll~I\, 9

(3 .m

(3 -12)

(3 JS)
e

^_.

and hence the relative error in C will be low unless there is so much

cancellation that Il~il, l 11’11, > 2t ,
II IIABE /

3;

To get a bound in terms of the norm l).IIM, consider a typical term

in the product C. Such a term will be an inner-product

fl(~XiYi) = &*iYi + e say.
1 1

If the sum is accumulated in the natural order, we have

I Ie 5 2+(n.jxl(.(yJ + n*IX21 l IYJ + (n-1-,+,l.lY31

+ . . . + 2*IXnl*lYnI) 9

so I I-e <2-tl (n2+3n-2). 2 ’ max~x~lomaxlYi~ .

As the xi are elements of A, the yi elements of B, (3 J5)

(3.14)

(3 015)
z

and the

definition (3.01) give -t

II II 1 (n2+3n-2)
EM52 . 2 l /I4I~‘Jl~ll~ . (3 916)

i

(3.12) and (3.16) are of the same form

II IIE <2-?‘_ - f(n) l \\A\\ l llBl\ 9 (3 017)
and a bound of this form, with some reasonable f(n), is the best we can

expect for any single-precision method.

12

i ‘.

i.

I

3.3

’
For double-precision accumulation of inner-products, the bound

corresponding to (3.13) is

II IIEM<,2 -t.\\AB\\M + $. (n2 + 3n - 2).2
-2t2

l Il~llM* IIBIIM l

Again, unless there is exceptional cancellation, the relative error in

C will be low.

3.2 Winograd's Method

First consider a simple inner-product

where Y = fl(

n 2
I = fl(

c

and
n 2

T = fl(
c

(x2j-1 + Y2j)(x2j + y2j-l)) '

1x2j-lx2j '

(3 018)

'2jy2j-1 '1
J

computed by Winograd's method (n even).

A simple example illustrates what can happen when limited-precision

arithmetic is used. Suppose we are using G-decimal floating arithmetic, n = 2,

= x
xl 2

= 1.000'+3, y1 = y2 = l.OOO'-3 .

Then 5 = 1.boot+6

and II = 1.000'-6 (both exactly correct),

but 7 = 1.000'+6 (instead of the exact
1.000002000001~+6),

so p = 0.000 instead of 2.000 . The difficulty is in

forming fl(x2j-l + y2j) etc. when the elements of x may differ widely in

magnitude from the elements of x . This conclusion will also follow from

the rigorous error analysis below.

13
b-

Let a = max IxJ and b = max IyJ , (3 -22)

n/2
and let 5 = c x + c

2j-lx2j 5
etc.

-I

From (3.15) with n replaced by n/2 we get

I Ics 52?a2. n2(+ 6n - 8)/8 ,
1

and similarly

I Itq 9 -tl 2
.b .(n2 + 6n - 8)/8 .

If fl(x+ y) = x + y + Ex+y Cx anY xif Y any Yi)

then 1 cx+yl 5 hlxl + IYI, -

-t
<2.(a+b) .

Thus fl((x+y)(x'+y')) = (1 + co)(x + Y + qx' + Y' + c2>

where

(x + YW + Y') + cz say>

I I5) 5 2
-t

and ;,I, 1~~1 5 Yt(a + b)'.

By expanding (3.25) it follows that
-t

I IE3 12 '&(a + b)2 ,

I I < 2
EY -

-5 .((n2 + 14n - 8)/8).(a + b)2.

3.4

(3 023)

(3 024)

(3 -25)

(3.26)

where t
3

is defined by

-t
2 3

-t -2t -3-t
= 2 +2 +2 9

(so in practice t zt).
3

-t
Hence I I <2c7 - 3.(3n/2).(a + b)2 +

eBtl . u n2 + 2n - 8)/8)(a+b)2(l+3.2-t3) .

In all practical cases

(3n/2 + 3.2-t1((n2 + 2n - 8)/8)).2-is f (3n/2) l 2
-5

?

and with this assumption we get

(3 -27)

14

3*5

From (3.23) and (3.2'7), the error e in p is bounded by

I IE <2-5

c
u- n2 + 14n - 8)/8)(a + b)2 + ((n2 + 6n - 8)/8)(a2 + b2)

+ IY - 5 - VI + 151 + Ivl
3

(3 -28)

(terms of order 2
-2t have been neglected, but they may be dealt with as

above (see [12])).

NOW 17 - 5 - ~1 5 nab + 06) J 151 5 F a2 + ly\, iI! 5 Eb2 + Iyl

and a2 + b2 < (a + b)2 ,

so
~ < 2-tl n2 + 12n - 8I I- . 4 . (a + b)2 .

By considering (3.29) with n replaced by n - 1 and a term added for

the error in computing and adding xnyn, it may be shown that (3.29)

holds whether n is even or odd, and bounds the error in computing an

inner-product by Winograd's method. From (3.29) we obtain the bound

II II - -5EC2 l

for matrix multiplication by Winograd's method. (A slightly stronger

result than (3.29) can be obtained if a = b, see [12].)

Suppose lbll / IIBII = k* (Assuming k)O or a)

Then

(IIAII + IIBII) 2 = (k + 2 + l/k) l \IAI\ l \lBll 9

which shows theIt (3.210) will be much worse than (3.16)

when k is very small or very large, and this is verified

by the example above.

Scaling

Ignoring the cases \\A\\ = 0 and \1~ll = 0, it is always possible to

find an integer 1 suchthat Hence a practical

(3.29)

(3.210)

15

3.6

scheme would be to compute 11~11 and 11~11 (in O(n2) operations), find 1
Y

and then apply Winograd's method to h2 A and 2-hB rather than to A

and B. If this is done, then since

~a~
l/&k<2

(k + 2 + l/k) = 9/2,
- -

we get, in place of (3.210), the bound

II IIE < 2?g.(n2 + 12n - 8) 44 l lbll 9 (3.211)

which is of the form (3.17) and is not much worse than (3.16).

This shows that Winograd's method is feasible provided some form of

scaling is used to make \\A\[- 11~11 . Without scaling, the results may

easily lose all significance. This does not seem to have been mentioned

by anyone recommending the use of Winogra.d's method: e.g. blindly fol-

lowing the procedure recommended in 121 could lead to disaster.

i

i
i

I
t

A more sophisticated form of scaling could be used, but it is im-

portant to keep the time for scaling to a minimum, or Winogra.d's method

becomes slower than the normal method. The extra time taken by scaling

will be considered in Sec. 4.

If it is easy to accumulate inner-products in double-precision then

this may as well be done. The error bound

though, unless the terms
"i,2j-1 + b

2&k

are computed in double-precision. Then we

-t

IIE <2II _ .AB +2II II -2t2 27l p+n2 + 12n -

will still be like (3.211)

and a
i,2j + b

2j-1 k Of (2021)
Y

get a bound

8) l Ibll ’ lbll 2 (3.212)

provided that the terms xi and yk of (2.22), (2.23) are kept in

double-precision, and assuming scaling as above. (3.212) is very similar

to (3.18) and the same remarks apply.

16

L

:
L

t

3*7

3.3 Strassen's Method

Assuming a bound II IIE L 2-t*fo +ql l IIBll (3 -31)

for n x n matrices, it is possible to deduce a similar expression for

2n x 2n matrices, if the multiplication of these matrices is reduced to

the multiplication and addition of n x n matrices using Strassen's

identities (2.37). This gives f(2n) in terms of f(n), and as (3 -31-I

is certainly true when n = 1 (with f(1) = l), we can find f(n) for n

an integral power of 2. If the "bordering" method is used for general

n then the zeros will have no effect on the error, so the bound for the

next power of two may be used.

To express f(2n) in terms of f(n), let A, B, and C be 2n x 2n

matrices (deviating slightly from our usual notation), and regard A, B,

and C as 2 x 2 matrices with n x n blocks. Consider forming C =

fl(A.B) using the identities (2.37). Terms of order 2 -2t will be

ignored, for although they may be dealt with by replacing t by t'-Nt

as we replaced t by tl, t2 and t
3

in Sec. 3.2, this complicates the

argument, and the results are not significantly different. For brevity

let a = A M,II II b = \IB\\
M=

The error in computing qi of (2.37) will be denoted by Eqi' so for

example fl((all - a12b22) = (all - y2b22 + E
ql (where all' a12,

b22
and E

a
are n x n matrices). Similarly, the error in computing

C ij Of (2.37) will be denoted by E...
13

Thus

(3.32)

C = fl(A.B) = A.B + E, where E =
l

17

3.8

Since ql = fl((all - a12).b22) , where the n x n matrix

multiplication is done by Strassen's method with the error bound (3.31),

and the matrix addition is done in the usual way, we have

I/EgJl L 2% + f(n) I(Ily1ll + lb, ,I!) l llb,,ll 9L

so llEqlll L 2 -t.2ab.(n + f(n)) , (3.33)

and similarly for E
@' Ec13y

and E
cd+ l

For i = 5, 6 and 7

we get the bound

I
i- llEqlll. < 2%ab.(2n+ f(n))- (3.34)

in the same way.i

Now it follows from (2.37), neglecting terms in 2
-2t

, that
i

IIEJI 5 llEqlll + llEqJl + 2-Y 11~111 + llclJ) , (3.35)

L but
2nab for i = 1, 2, 3, 4

II qi II 5 (
4nab for i = 5, 6, 7 ,

so from (3-33), (3.35) and (3.36) we obtain

>
(3.36)

lIE1211 -k2%ab.(2n + f(n)) ,

and clearly the sa.me bound holds for E2s
Similarly we have

IIEIJl 5 llEqJl + lIE(Jl -+ IlEg I+ llEs:// +

(3*37)

2-tmlll + 3lls3 II + 4s /l +5 11s 107 (3.38)i

(ass~ing qly q3, q5
and q7 are added in this order),

so llEllil 5 2?ab.(&n + 12f(n)) , (3439)

and similarly for E22.

