
Jonathan Borwein 1951–2016:
Life and Legacy

Richard P. Brent
Australian National University

8 Dec. 2021

Copyright c© 2021, R. P. Brent



Summary

This talk is about the Borwein family of mathematicians. We
concentrate on Jonathan (Jon) Borwein (1951–2016), who
spent his last years (2009–2016) as a Laureate Professor and
founding Directory of CARMA at the University of Newcastle.
We also mention some of Jon’s joint work with his father
David Borwein (1924–2021) and younger brother Peter Borwein
(1953–2020).



Families of mathematicians

There are several remarkable families of mathematicians.
It is hard to beat the Bernoullis: Jacob (1655-1705, also
1759–1789), Johann (1667–1748, 1710–1790, 1744–1807),
Nicolaus (1687–1759, 1695–1726), and Daniel (1700–1782).
Closer to home, there are the Neumanns: Bernhard
(1909–2002) and Hanna (1914–1971), and their sons
Peter (1940–2020) and Walter (1946–).
This talk is about the Borweins: David (1924–2021) and his
sons Jonathan (1951–2016) and Peter (1953–2020).
I shall concentrate on Jonathan (Jon) Borwein, because of his
Australian connection and because Jon was the only one of the
three that I knew personally. However, I shall mention some of
the joint work that David and Peter did with Jon.



The Borwein family of mathematicians

The story starts with David Borwein, who was born in Lithuania
in 1924. but moved with his family to South Africa at the age of
six (in 1930). In South Africa he met his future wife Bessie
(later a Professor of Anatomy).
In 1948, David and Bessie moved to the UK, where David
obtained a PhD (London) on a topic related to Cesàro
summability, under the supervision of L. S. Bosanquet
(an analyst and former student of G. H. Hardy).

Hardy→ Bosanquet→ David Borwein



The next generation: Jon and Peter

After David obtained his PhD, David and Bessie moved to
Scotland, where David took up a lectureship at St Andrews.
There Jon was born in 1951, and Peter in 1953.
Peter had “fond memories of growing up with Jon, as young
boys in St Andrews”. He mentioned fishing, looking after guinea
pigs, and that he could

“keep Jon awake at night, by reminding him that the
universe was infinite. This bothered him no end.” 1

Jon and Peter both ended up as mathematicians, although Jon
almost majored in History. He decided on mathematics in 1968.
Peter said that he was not interested in mathematics until the
second year of university – perhaps this was in reaction to his
father’s and brother’s choice of mathematics as a career.

1Whether the universe is finite or infinite seems to be a question for
cosmologists, not mathematicians.



St Andrews, 1957

Jon, David, and Peter Borwein, 1957



Learning probability theory by experiment?

Peter and Jon playing poker, 1959
An early example of Experimental Mathematics?



Jon and Peter fifty years later

Jon and Peter Borwein, Simon Fraser University, Canada,
on the occasion of Peter’s 55th birthday party, May 2008.
Thanks to Michael Coons for information on this photo.



On sibling rivalry (or lack of it)

There seems to have been no mathematical rivalry in the
Borwein family (quite unlike the Bernoulli family!). Here are
some remarks about Jon by Peter Borwein:

“We co-authored over 25 papers and books, and he
solo wrote over 200 . . . He could accomplish in a day
or two what took other people weeks . . . We worked to-
gether for over 35 years; we were in the same depart-
ment for about 20 . . . I owe much of my career to him,
because people thought they were getting him when
they hired me.

People thought we ought to compete, that there
ought to be sibling rivalry. In fact there really was no
rivalry . . . he was always generous with ideas, and with
acknowledgment, and with giving credit, not just to me,
but to his graduate students, and colleagues – who he
could drive very hard, but if they could keep up with him
the pay-off was rewarding.”



Jon’s mathematical career – early years

The Borwein family moved to Ontario, Canada, in 1963. David
and Peter stayed in Canada from then on. I don’t have time to
say more about their careers today (if you are interested, see
Wikipedia).
Jon graduated with a B.A. (Hons. Math.) from the University of
Western Ontario in 1971, and won a Rhodes scholarship, which
allowed him to return to the UK. He obtained a D.Phil (Jesus
College, Oxford) in 1974, on a topic in Optimisation, an area in
which he would later become well known, but by no means his
only interest.