From (3.37) and (3.39) we see that

II IIE < =I-?- (44n + 12fb-d) •\lA\\.ll~\l , (3.310)

so (3.31) will hold if f satisfies f(1) = 1 and f(2n) =44n + 12f(n) .

(3.311)
18

3.9

By induction on k, it follows from (3.311) that

f(2k) = $(27.12k - 22.2k) ,

so f(2k) < 7.12" = 7. ($7-p .

Hence, for general n, taking k such that n < 2k <2n ,

we have II IIE 5 2-t.65nC.\(AI/.I(B//

where C =log2 12z3.58 .

(3.314) gives a bound for the error in matrix multiplication by

Strassen's method, as described in Sec. 2.3. The bound is of the form

(3.17), although the function 3.585&n increases rather more ra.pidly

than we would like. On the other hand, all the error estimates obtained

here are rather pessimistic, for the individual rounding errors are un-

likely to be correlated in the worst possible way. If our bound is

2%-d IIAII l IIBII then the actual error is probably about 2-t m IIAII l IIBII
(see Sec. 4.6).

The analysis above assumes that a "pure" form of Strassen's method

is used. In practice it turns out that Stra.ssen's identities will be

applied until the matrices to be multiplied are of order ~100 or less,

and then the normal method will be-used (see Sec. 4.3). Supposing we

have matrices of order 2k.n0, and apply Strassen's identities k times,

multiplying the matrices of order n, by the normal method. Then (3.311)

holds with

v

+ 3n, - 2) /2 (from 3.16) J

SOY assuming no > 6, we have

f(2knC) 5 16knE .I

Thus, for n x n matrices, the bound becomes 11~ II _< 2-t.4k.n2 . IIA
19

(3.312)

(3 l 3l3)

>
(3.314)

3.10

i

i.

i
1 .i-

L
i

Since k will be very small in practice, the bound (3.316) is not

too bad. Comparing it with (3.16), it appears that we may lose up to

two bits of accuracy, compared to that of the normal method, each time

Strassen's identities are applied recursively.

In using Strassen's method there does not seem to be much point in

doing some of the arithmetic in double-precision, unless it can all be done

in double-precision, when the above bounds hold with t replaced by 2t

(and a factor of 3/2 with Wilkinson's assumptions about the method of

rounding or truncating).

It is interesting to note that with Strassen's method there is no

point in scaling the matrices so that ll~ll~Il~l\. This is because, unlike

Winograd's identity, Strassen's identities never involve the addition of

an element of A to an element of B.

3.4 Complex Arithmetic

The above analysis is based on the assumptions that fl(x + y) =

x(1 + el) + y(1 + e2) and fl(xy) = xy(1 + e3) where 1e.J < 2-t,-

i = 1, 2, 3*. These assumptions will be valid for complex arithmetic too,

provided that t is decreased by a small amount (2 or 3) depending on how

the arithmetic is done. Hence, with this small change in t, the above

bounds will hold for complex matrix multiplication. Similar remarks

apply to real arithmetic done on a decimal or hexadecimal machine (e.g.

the IBM 360). A curious anomaly which appeared when Winograd's method

was being tested on an IBM 360/67 computer is described in Sec. 4.6 .

* A stronger assumption about addition, used in Section 3.2, was not

really necessary (see [12]).

20

I
c

4.1

4. Implementation

i

\
i

!
L

i

In order to compare the normal, Winograd's and Strassen's methods

in practice, they were all implemented in ALGOLW [lo] on an IBM 360/67

computer. Doubtless all three methods would run faster if coded in,

say, FORTRAN-H or assembly language, but their relative speeds would

probably be about the same. While it would be easy enough to code

the normal method and Winograd's method in FORTRAN or assembly language,

for Strassen's method it is very convenient to have a language which

allows recursive procedure calls. The simplest way to code Strassen's

method in a language like FORTRAN would be to limit the depth of re-

cursion and duplicate any subroutines which would naturally be called

recursively. The three methodslwere tested on both real and complex

matrices, with results which will be summarized below.

All three methods were coded in the form of a pure procedure,

with calling sequence

name (A, B, C, M, N, P)

to form C := A.B , where A is an M x N matrix (dimensioned (1 :: M,

1 :: N)), B is N x P, andCis MxP. Calls such as name (A, A,

A, N, N, N) are valid, and correct results should be returned for ;3ny

M, N and P > 1, provided enough temporary storage is available.

At first the procedures were coded so that the"inner 1oops"involved

references to doubly-subscripted array elements. In ALGOLW such re-

ferences take considerably longer than references to singly-subscripted

array elements [ll], and it was found that all the procedures could be

speeded up by passing cross-sections of two-dimensional arrays as para-

meters to procedures which then operated on them as one-dimensional

i
j
L 21

4.2

arrays. (This is not allowed in ALGOL-60.) For example, instead of:

,

1

1

For I := 1 until M do

for J := 1 until N do A(I,J) := B&J);

we use:

For I := 1 until M do assign (A(I,*),B(I,*),N);

where we have defined

Procedure assign (rea.1 array A, B(*); integer value N);

for J := 1 until N do A(J) := B(J);

/
c The second form will execute faster provided N > 10 . As this device

speeded up the normal method rather more than Strassen's method, it is

clear that a comparison of the three methods depends on the language

and the programming techniques used to implement them.

The implemention of each method will now be described in more detail.

The procedure for the real and complex cases are very similar, and list-

ings for the real case are given in the Appendix.

I

i

4.1 The Normal Method

(Procedure MATMULT, see Appendix, lines 288-311.) There are no

particular difficulties in the implementation of this method. Because

of the possibility that C is the same as A or B in the call, the product

is formed in a temporary array Q and then transferred to C. Thus M.P

words of temporary storage are used. Inner-products are accumulated in

double-precision, for in ALGOLW this is very nearly as fast as accumu-

lation in single-precision. Hence the error bounds (3.13) a.nd (3.18)

are applicable (with the alteration noted in Sec. 3.4), and in most cases each

Cij will be the correctly rounded result, although this can not be guaranteed.

22

4.3

4.2 Winoarad's Method

(Procedure WINOGRAD, see Appendix, lines 219-285.) Again the

implementation is fairly straight-forward. The matrices A and B

are scaled as described in Sec. 3.2, and the scaled matrices are

stored temporarily in arrays D and E. Strictly speaking, scaling

should be done to the nearest power of 16 rather than 2, for scaling

by powers of 2 could introduce roundoff errors on the 360, a.nd these

errors have not been taken into account in the error analysis (Sec. 3.2).

Taking account of these errors gives the error bound

Pll 5 2

-? 2
&I l IPI1 l PII f

where K is a small constant, instead of (&2ll). In the complex case,

pw 1 + II(X) 1 ra.ther then 1x1 was used to save time. This increases

the error bound by a factor of at most 1.15 .

The inner-products xi and yk of (2.22), (2.23) are computed and

stored in the arrays X and Y. As stated above, it is not significantly

harder to compute and save the xi and yk in double-precision, so this

is done.

In all, (n + 2)(m + p) words of temporary storage are used, which

is about twice as much as for the normal method if m = n = p. The sums

(ai,2j-l + b
2&k) a.nd (a i,2j + b2j 1 k) of (2.21) are computed in

- J

single-precision, and then the inner-product involving them is computed,

as usual, in double-precision. If n is odd then the necessary correction

is made, and the final result fl(C) is formed. It is interesting to note

that if the sums (a i,2j-1 ' b2j,k 1 and (a
i,2j

+ b
2j-1,k 1 were com-

puted in double-precision, we would be using double-precision throughout,
-

(4.21)

23

i
i

j
i

L

L

L

I
!
I
i

L

!
i

c

c
i

i

i

and the bound (3.212) would apply. Unfortunately,the extra time taken to

do this slows the procedure down so that it is never faster than the

normal method, so the sums could only be computed in single-precision,

and the best error bound we can get is of the form of (4.21).

4.3 Strassen's Method

(Procedure STRASSEN, see Appendix, lines 6-216.) The method im-

plemented is the following: First, if m, n and p are sufficiently small,

normal matrix multiplication is used (see below for the precise criterion).

Otherwise, m is replaced by 2k/2J, n by 2&J, and p by 2E/2J .

A is partitioned into four m/2 by n/2 matrices and B into four n/2 by

p/2 matrices, ignoring the last row and/or column if necessary. The,

block 2 by 2 matrices are multiplied using Strassen's identities (2.37),

which involves seven recursive calls to STRASSEN to compute the m/2 by

p/2 products ql, . . . q7 (actually C is used in place of Q7 to save

stora.ge) . Finally, the result is corrected if the original m, n or p

were odd. This avoids wasting space and time by filling up the arrays

with zeros as described in Sec. 2.3 . In case C coincides with A or B,

some values needed for the correction step have been saved in arrays Sl

and S2.

Actually implementing the identities (2.37) is tedious but straight-

forward. The fast, general-purpose procedure OP is used to take advantage

of-the facility, noted above, for passing cross-sections of arrays as

parameters to procedures. In forming cl1 and c22, the terms ql . . . q4

are added before q
5

... q ,
7

for otherwise the error bound would be in-

creased slightly. All arithmetic is done in single-precision except

24

c

I
4.5

L

L-

L

L

for the accumulation of inner-products when normal

is used, so the error bound (3.316) is applicable.

precision accumulation of inner-products, the term

be replaced by 5.12kno .

matrix multiplication

Because of the double-

k 2
4 n in this bound may

Procedure IDENTITIES uses the temporary arrays T, U, Ql, Q2, l *a , Qb 9

taking (mn + np + 6pm)/4 words. Since the procedure is called recursively,

at any one time we may need 5 (mn + np + 6pm)@ + b-2 + b-3 + . . .)

= (m + np + bd/3 words of temporary storage. (4.31)

The arrays Sl and S2, and the stack space required for recursive proce-

dure calls, will be negligible if m, n and p are reasonably large. The

space for the array Q, used when normal matrix multiplication is invoked,

may be absorbed into (4.31). Hence the temporary storage used is rough-i

i

L
ly bounded by (4.31), and if m = n = p this is 8n2/3 words, or slightly

more than that required by Winograd's method and 8/3 times that required

by the normal method. For all three methods, the temporary stora.ge re-

quirements can be reduced if C is not allowed to overlap A or B.

4.4 Comparison of the Three Methods

i

The three procedures described above were run under the same con-

ditions (idle with "nocheck" option) for various test matrices A and B.

Some running times for the case of square matrices are given in Table 1.

In each case the depth of recursion in procedure STRASSEN was kept at

exactly one.

c

25

Table 1 Running Times (in l/60 sec.)

m=n=p

20

30

40

50

60

Real case

Normal Winograd Stra.ssen*

28 34 42

83 88 107

184 184 221

347 336 392

584 557 436

Comnlex case

Normal Winograd Strassen*

53 53 66

167 150 187

384 330 401

731 615 742

4.6

*Strassen's method with exactly one recursion. Run times varied

slightly, but were constant to 2 1%.

By counting operations it is clear that the running time of each

method should be a cubic in n, and for Strassen's method the coefficients

will depend on the depth of recursion. It turns out that the constant

term is negligible, and the times in Table 1 are given to + l$ by cubits

e-4 3= an + bn2 + cn with the following coefficients:

Ta.ble 2

Real

Complex

3Cubic Coefficients, T = an + bn2 + cn, in p sec.

a b C

Normal _ 40 - 270 2000

Winograd 37 200 9500

Strassen* 36 650 8000

Normal 90 320 2000

Winograd 73 220 11500

Strassen* 80 790 8000

26

4.7

Some interesting conclusions may be drawn from Tables 1 and 2.

Comparing the normal method with Winograd's method, we see that

3Winograd's will be faster if 37n + 200n2 + 9500 < 40n3 + 270n2 + 2000,

i.e. 3if n >, 40 in the real case,and if 73n + 220n2 3+ 11500 < 90n +

320n2 + 2000, i.e. if n > 21 in the complex case, which may be verified,

by inspection of Table 1. As n + 03 , Winograd's method will run in

37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal time in the complex case. The gains are significant

for reasonably small n: e.g. for n = 100 Winograd's method will save

TXJ (real) or 18% (complex). Hence, for moderately large matrices,

Winograd's method leads to significant, though not spectacular, savings,

and is worthwhile especially in the complex case.

It is worth noting here that it does not pa.y to reduce the multi-

plication of two complex n by n matrices to three multiplications of

real n by n matrices (plus some additions) by using (A + Bi)(C + Di) =
(4.41)

(E - F)+ (G - E - F)i, where E = AC, F = BD, a.nd G = (A + B)(C + D) , ,

for complex matrix multiplication takes less than three times as long

as real matrix multiplication (using any of the three methods).

It follows from Table 2 that Strassen's method will be faster

than the normal method if n 2 110 in the real case, and if n 2 60 in

the complex case. Hence procedure STRASSEN should check to see if

n<no (withno set at 110 or 60), and if so use the normal method.

If n3_no then Strassen's identities should be used to reduce n to n/2,

and the same test applied recursively. This is what the procedure ac-

tually does, except that no is not compared just with n, but also with m

and p in case the matrices are rectangular. It can be seen by counting

opera.tions that the appropriate test is if 3mnp < no(mn + np + pm) rather

27

L 4.8

!
L

than if n < no. The times given in Table 1 were obtained with no reduced

IL so that Strassen's identities would be used exactly once.

By counting operations, it can easily be seen that the time TS(n)
i
L

for multiplication of n by n matrices using Strassen's method should be

given by
+ bn2 + en + d if n < n

T&n) = + a'n2
0

+ b'n + c' if I-I > n .
- 0

(4.42)

From (4.42) it follows tha?t, if
f
i 1 k=max(O, Llog2b/no] + 1) 9

9
.1

(4.43)

then
k k

4 7kTS(n) = (6) a.n3 + (($) b + ,(($ - l)a')n2

+ ((gk c + $((;)k - ;b*)n

+ (Tkd + ;(7k - 1)~') .

I
L

i

I
i

The constants a, b, c and d should be those given for the normal method

in Table 2 (d is negligible). The constants a', b' and c' determined to fit

Ii
the data in Table 1 are:

Table 3 Constants in (4.42) (p se4I
i Real case a' = 190 b' = 4000 C’ = 120000

Complex case 220 4000 120000
i

The constants in Tables 2 and 3 are not very well determined by theI
t

data (especially c and c'), and are not exactly consistent. For example,

i
from (4.42) and (4.43) we should.have, in Table 2, aS = 7a,/8, while the

Table gives as = 36 and aN = 40. The consistency is a.bou-1; as good as can be
I
t expected though.

I

i

- From (4.42) and (4.43) it follows that TS(n) = O(n10g27) as n + CD ,

28

Ic

so for sufficiently large matrices Strassen's method is arbitrarily faster

than the normal method or Winograd's method. In practical cases, say for

4.9

n < 200, the normal method or Winogra.d's method appears to be faster.

By the above formulae we can estimate that Strassen's method will be

faster than Winograd's only if n > 270 (real case) or n > 280 (complex

case). On the other hand, these changeover points are very sensitive

to changes in programming techniques etc., so it is conceivable that

Strassen's method would be the fastest, in some language on some machine,

for matrices of orderNl50. In most practical cases, Winograd's method

will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

i 4.5 Paged Machines /

I Some machines (e.g. the Burroughs B5500) have a fairly small physical

memory but a large "virtual" memory. The user's program and data is divid-

ed into "pages", some of which may be held in fast core memory, and the

others on a device such as a disc or drum. When reference is made to a

page which is not in memory, a hardware interrupt occurs, kind the required

page is read into memory from the external device (to make room for it, a.

page may have to be saved on the device). We say that a "page fault" has

occurred. As a relatively slow external device is involved, page faults

are very time-consuming and should be avoided as much as possible. (For

a discussion of the concepts of virtual memory, paging, segmentation etc.

see Randell and Kuehner [9].)

MC Kellar and Coffman [4] have considered the number of page faults

which will occur when certain matrix operations, including multiplication,

are performed on large matrices using a machine with paging like that

/ 29

4.10

described above. They conclude that, for a slight modification of the

normal method of matrix multiplication, it is better to store a la.rge

matrix by submatrices, with each submatrix fitting into a, small number

of pages, than by rows or columns. Even then, the number of page faults

3will increase like n for sufficiently large n. Similar arguments would

apply to Winograd's method, again suitably modified.

Unlike the normal method or Winograd's method, Strassen's method

I
i
i

1

would perform well, with eventually O(n2.8
) page faults, even when

simple row or column storage is used. This is because the only matrix

operations on matrices with n > n
0 are assignment and addition operations,

L
and these can be performed as efficiently when row or column storage is

used as for any other method of'storage. A few modifications to the

procedure STRASSFN in the Appendix should be made. no should be de-

creased if necessary so that no by no matrices can be multiplied in

L
core (without any page faults). Also, inner loops should involve opera-

tions on one row rather than on one column, if row storage is used.

Thus we should change double loops like

I For J := 1untilNdoforI :=luntilMdo...

to For I := luntilMdoforJ:=luntilNdo... .

This also applies to the "implicit" loops when procedure OP is called:

e.g. lines 138 - 139 should be changed to

For I := 1 until M2 do

OP(T(I,*),A(I,*),A(I,*),M2,0,N2,-1); .

Hence Strassen's method might be competitive with the other methods for

smaller values of n on a paged machine than on a machine without paging.

30

. .L
i
!-

4.6 Rounding Errors

i The procedures were tested using matrices with elements uniformly

distributed in (-l/2, +1/2), or with real and imaginary parts having

i
L-

this distribution. were computed, assuming that the normal

method gave exact results, which is reasonable considering the error

bounds (3.13) and (3.18). As expected, the error bounds (3.211) and

(3.316) of the form IPI\ 5 2%4 Pll l IIBII were too pessimistic, and the

actual IlEll was more like 2-t ,/B llAl\.l\Bll : See Ta.ble 4.