Jon’s career – later years

After his D.Phil in Oxford, Jon moved back to North America,
where he held various positions, including at CMU, Waterloo,
and Simon Fraser. At the end of his time in Canada, he held a
Canada Research Chair at Dalhousie (2004–2009). Jon was
president of the Canadian Mathematical Society 2000–2002,
following in the footsteps of David, who held the same position
in 1985–1987.
In 2009, Jon and Judith moved, with daughters Naomi and
Tova, to Newcastle, where he became Laureate Professor of
Mathematics and founding Director of the Priority Research
Centre CARMA. I shall say more about CARMA later.
First, let’s discuss some of Jon’s research. For more details
and references, see my recent paper on Jon in the new journal
(itself partly inspired by Jon) Maple Transactions.



The Barzilai-Borwein algorithm

Suppose that we want to approximate a stationary point of a
function F (x) that is differentiable in the neighbourhood of a
starting point x0 ∈ Rn. Several optimisation methods are based
on the iteration

xk+1 = xk − γk∇F (xk ), k > 0,

but differ in their choice of “step sizes” γk . One choice used in
the 1988 Barzilai-Borwein paper is

γk =
(xk − xk−1)

T (∇F (xk )−∇F (xk−1))

||∇F (xk )−∇F (xk−1)||22
.

The motivation for this choice is that it provides a two-point
approximation to the secant equation underlying quasi-Newton
methods. This generally gives much faster convergence than
the classical method of steepest descent, while having
comparable cost per iteration and storage requirements.



Experimental mathematics

Jon was a great advocate of experimental mathematics. He
used computation both to discover new mathematics and to
suggest, prove, or disprove, various interesting conjectures.
Many examples are given in his books on the subject
(2004–2008) with co-authors David Bailey, Keith Devlin, and
others.
Some mathematicians dislike the name “experimental
mathematics”. An alternatives is “mathematics informed by
computation”, as for a workshop to be held in Park City, Utah,
July-Aug. 2022.
When Jon established a Research Centre in Newcastle, he
avoided “Experimental” and used the phrase “Computer
Assisted Research Mathematics”, perhaps influenced by the
resulting acronym CARMA.
An extension of Jon’s vision is described in a recent paper by
Geordie Williamson, Demis Hassabis et al., “Advancing
mathematics by guiding human intuition with AI”.



The surprising sinc function

To give an example that appeared in a 2008 joint paper with
Robert Baillie and David Borwein, consider the question: for
which positive integers N does

1
2
+
∞∑

n=1

N∏
k=0

sinc

(
n

2k + 1

)
=

∫ ∞
0

N∏
k=0

sinc

(
x

2k + 1

)
dx ? (1)

(here sinc(x) = sin(x)/x if x 6= 0, and 1 if x = 0).
Experimentation with Sage/Magma/Maple/Mathematica
suggests that (??) is an identity for 1 6 N 6 6. However, in a
warning about extrapolating results, Jon showed that (??) holds
for 1 6 N 6 40248, but fails for all N > 40248. The proof
of (??) depends on the assumption that

∑N
n=0 1/(2n + 1) 6 2π,

which is false for N > 40248.



Jon and π

Jon was fascinated by the transcendental constant

π = 3.14159265358979 · · · ,

and gave many fascinating talks on π, often associated with an
annual celebration of “pi day” on March 14th (US-style date).
Indeed, a talk on π is a good way to introduce some interesting
mathematics to a general audience with a mathematical
background, or to undergraduate students. Mathematical topics
that can be motivated by π include the concepts of irrational
and transcendental numbers, rates of convergence of series
and algorithms, normality of the digits of π in decimal or binary
(still an open problem), and Euler’s famous relation eiπ = −1
that connects the constants e, π, i , and −1.



Linearly convergent algorithms for π

Most algorithms for the computation of π converge linearly, i.e.
the number of correct digits increases approximately linearly
with the number of iterations or the number of terms summed in
a series.
For example, this applies to Ramanujan’s famous formula

1
π
=

2
√

2
9801

∞∑
n=0

(4n)!(1103 + 26390n)
(n!)4 3964n

and similar formulas by the Chudnovsky brothers and others.



More linearly convergent algorithms

Similarly, the Bailey-Borwein-Plouffe (BBP) formula

π =
∞∑

n=0

2−4n
(

4
8n + 1

− 2
8n + 4

− 1
8n + 5

− 1
8n + 6

)
converges linearly.
The “Borwein” here is Peter Borwein. The formula was
discovered by Simon Plouffe and published in a joint paper. It
allows us to efficiently compute selected digits in the (binary)
representation of π. No such formula is known for base ten.