Table 4

L

i

c

n Real Strassen Complex Strassen Complex Winograd

30 0.27 1 0.28 0.28

40 0.20 0.83 0.24

(taking f(n) =

c

z(n' + 12n -8) for Winograd,

4kn2 for Strassen, and t = 21)

A surprising result occurred with Winograd's method in the real case.

The single-precision results agreed exactly with those given by the normal

method! This might be expected if the error bound (3.212), rather than

(3.211), were applicable‘ The anomaly is apparently caused by the special

nature of the test matrices and the characteristics of floating-point

arithmetic on the 360/67. As the elements of A and B were uniformly

distributed in (-l/2, +1/2), about 7/8 of them would have absolute values

in (l/16, l/2) . Since the 360 is a hexadecimal machine, any two such

numbers will be added exactly. This means that at least 49/64 of the sums

(⌧2j-1 + Y l) and23 (⌧2j -+ Y2j 1) Of (3021) will be formed exactly. As

31

4.12

remarked in Sec. 3.2, this means that we are effectively using at least

double-precision most of the time. Presumably the few errors made in

computing the above sums were not enough to affect the rounded single-

precision results, although it seems strange that all the elements of

a 50 x 50 product should agree, even to the last bit, when computed by

two such different methods. In the complex case this anomaly disappears,

for a rounding error will usually be made in adding either the real or

the imaginary parts of the above sums.

i

c

32

I
5. Stra.ssen-like Methods

5.1

f
t.
I
L

L-

I
i.

L
i

IL

i
l-
f
i-

I
i.

i

L .

L
i

For 2 x 2 matrix multiplication, both the normal method and Strassen's

method may be described as follows: given the a.. and bkL, we form prod-
iJ

ucts ql, . . . , qT of the form

9p
= (C a!

ijpaij)(CBfipbfi) 9

and then the c are linear combinations of the
%

, i.e. there are

constants 7 such that
mnP c!

(5.01)

(5.02)

Substituting (5.01) in (5.02), equating coefficients, and using

the definition of matrix multiplication, gives the set of equations

T

c
p lQlijpekLp7mnp= = 'ni6jk6Lm , (5.03)

where 6 is Kronecker's delta. (The subscripts on the c were reversed
nm

to increase the symmetry of (5.03).) For the multiplication of M x N

matrices by N x P matrices, (5.03) gives (MN@ equations as i, j, k,

L, m, and n range over the integers 15 i,n < M, 1 <, j,k < N, 15 L,m< P.

For example, in the 2 x 2 case with T = 7, we have 64 equations in 84 un-

knowns, and Strassen's identities show that there is a solution. Strassen's

solution has the nice property that all the cy..
iJP' @kLP

and 7 are 0 or
mnP

+1 . Note that, if a solution of (5.03) exists, it will certainly not

be unique.

Strassen's method applied to 4 x 4 matrices shows that the

equations (5.03) have an (integral) solution when M = N = P = 4,

T = 49 (there are 4096 equations in 2352 unknowns). In general Strassen's

method shows that there is a solution with T = 7k when M = N = P = 2k .

33

(5.2)

If there is a real solution with M = N = P and a certain T, then

i,
L

matrices of order n can be multiplied in O(nlogNT) arithmetic operations

by a simple extension of the method described at the beginning of Sec. 2.3.

While an integral or rational solution is desirable, in theory a real or

< even a complex solution would suffice.

The problem leading to equation (5.03) can be generalized in the

following way: suppose a l, . . . , aI and bl, . . . , bJ are non-commut-

ing variables, o..
iJk

is a given three-dimensional array of real or complex

numbers, and we want 'to compute the K sums of products qk = c 0ijkaib-j

(k=l, K) in as few multiplications as possible. Then we want

the least possible T and scalars ait, /3. , yJt kt
such that from the T

products I

z"itai) (j ' jtbj) Yl<_tlT Y

we can form the qk as linear combinations of the pt ,

i

qk=tlc= 'ktPt l<k<K.- -

Combining (5.04) and (5.05) and equating coefficients gives

T
z a.p.y = CT..L. t.l lt Jt kt iJk

(5.04)

(5.05)

(5.06)

for .l< i < I,- - lzj<J, l<k<K,

and clearly (5.03) is a special case of (5.06) l

To sharpen the upper bound (2.36) for the constant B, defined by

(2*35), we could look for solutions of (5.03) with M = N = P and

lo%T < log27 . For example, we would like to find solutions with N = 2,

T = 6 or N = 3, T = 21 or N = 4, T = 48. As (5.03) is a special case of

(5-W, and as it is convenient to avoid triple subscripts wherever possible,

we shall first consider (5.06) l

34

1:G 5.3

I
i In the case I = 1 it is not difficult to show that the minimal T

for which a solution of (5.06) exists is the rank of the J x K matrix

(oljk '1 and similarly if J or K = 1, If I, J and K are greater than

i

L

L-

L

i

unity then there does not seem to be any such simple theorem,- and

examples with I = J = K = 2 show that the minimal T may depend on

whether the Qit' 6 'Jt
and Ykt are allowed to be rational, real, or

complex. This is so even if all the 0.. are integral. Hence we1Jk

are led to try numerical methods for solving special cases of (5.06) l

If,these methods find a real solution, then it is worthwhile to try

to find an integral solution, but if no real solution exists there

is no point in looking for an ‘integral solution.

i
c

i

35

i

5.1 Least Squares Approach

I
i

I

i

I
L

Ik-

L-

IL

i
c

i

I

i

f:
4

Because of the large nwnber of equations (4096 for N = 4),

conventional numerical methods like Newton's method are impractical

for finding a solution of (5.06). The problem may be regarded as one

of function minimization: we want to minimize the sum of squares of

residuals of the set of equations (5.06) l If B and y are fixed , then-

(5.06) is a set of linear equations in the cw, it*
Hence we could find a

least-squares solution of this (overdetermined) system, then fix r ,

& and find a, least squares solution for B, then for L, and repeat the

cycle. The sum of squares of residuals will converge to some non-

negative number, and hopefully this will be zero. Even this method

would be impractical, except that the coefficient of (x
it

in the system

of linear equations happens to be independent of i. In other words,

the matrix of coefficients has I identical T x T blocks along the main

diagonal, and zeros elsewhere, so each least-squares problem splits up

into a number of smaller ones.

Writing xt for ait, we want the least squares solution of Ax = b_,

whereA=(@. y)
Jt kt (J,k),t l

The solution-is given by x = (ATA)--1 TA b (in the real case) ,

and we have

ATA = ((FBjtBju)C E YktYku))t

9

u

and ATb_ = (C BjtYktaijk)t '
j,k

As noted above, (5.13) is independent of i, but (5.14) depends on i.

l (5.=)

(5.12)

(5.13)

(5.14)

36

i

f

5.5

5.2 Acceleration of Convergence
L

I
L

c

It is not clear how one should make a good initial guess at a

solution of (5.06), but in any case, with randomly chosen 2, &, and l,

the initial rate of convergence is rapid. Unfortunately the convergence

soon slows down. One possible difficulty may be illustrated by a two-

dimensional example: suppose we try to minimize s(& by fixing B,

minimizing s with respect to a, fixing cr and minimizing s with respect

to 8, etc. If the contour lines of s are ellipses as illustrated in

the diagram below, there will be a slow 'zigzag' approach to the

minimum.
8*

a

In the case illustrated, the following algorithm will speed up

convergence:

l/ i := 0; Guess ao, 8, .

2/ Find 6a to minimize S(cxi + &Ii).

3/ Find 6 B to minimize S(cxi + P,p. + 8).'1
4/ Find w to minimize '(a-j+l9 B i+l) 9

where cy
i+l = cYi + wP,p i+l = pi + w&P .

5/ i :=i+l.
-

6/ Go back to 2/ .
37

5.6

In the simple case of a quadratic function s(a,p), this algorithm

will find the minimum in one cycle.

The same idea can be used in our more general problem. If dn: 7 Br r)

is the sum of squares of residuals, we find iac to minimize s(g+b;a&,$,

I, then 6 B to minimize ~(a: + Sa,p + 6 B- -- - ,Z) 9

1
i

then cy to minimize s(cy: + s",S + se,, + $) ,

then w to minimize s(g',k',r') where a'= cx + ~6~ etc.

Since

Sb',B',Y') = C C Gait
Ci,j,k t

I
t

we can express s as a sixth degree

chosen to minimize this polynomial

polynomial in w, and then w can be

(globally).

i
t

38

6.1

6. Search for New Algorithms by the Least Squares Method

A program was written to try to find a solution of (5.03) using

the least-squares approach described in Sec. 5. Although it would be

interesting to look for complex solutions, only the real case was

considered.

The positive definite symmetric matrix ATA is found from (5.13)

and ATb is found from- (5.14), taking advantage of the identity.

c B 6 .6. 6kLu?nnu nl Jk Lm = lk L m n
9 9 9

6.1 Calculation of s(Q,~,z)

We shall use two or three subscripts on the a, p and y as con-

venient. The sum of squares of residuals of (5.06) is

S@,&,L) = "itejtYkt - oijk
2 -

so dW,Y) = a. B. Y 1lt Jt kt

- 2iik (oijk FOil.G_t)ii)

+
z

%W

i
oijk

2

7

The straightforward evaluation of (6.11) for ma,trix multiplication with

(6.01)

(6.11)

(6.12)

M=N= P takes -2NbT operations (just counting multiplications). Using

(6.12) instead, the last two terms give no problems, in fact

c
2
YP = c (6ij"kL6m)2 = M.N.P (6.13)

i, j,k GVG9m,n

39

6.2

and c u'
i&k

ijk c "itBjtYkt
t

= c
i,j,k;L,m,n,t aijt8kltymnt6ni6jk*Lm

= c
i, J, L, t

"ijt jLt Litf3 Y ,

and the evaluation of (6.14) requires only m22T operations. The first

term in (6.12) is

i,j,k t
c”itS jtykt) 2 = Oitaiu) (D l B � > (c YktYk,) j

jJtJu k 3

and the right side of (6.15) involves r~3N2 2T /2 operations (50% are

saved by symmetry). Since we are interested in values of T&N2.8, s can

be found from (6.12) - (6.15) in,7N706/2 operations instead of m2N8*8

using (6.11) . Hence it is much faster to use (6.12) - (&lS), although

this involves some loss of accuracy.

6.2 Quadratic Approximation

At first the coefficients of w in the sixth degree polynomial p(w)

of (5.21) were calculated using ,a, B, z, ca, i' and Sy, and the global

minimum of p(w) was found. Evaluation of the coefficients of p(w) was

rather time-consuming, and it was noticed that the minimum usually occurred

for 1 < w < 2, and in this range p(w) was approximated very well by the

quadratic fitting p(O), p(l) and p(2).

(6.14)

(6.15)

Since p(0) = s(g,gjl) is already known,

and both P(1) = s(c$&+& y+6 y>I-

and P(2) = _s(~+2~~,~+2~',~+26~) may be found by the method of Sec. 6.1,

the program was speeded up considerably by using the quadratic approximation,

and the rate of convergence was not noticeably diminished.

40

As a precaution, necessary for the first few iterations anyway, w

t
i
i

was constrained to lie in [1, 31 . Once w was chosen, s(C~+wi~, k+w$,

,

i

y+wg') was computed (using previously calculated inner-products like- -

ci aiucxiv), and a check made that it was less than p(l) and p(2) .

After the first few iterations these precautions usually turned out to

be unnecessary. Note that, once sx = h
a

a.
i 1Ll + x&J (a.1V + ~6:~) is

found for x = 0, 1 and 2, we can find any sx from

i-

1 2S =-NYx2 - Y)So + (2 - 2Y2bl+ (Y2 + Y)S2), where y = x - 1 .

This device was also used to save some-time. There is a danger of

numerical instability unless 1 2I,(y - y)(5 1, i.e. unless 0 5 x <, 3 ,

which is one reason why w was constrained to lie in [I, 31 .
/
i f

I f M = N = P, the number of operations (just counting multiplications)

L per complete cycle is -(15N2+T)T2/2 . Since N2 < T < I!? for the cases of- -

L

i
t

interest, this grows very rapidly with N. On the other hand, we are trying

to solve N
6
nonlinear equations in 3N2T unknowns, so it would be surprising

if any other method could do much better.

6.3 Summary of Results

The attempt to lower.the bound (2.36) was unsuccessful, but some

i

/
i

interesting negative results were obtained. For 2 x 2 matrices, many

solutions were found with T = 7, but s never fell below 1 for T = 6,

strongly indicating that Strassen's method gives the minimal number of

i multiplications for 2 x 2 matrices (at least for real CX, fi and 2). With

T = 7 each iteration took about 0.2 sec. and convergence was fairly fast,

and appeared to be linear.

41

6.4

L
f
L

i
L

L

i

ie

i
i

Trying T = 1, 2, . . . 7 for 2 x 2 matrices, it was found that

inf(s) + T={:%i,-'pj

Thus the minimal sum of squares of residuals is usually integral, but

appears to be nonintegral for T = 4.

3 x 3 matrices may be multiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix-. It appears that there is also

a solution with T = 25: the program (taking 3 sec./iteration) reduced

s to 0.183 in 33 iterations, and s was still slowly decreasing. Knuth

has found a solution, involving 'cube roots of unity, with T = 24. How-

ever, log324 > log27, and in fact log321< log27 < log322, so a solution

with T 5 21 is necessary to improve the bound (2.36). When the program was

i
run with T = 21, s appeared to be tending

the rule inf(s(T)) + T > Tmin , which was

L

i For 4 x 4 matrices the program was run with T = 48, to try to improve

i

Ii

t

L

holds generally, this would indicate that

to 2 rather than to zero. If

observed for the 2 x 2 case,

for 3 x 3 matrices Tmin < 23 .

on Strassen's 49. Un&tu&ely, each iteration took 18 sec., and con-

vergence was slow, so lack of computer time forced a return to smaller

problems.

- Various cases of small rectangular matrices were investigated. For

example, the program was run with M = P = 2, N = 4 and with M = P = 4,

N=2. In these cases the smallest T for which s appeared to be tending

to zero was exactly the T to be expected by partitioning the matrices and

42

applying Stra.ssen's method. Convergence often slowed as s approached 1,

and speeded up again once s < 1, and there was no case in which s < 1

was attained, but for which s failed to tend to zero. Perhaps s(g t k, r)

has some local minima or saddle points, but they all have s >, 1.

To summarize the results: although nothing has been rigorously

proved, it appears likely that, to improve on the bound (2.36), matrices

of size at least 4 x 4 must be investigated. It is plausible that there

are no (real) methods better than Stra,ssen's for the 2 x 2 or 3 x 3

case, and if this is so it is u.nlike1yJha-t any new method could be of

much practical use, although it would certainly be of theoretical interest.

A practical method needs to have rational 2, g and r, and to be fast for

reasonably small matrices most of the components of 2, B and z should

vanish.

43

7.1

7. Conclusion

While the normal method takes 3O(n) operations to multiply n x n

matrices, Strassen's method shows that O(n2*8) suffice. In practice,

though, the normal method is faster for n < 100 . Winograd's method,

3while still taking O(n) operations, trades multiplications for

additions and is definitely faster than the normal method for moderate

and large n, with a. gain of up to about 10% for real matrices and up to

about 20% for complex matrices. The gain would be greater for double

or multiple-precision arithmetic. -

Floating-point error bounds can be given for Strassen's and Winograd's

methods, and the bounds are comparable to those for the normal method if

the same precision arithmetic is used. With Winograd's method the necessity

for prescaling can not be emphasized too strongly (see also [12]).

Provided scaling is used, Winograd's method can be recommended, es-

pecially in the complex case, unless very high accuracy is essential. It

is much easier to code than Strassen's method. Possibly Strassen's method

would be preferable when working with large matrices on a paged machine.

Attempts to lower the constant log27 = 2.8... given by Strassen's

method were unsuccessful. A completely new approach seems necessary in

order to bring the upper and lower bounds on the computational complexity

of matrix multiplication much closer together. For matrices of reasonable

size, though, it seems unlikely that any new method could be very much

faster than the known methods on a. serial computer.

44

8.1

Acknowledgement

I would like to thank R. Floyd and J. Herriot for their helpful advice,

and CSIRO (Australia) for its generous financial support.

References

1.

2.

Floyd, R. W. Unpublished notes.

Fox, B. L. "Accelerating LP Algorithms", CACM 12, 7 (July 1969),
384 - 385.

Knuth, D. E. "The Art of Computer Programming", Vol. II,
"Seminumerical Algorithms", Addison Wesley, 1969.

4.

5.

MC Kellar, A. C. & Coffman, E. G. "Organizing Matrices and Matrix
Operations for Paged Memory Systems", CACM 12, 3 (March 1969)
153 - 165. 1

Strassen, V. "Gaussian Elimination is Not Optimal", Numer. Math. 13,
354 - 356 (1969).

6. Wilkinson, J. H. "Rounding Errors in Algebraic Processes", H.M.S.O.,
1963.

Winograd, S. "A New Algorithm for Inner-product", IEEE Trans. C-17
(1968), 693 - 694.

8.

9*

Winograd, S. Unpublished communication.

Randell, B. & Kuehner, J. "Dynamic Storage Allocation Systems",
CACM 11, 5 (WY 1968), 297 - 306.

10

11

Wirth, N. & Hoare, C. "A Contribution to the Development of ALGOL",
CACM 9, ‘6 (June 1966), 413 L 431.

. Bauer, H. & Becker, S. & Gra.ham, S. "ALGOLW Implementation",
Tech. Report No. cs98, Computer Science Department, Stanford Uni.,
WY 1968) l

12. Brent, R. P. "Error Analysis of Algorithms for Matrix Multiplication
and Triangular Decomposition Using Winograd's Identity', to appear.

45

A P P E N D - I X

ALGOLW procedukes and test program

46

L 0001
0002
0 0 0 3
(1004

- 0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8

L 0 0 0 9
0010
0011
011 12
(1013
J O 1 4
0015
00 16

- 0 0 1 7
0018
0019
0020

L 0 0 2 1
0 0 2 2
0023
0024

L-. II025
0026
OfI2 7
rma

- 0 1 2 2
11030
00 3 1
00 32

L 0 0 3 3
0034
0 0 3 5
0 0 3 6

- 0037
0 0 3 8
0 0 3 3
do40

L 0 0 4 1
0 0 4 2
0 0 4 3
0 0 4 4

L 0 0 4 5
0 0 4 6
0 0 4 7
0 0 4 8

L 0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2

L 0 0 5 3
0 0 5 4
0 0 5 5
0056

L.. 0 0 5 7
0 0 5 8
0 0 5 9
0 0 6 0

L- 0 0 6 1
0 0 6 2
0 0 6 3

- 0 6 6 4
- 0 0 6 5

0 0 6 6

l-
--
--
--

Be

--
-a

we

we

--
we

--
--
--

--
--
Me

we

--
--

REG I N COMMENT:
TEST PROGRAM F O R P R O CEDU R E S T R A S S E N , W I NOGRAD & M A
F I L E I S RRFNT.TESTST RASS E N O N SYSO9;

TMU LT,

P R O C E D U R E S T R A S S E N (R E A L A R R A Y A , B , C 0, *I;
I N T E G E R V A L U E td, N , PI;

BEG I N COMMENT :
IF A IS AN II X N MATRIX, AND I3 IS AN N X P MATRIX,
T H E N T H E M X P P R O D U C T MATRI X A . B I S R E T U R N E D I N C .
A M O D I F I E D F O R M O F S T R A S S E N ’ S M E T H O D I S U S E D W H E N
M, N , A N D P A R E S U F F I C l E N T L Y L A R G E . I T I S B A S E @ O N T H E
F O L L O W I N G I D E N T I T I E S W H I C H HOLn I N T H E 2X2 C A S E :

Cl1 = 41 - Q3 - QS + 47,
Cl2 = Q4 - (21,
c 2 1 = Q2 + Q 3 , A N D
C 2 2 = QS + Q6 - Q2 - Q4, WHERE
Ql = (All - Al2).B22,
42 = (A 2 1 - A22).Bll,

:2
= A22.(Bll + B211,
= All.(B12-+ 8221,

Q5 = (All + A22).(822 - Bll),
QG = (All + A21).(Bll + B121, AND
Q.7 = (A 1 2 + A22).(821 + B22)

A , n ANn/OR C M A Y B E IDFNTICAL O R O V E R L A P P I N G I N T H E
C A L L TT) S T R A S S E N . I N T H E C A S E M=N=P TtfE I NTERMEI-II A T E
S T O R A G E R E Q U I R E D I S A B O U T 8N**2/3 R E A L WOROS. Ttll S
COULr) RF R E D U C E D TO N**2 (O R MORF G E N E R A L L Y
(MN + N P + PM)/3 1 R Y B U I L D I N G U P T H E P R O D U C T A F T E R
EACH C A L L Tr) S T R A S S E N I N EVENMULT, B U T T H E N C C O U L D
N O T QVFRLAP A O R R , A N D T H E P R O C E D U R E 1JOULr) B E
RATHER SLOWER.

I F 3MNP/(MN+NP+PM)<=NO T H E N N O R M A L M A T R I X M U L T I PLICATION
I S USFD. T H I S I S BECAIJSE S T R A S S E N ’ S I D E N T I T I E S S A V E
T I M E O N L Y I F A M U L T I P L I C A T I O N T A K E S L O N G E R T H A N 1 4
A D D I T I O N S , WICH I S C E R T A I N L Y F A L S E F O R M A T R I C E S Sf1ALLER
T H A N 1 4 X 14, O R A L I T T L E L A R G E R . THE NUMBER NO
I S MACHI N E ANI, COMPI L E R - D E P E N D E N T , R U T 100 I S ABOlJT
O P T I M A L F,OR ALGOL\{ O N T H E 360/G7 (W I T H N O A R R A Y B O U N D S
C H E C K I N G) .

T H E TIflE F O R P R O C E D U R E S T R A S S E N I S AROUT T H E SAME A S
F O R T H E N O R M A L M E T H O D F O R S M A L L M , N A N D P , B U T F O R
L A R G E tl, N A N D P T H E T I M E M U L T I P L I E S B Y 7 (R A T H E R
T H A N 8) EAtI% T I M E M, N A N D P A R E D O U B L E D . ACCURACY
I S N O T M U C H W O R S E T H A N F O R M A T R I X M U L T I P L I C A T I O N B Y
T H E U S U A L fMETHOD WITH A L L O P E R A T I O N S D O N E I N S I N G L E
P R E C I S I O N . #

R R R F N T , J U L Y 1 9 6 9 ;

R E A L P R O C E D U R E IP(RFAL A R R A Y A , R(e); I N T E G E R V A L U E N);
BEG I N COMMFNT:

R E T U R N S T H E I N N E R P R O D U C T O F T H E N - V E C T O R S A ANn B ;

LONG R E A L S ;
S := OL;
F O R I := 1 UNTIL N r)O S := S + AW)*B(I);
ROUNDTOREAL(S1
E N D I P ;

PRO CEDU R E OP(REAL A R R A Y A , ,R, Cl*); I N T E G E R
B EGIN COMMENT:

V A L U E M l , M2, !13, 0;

t

L
L
L
1
L
L
L
I
L
L
L
L
L
L
1
L
L

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0 1 0 0
0101
0102'
0103
0104
0105
0106
0107
0108
0 1 0 9
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

-0

-0

-0

-0

-0

-0

-0

-0

4-
5-
6-
-6
-0
-5
-0
5-
G-
-G
-0

2
-0
4- '
5-
G-
-6
-0
-5
-0
5-
6-
-G
-0
-5
-4
-0
4-
5-
-5
-0
-4
-3
-0
-0
-0
-0
-0
-0
-0
-0
-0
3-
-0
-0
-0
-0
- 3
-0
-0
-0
3-
-0
-0
4-
-0
-0

F O R 1 := 1 UNTIL Ml DO
A(I) := B(I + M2) + F*C(I + M3)
W H E R E F = 0, +l OR -1.
N O T E T H A T I N ALGOLIJ 1 - D A R R A Y A C C E S S E S A R E M U C H
F A S T E R T H A N 2 - D A C C E S S E S ;

IF F > 0 THEN
B E G I N I F M2 - 0 T H E N

B E G I N I F M 3 - 0 T H E N
B E G I N F O R I :- 1 U N T I L M l D O A(I) :- B(I) + C(I)
END

E L S E F O R I := 1 UNTIL Ml DO A(I) := B(I) + C(I + M3)
END

ELSE
B E G I N I F 113 - 0 T H E N

B E G I N F O R I :- 1 UNTIL Ml DO A(I) :- B(I + M2) + C(I)
END

E L S E F O R I := 1 UNTIL Ml DO A(I) :- B(I + M2) + C(I + M3)
END

END
ELSE IF F < 0 THEN

B E G I N I F M 2 - 0 T H E N
B E G I N I F M3 = 0 T H E N -

B E G I N F O R I := 1 U N T I L Ml DO A(l) := B(I) - C(I)
END

E L S E F O R I := 1 UNTIL Ml DO A(I) :- B(I) - Ccl + M3)
END

ELSE
BEGIN I F M3 = 0 T H E N

B E G I N F O R I := 1 UNTIL Ml DO A(I) := B(I + M2) - C(I)
END

E L S E F O R I := 1 UNTIL Ml DO A(I) := B(I + M2) - C(l + M3)
END

END
ELSE

B E G I N I F M 2 = 0 T H E N
i’IEGIN F O R I := 1 U N T I L M l ITO A(I) := B(I)
END

E L S E F O R I := 1 UNTIL :ll n0 A(I) := R(l + M2)
END

E N D OP;

COMMFNT; I F M , N, OR P’WALL U S E N O R M A L M A T R I X M U L T I P L I C A T I O N .
Tt4E C O N S T A N T N O M E N T I O N E D A B O V E I S R E D U C E D T O 2 9 F O R
CHECK I NT: PURPOSES;

I F (3+M*N*P) <= (29*(M*N + -N*P + P*M)) T H E N

B E G I N C O M M E N T : WE U S E A TE!lPr)RARY A R R A Y Q I N C A S E C = A O R B ;
REAL ARRAY (1 (1 : : M, 1 : : PI;
F O R I := 1 UNTIL M DO FOR J := 1 UNTIL P DO
Q(l,J) := IP(A(I,*), IW,,J), 14);
F O R I := 1 U N T I L M D O OP(C(I,*), Q(I,*), Q(I,*), P , 0 , 0 , 0)
END

ELSE

BEG I N COMMFNT: U S E S T R A S S E N ’ S M E T H O D ;

P R O C E D U R E I D E N T I T I E S ;
BEGI N COMMENT:

T H E I D E N T I T I E S A R E PIJT H E R E T O A V O I D S E G M E N T
OVERFLOW;

48

I.

0 1 3 3 - -
0 1 3 4 - -
0 1 3 5 - -
0 1 3 6 - -
0 1 3 7 - -
0 1 3 8 - -
0139 --
0140 --
0141 'I)-
0142 --
0143 --
0144 --
0145 --
0146 --
0147 --
0148 --
0149 --
0150 --
0151 --
0152 --
0153 --
0154 --
0155 --
0156 --
0157 --
0158 --
0159 --
0160 --
0161 --
0162 --
0163 --
OlG4 --
0165 --
0166 .--
0167 --
0168 --
0 1 6 9 - -
0170 --
0171 5-
0172 --
0173 --
0174 --
0 1 7 5 - -
0 1 7 6 - 5
0 1 7 7 - 4
0 1 7 8 - -
0179 --
0180 - -
0181 - -
0 1 8 2 -A
0183 - -
0184 - -
0185 - -
0186 --
0 1 8 7 4-
0188 - -
018'3 - 4
0190 --
0191 --
0192 4-
0193 --
0194 -4
0195 --
0196 --L
0197 --
0198 --

REAL ARRAY T (1 :: M2, 1 :: N2);
REAL ARRAY U (1 :: N2, 1 :: P2)*
REAL ARRAY Ql, 0.2, Q3, Q4, QS, ;26 (1 :: M2, 1 : : P2);

F O R J : - 1 UNTI L N2 DO
OP (T(*, 31, A(*, J), A(*, J + N21, M2, 0
F O R I := 1 U N T I L N 2 DO

8 0 8 -1);

OP tlJ(l, *), B(I + N2, *I, B(I *I, P2, P2
S T R A S S E N (T, U , Q l , L12, N 2 , P2;;

8 0 0 0) ;

FOR I := 1 UNTIL M2 DO
OP (Ttl, *I, A(1 + M2, *I, AtI + M2, *I, 142
S T R A S S E N (T, B , Q 2 , M2, N 2 , P2);

’ 0 8 N 2 8 -1);

F O R I := 1 U N T I L M2 D O
OP (T(I, *I, A(1 + M2, *I, A(I, *I, N2
FOR I := 1 U N T I L N 2 D O

’ N2 8 0 8 0) ;

OP tUtI, *I, Btl, *I, B(I + N2 *I, P2
S T R A S S E N (T, U , Q3, tll2, N 2 , P2;;

8 0 8 0 8 1) ;

FOR J := 1 U N T I L P 2 D O
OP tU(*, J), B(*, J + P2), B(*, J 4 P2)
S T R A S S E N (A , U , 4 4 , M2, N2, P2);

0 N2 8 0 8 N2 ’ 1) ;

FOR I := 1 UNTIL M2 DO
OP (T(l, *I, A(I, *I, A(1 4 M2, *I, 142
FOR I := 1 UNTIL N2 DO

0 0 0 N2 8 1) ;

OP WI, *I, B(I 4 N2, ‘*I, B(I *I, P2
S T R A S S E N (T, U , Q5, t12, N 2 , P2;;

0 P 2 8 0 8 -1);

FOR I := 1 UNTI L M2 D O
OP (Ttl, *I, A(I, *I, AtI 4 M2, *I
F O R 3 := 1 U N T I L P 2 D O

8 N2, 0, 0, 1);

OP (U(*, ,!I, B(*, J), B(*, J 4 P2) N2 0 0 l)*
STRASSEN (T, U, 06, fl2, N2, P2); ’ ’ ’ ’ ’
FOR J := 1 U N T I L N 2 D O
OP (T(*, J), A(*, J + N2), A(*, J 4 N2)
FOR I := 1 U N T I L N 2 D O

0 M2 ’ 0 0 !I2 8 1) ;

OP WI, *I, R(I + N2, *I B(l 4 N2, *I,
S T R A S S E N (T, U , C , t42, N;, P2);

P2, 0, P2, 1);

FOR I :=
B E G I N

1 UNTIL 112 DO FOR J := 1 UNTIL P2 I-IO

C (I,J)
I: (l,J 4 P2)

:= Ql(I,J) - 0.3 (I,J) 4 C (I,J) - QS(I,J);

C (I + M2,J)
:= Q4(I,J) - Ql(I,J);
:= Q2(I,J) 4 Q3(I,J);

C (l+M2,J+P2) :=‘QS(l,J) 4 QS(l,J) - (Q2(I,J) 4 Q4(l J))
END

8

E N D I D E N T I T I E S ;

R E A L qRRAY SIC1 ::*P); -
R E A L A R R A Y S2(1 : : MI;
I N T E G E R M2, N2, P 2 ;

14 2 := Fl DIV 2; N2 := N DIV 2; P2 := P DIV 2 ;

COMMENT: T H I S P A R T MUST B E D O N E N O W I N C A S E C - A O R B ;

I F (2*t,lZ) < M THF.N
B E G I N F O R J
Sl(J) :-

:= 1 U N T I L 2*P2 DO

END;
lP(A(M,*), 5(*, J), N)

I F (2*P2) < P Tl!EN
REGIN FOR I := 1 IJNTIL M DO
S2(1) :=
END;

IP(A(I,*), R(*,P), N)

I D E N T I T I E S ;

f12 := 2*M2; N2 := 2*N2; P2 :- 2*P2*0
49

0 1 9 9 - -
0200 --
0201 --
0202 --
0203 4-
0204 --
0205 --
0206 -4
0207 --
0208 --
0209 4-
0210 -4
0211 --
0212 --
0213 4-
0214 -4
0215 -3
0216 -2
0217 --
0218 --
0219 -0'
0220 2-
0221 --
0222 --
0223 --
0224 --
0225 --
0226 3-
0227 --
0228 --
0229 --
0230 --
0231 --
0232 --
0233 --
0234 --
0235 --
0236 --
0237 --
0238 --
0239 --
0240 --
0241 --
0242 -3
0243 --
0244 --
0245 3-
0246 --
0247 --
0248 --
0249 --
0250 --
0251 --
0252 -3
0253 --
0254 --
0255 --
025G --
0257 --
0258 --
0259 --
0260 --
0261 --
0262 --
0263 --
0264 --

COMMENT : I F fl, N, O R P W A S O D D W E H A V E T O F I X U P T H E B O R D E R S ;

IF N2 < N THEN
B E G I N
F O R I := 1 UNTIL M2 DO FOR J := 1 UNTIL P2 DO
C(I,J) := C(I,J) 4 A(I,N)*B(N,J)
END;

IF M2 < M THEN
REGIN F O R ,J := 1 U N T I L P 2 D O C(M,J) := Sl(J)
END;

IF P2 < P THEN
B E G I N F O R I : = 1 U N T I L M D O C(I,P) := S2(1)
END

END
E N D S T R A S S E N ;

P R O C E D U R E 14INOr;RAD (RFAL A R R A Y A , fI, C:(*,*); I N T E G E R V A L U E M , N , PI;
3 EG I N COMIIFNT :

IF A IS AN M X N MATRIX AND B AN N X P MATRIX, THEN
T H E I R P R O D U C T A.B I S R E T U R N E D I N C . WI NOGRAD’S M E T H O D
I S [JSET, WITH PRESCALI N G T O E N S U R E GOOD A C C U R A C Y ;

R E A L PROCEDURF CIP(REAL A R R A Y A , RW; L O N G R E A L V A L U E X , Y>;
BEGI N COMMENT:

R E T U R N S T H E I N N E R P R O D U C T O F T H E N - V E C T O R S A AND B ,
U S I N G PREWMPUTED X A N D Y . 14 I S G L O B A L ;

L O N G R E A L S ;
S := -(X 4 VI;
COMMENT: I F T H E N E X T S T A T E M E N T I S R E P L A C E D B Y :
F O R I : = 2 S T E P 2 U N T I L 2*(N DIV 2) D O

: = S 4 (LDNG(A(I-1))
THEN T H E C O R R F C T L Y R O U N D E D S I N G L E - P R E C I S I O N R E S U L T I S U S U A L L Y

4 LONG(B(l)))*(LONG(A(lI) 4 LONG((B(I-l))).,

R E T U R N E D (ASSliMING PRESCALING): U N F O R T U N A T E L Y T H I S SLOWS D,OWN
T H E ALGORI THfl S D T H A T I T I$ N O L O N G E R F A S T E R T H A N T H E U S U A L O N E ;
FOR I := 2 S T E P 2 U N T I L 2*(N D I V 2) D O
S := S 4 (AtI - 1) 4 B(I))*(A(I) 4 B(I - 1));
IF (N REM 2) > 0 THEN S := S 4 A(N)*B(N);
ROUNDTOREALtS)
E N D CJP;

L O N G R E A L P R O C E D U R E XI(REAL A R R A Y A(*));
BEGI N COMMENT: .

IJSED TO PRECWIPUTE T H E F U N C T I O N S O F A REQUIRFD B Y CJP;

L O N G R E A L S ;
S := OL;
F O R I := 1 STEP 2 UNTIL N - 1 DO S := S 4 A(I)*A(I 4 1);
s
E N D X l ;

P R O C E D U R E MAX (R E A L A R R A Y A (*) ; R E A L V A L U E R E S U L T BD);
FOR I := 1 U N T I L N D O I F B D < ABS(A(I)) T H E N BD := ABS(A(I));

P R O C E D U R E MUL(REAL A R R A Y A , B(*); R E A L V A L U E MI;
FOR I :- 1 U N T I L N D O A(I) := M*B(l);

R E A L AMAX, B M A X , WLT;
COMMENT: T H E A R R A Y S 0 A N D E A R E U S E D A S T E M P O R A R Y S T O R A G E I N C A S E

SOMF O F A , I3 A N D C C O I N C I D F ;
REAL ARRAY D(1 :: M, 1 :: NJ;
REAL ARRAY Et1 :: N, 1 :: PI;

50

0265 --
0266 --
0267 --
0268 --
0269 --
0270 --
0271 --
0272 --
0273 --
0274 --
0275 --
0276 --
0277 --
0278 --
0279 --
0280 --
0281 --
0282 --
0283 --
0284 --
0285 -2
0286 --
0287 --
0288 --
0289 --
0290 2-
0291 --
0292 --
0293 --
0294 3-
0295 --
0296 --
0297 --
0298 --
0299 --
0300 --
0301 -3
0302 --
0303 --
0304 --
0305 --
0306 --
0307 --
0308 --
0309 --
0310 --
0311 -2
0312 --
0313 --
0314 --
0315 --
0316 --
0317 --
0318 2-
0319 --
0320 --
0321 --
0322 --
0323 --
0324 --
0325 -2
0326 --
0327 --
0328 2-
Of29 --
0330 --

LONG REAL ARRAY X(1 :: MI;
LONG REAL ARRAY Y(1 :: PI;

COMMENT: A A N D B A R E S C A L E D B Y S U I T A B L E P O W E R S O F T W O T O r;l V E G O O D
NlJMERlCAL P R O P E R T I E S , A N D T H E S C A L E D M A T R I C E S S T O R E D I N
r) AND E;

AMA X := BMAX : = 0 . 0 ;
F O R I := 1 U N T I L !I 00 MAX(A(I,*), AMAX);
F O R K := 1 U N T I L P D O MAX(B(*,K), BMAX);
MULT := IF (AMAX > 0) AND (RMAX > 0) THEN

2**(TRUNCATE((LOG(BMAX) - LOG(A!lAX))/LOG(4) 4 200.5) - 200)
ELSE 1.0;

F O R I := 1 U N T I L M DO MUL(I’I(l,*), A(I,*), MULTI;
FOR K := 1 U N T I L P D O MUL(E(*,K), B(*,K), MULTI;
COMMENT: N O W S O M E C O N S T A N T S A R E P R E C O M P U T E D A N D S A V E D I N X A N D Y ;
FOR I : = 1 U N T I L 11 D O X(I) := XI(D(I,*));
FOR K := 1 U N T I L P D O Y(K) : = XI(E(*,K));
COMMENT : NOlJ TllE I N N E R P R O D U C T S A R E F O U N D ;
F O R I := 1 UNTIL M DO FOR J := 1 UNTIL P DO
C(I,J) := \IP(D(I,*), E(*,J), X(l), Y(J))
END WINOGRAD;

P R O C E D U R E IlATrlULT (R E A L A R R A Y A , B, C(*,*);
I N T E G E R V A L U E M , N , PI;

REGI N COMMFNT:
FORMS C := A . B I N T H E U S U A L W A Y ;

R E A L P R O C E D U R E IP(REAL A R R A Y A , B(*); I N T E G E R V A L U E N);
BEGI N COMMENT:

RETORNS T H E I N N E R PRODlJCT O F T H E N - V E C T O R S A A N D B ;

L O N G R E A L S ;
S : = OL;
F O R I := 1 UNTIL N DO S := S 4 A(1)*B(I 1;
ROUNDTOREALtS)
E N D I P ;

P R O C E D U R E A S S I G N (RFAL A R R A Y A , R(*); INTFGER VAL(JE N);
F O R I : = 1 U N T I L N D O A(I) := B(I);

COMMENT : Q I S USED I N C A S E C C O I N C I D E S W I T H A O R ‘ 3 ;
REAL ARRAY Q\(l : : M, 1 ' : : PI;
F O R I := 1 UNTIL tl DO FOR J := 1 UNTIL P DO
Q(I,J) :- IP(A(I,*), fi+,J), N);
F O R I := 1 U N T I L M D O A S S I G N (C(I,*), ?.(I,*), PI
E N D M A T M U L T ;

’

I N T E G E R RANl, RAN2, RAN3, R A N 4 ;
I N T E G E R A R R A Y R A N 5 (0 : : 2 5 5) ;

P R O C E D U R E R A N I N I T (INTEGE? VALIJE Rl);
RET; I N COFIMFNT:

M U S T BE C A L L E D \JITH A N Y I N T E G E R R l
T O 114 I T I AL I ZE PROCEDURE RANDOM;

INTOVFL : = N U L L ; COMMENT : M A S K S O F F I N T E G E R O V E R F L O W ;
RAN1 := 1 ; RAN2 : = 2*ABS (Rl) 4 1 ;
F O R I := 0 U N T I L 2 5 5 DO R A N 5 (I) := R A N 2 := RAN2*65539
E N D R A N I N I T ;

R E A L P R O C E D U R E RANr)OM;
!?EG I N COMMENT:

IJSES T’-ffi SIMPLF LFHMFR G E N E R A T O R S O F T H E FORM
X(FJ41) = X(N)*A (MOD T) \JITH

51

f
L

i

L

L

L

L

IL

t

i

t

L

L”

I
i

/
i.

L

i

I

L

I
1 -
i

0 3 3 1
0 3 3 2
0 3 3 3
0 3 3 4
0 3 3 5
0 3 3 6
0 3 3 7
0 3 3 8
0 3 3 9
0 3 4 0
0 3 4 1
0 3 4 2
0 3 4 3
0 3 4 4
0 3 4 5
0 3 4 6
0 3 4 7
0 3 4 8
0 3 4 9
0 3 5 0
0 3 5 1
0 3 5 2
0 3 5 3
0 3 5 4
0 3 5 5
0 3 5 6
0 3 5 7
0 3 5 8
0 3 5 9
0 3 6 0
0 3 6 1
0 3 6 2
03e3
0 3 6 4
0 3 6 5
03G6
0 3 6 7
0 3 6 8
0 3 6 9
0 3 7 0
0 3 7 1
0 3 7 2
0 3 7 3
0 3 7 4
0 3 7 5
0 3 7 6
0 3 7 7
0 3 7 8
0 3 7 9
0 3 8 0
0 3 8 1
0 3 8 2
0 3 8 3
0 3 8 4
0 3 8 5
0 3 8 6
0 3 8 7
0 3 8 8
0 3 8 9
0 3 9 0
0391
0392
0393
o-394

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-2,
-0
-0

-0

-0

-0

-0

-0

-0

-0

-0

2-
-0
-0
3-
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
4-
-0
-0
-0
-0
-0
- 4
-0
-0
-0
- 3
- 2
-1

Al = ll**ll (MOD Tl) = 6 4 3 5 , Tl = 2**13-1 = 8 1 9 1 ,
A2 = 2**16+3 = 6 5 5 3 9 , T 2 = 2**31 = 2 1 4 7 4 8 3 6 4 3 .
T H E F I R S T G E N E R A T O R J U S T P O I N T S T O T H E TABLE O F
E N T R I E S F O R T H E S E C O N D G E N E R A T O R , S O G O O D R A N D O M
fiUMBERS CfITH A C Y C L E L E N G T H AT LEAST 2.10**12 ARE
PRODUCED.
T H E I D E A I S D U E T O M A C L A R E N A N D M A R S A G L I A , S E E
KNUTH, VOL 2 , P G 3 0 , A L G O R I T H M M .
R E A L OIJTPUT U N I F O R M I N (0,lL
NOTE THAT INTEGER RANl, RAN2, RAN3, RAN4 AND
I N T E G E R A R R A Y R A N 5 (0::255) M U S T B E D E C L A R E D s
G L O B A L L Y A N D RANINIT M U S T B E C A L L E D F O R
I N I T I A L I Z A T I O N ;

RAN 1 := (RAN1*6435) RErl 8191;
RAN3 := RAN1 REM 256;
RAN4 := RAN5 (RAN3);
RAN2 := RAN5 (RAN31 := RAN2 * 65539;
RAN4 * 0.465661287'.9
END RANDOM;

P R O C E D U R E RANSFT (RFAL AR RA Y A(*,*); IN T EG E R VALIJE rd, ~0;
FOR I := 1 l.JNTlL 11 DO FOR J := 1 UNTIL N DO
A(I,J) : = RANnOFl - 0 . 5 ;

COMMENT : C A L L I N G PROI:RAM;

INTEGER R, I!, N, P, T; R E A L S , MAX, DEL, SW, FIAXW;
R E A D (R) ;
kfHILE R -= 0 DO

B E G I N REAPONbl, N, I'); qANINIT(R); WRlTE(" "I; \iRITE(" "I;
\fRITE("R", R, " M", !'I, " rP, rd,

II P", PI;
B E G I N
REAL A RR AY A(1 :: ri, 1 :: NJ;
REAL ARRAY B(1 :: N, 1 :: PI;
REAL ARRAY c, D, E(i :: rd, 1 :: PI;
RANSET (A , 11, N);
RANSET (B, N, PI;

:= TIME(l)*
AATMULT~A B' n ~1 N

\fRlTE ("MiTI1;LT'TliE :',
PI*
T;ME(I) - T);

T := TIME(l);
S T R A S S E N (A , 9, C, II, N , PI;
CfRlTE (" S T R A S S E N T I M E " , . TIM!!(l) - T); T :- TIME(l);
IJINOGRAD(A, 0, E , E l , II, PI;
\.IRITE("I*fINOC;RAn TIFIF", TIME(l) - T);
S := MAX := Sbf := MAXlJ := 0;
FOR I := 1 UNTIL 11 DO FOR J := 1 IJNTIL P DO

B E G I N DFL : = ABS(C(I,J) - D(l,J>>;
I F M A X < D E L T H E N MAX := DEL;
S := s 4 DFL*DEL;
DEL := ABS(n(l,J) - E(I,J));
I F M A X W < D E L T H E N fIAX\I := D E L ;
SW : = SPf 4 DEL*nEL
END;

\fRITE("S ", S , "
\JR I T E ("Sbf", S W , "
R E A D (R)
FND

END
E N D .

M A X I', rlAX 1;
MAXIf", IIAXW);

52