The arithmetic-geometric mean (AGM)

Given two real positive numbers a0 and b0, define

an+1 = (an + bn)/2, bn+1 = (anbn)
1/2.

Then an and bn tend to a common limit M(a0,b0), called the
arithmetic-geometric mean or AGM, that was first studied by
Lagrange in the late 18th century, and slightly later
(independently) by Gauss.
Gauss showed that the AGM can be expressed using complete
elliptic integrals of the first kind:

π

2M(a,b)
=

∫ π/2

0
(a2 cos2 φ+ b2 sin2 φ)−1/2 dφ .

A critical property is that the error term εn := an −M(a0,b0)
converges quadratically to zero: εn+1 = O

(
ε2

n
)
.



Superlinearly convergent algorithms for π

In the mid-seventies it was discovered (by RPB and Eugene
Salamin, independently), that there exist superlinearly
convergent algorithms for π (and for the elementary functions
exp, ln, sin, arctan, etc., but that is another story). These
algorithms depend on the AGM, and inherit the property that
the number of correct digits increases geometrically rather than
linearly. The first (and perhaps simplest) such algorithm is often
called Algorithm GL after Gauss and Legendre.
For example, using eight iterations of Algorithm GL, the error in
the computed approximation to π is less than 10−690.
In contrast, the classical method of Archimedes, using
inscribed and circumscribed polygons, gets only two correct
bits per iteration, so requires more than one thousand iterations
to obtain the same accuracy (even though the iterations are of
comparable complexity).



Pi and the AGM

In 1987, Jon and Peter Borwein published their classic book
Pi and the AGM: A Study in Analytic Number Theory and
Computational Complexity. They comprehensively studied
superlinearly convergent algorithms for π and generalisations to
the fast computation of elementary functions, and much more,
including (from chapter headings):
I Complete elliptic integrals and the AGM
I Theta functions, the AGM, and algorithms for π
I Jacobi’s triple product, theta functions, . . . , applications
I Modular equations, . . . , algebraic approximations to π
I The complexity of calculating algebraic functions
I The complexity of π and the elementary functions
I General means and mean iterations
I Other approaches to the elementary functions
I The story of π, computation and transcendence



Pseudo-mathematics and financial charlatanism

Although Jon was primarily a pure mathematician, his interests
extended much further and included aspects of applied
mathematics and statistics. This can be illustrated by his work
on mathematical finance. A significant contribution is his 2014
paper with Bailey, de Prado and Zhu, provocatively titled
“Pseudo-mathematics and financial charlatanism”.
The paper grew out of the authors’ concern that, although
mathematics had become a standard language to quantify
financial phenomena, it was often used in a misguided fashion.
The paper demonstrated that many financial strategies and
fund designs, claimed to be backed by extensive “backtests”
(analyses based on historical market data), were nothing more
than illusory artifacts resulting from statistical overfitting. The
conclusion was that backtest overfitting is a likely reason why
so many financial strategies and fund designs fail, despite
looking good on paper.



Mathematical education

Jon had a passion for sharing his joy of mathematics with
students and a more general audience. Some of his research
topics were particularly well-suited for communication to high
school and undergraduate students. We have already
mentioned his interest in experimental mathematics and his
“pi-day” activities.
Jon was a keen blogger, starting this activity in 2009 when he
and David Bailey founded the Math Scholar blog, which now
has over 200 articles on a wide range of topics, covering many
facets of modern mathematics, computing, and science. The
blog is still running, thanks to David.



Visualisation

Jon regarded visualisation as a powerful tool for both
experimental mathematicians and mathematical
communicators. Examples may be found in his 2013 paper
Walking on real numbers, which contains striking images of
walks in the plane associated with various mathematical
constants such as π,e, and Champernowne’s number C4
(formed by concatenating the representations of successive
integers in base 4).
In a different context, Jon used visualisation to explain the
dynamics of optimisation algorithms such as Douglas-Rachford.



A walk on π

The figure is defined by the first 1011 base-4 digits of π. The
path moves one unit east, north, west, or south, depending on
whether the corresponding digit is 0,1,2, or 3. The colours
indicate the overall position in the walk.

A walk on π (base 4)

π is transcendental, but it is not known if it is 4-normal (i.e. if its
base-4 digits are asymptotically uniformly distributed).



Champernowne’s number C4

The figure is defined by the first 105 base-4 digits of
Champernowne’s number C4. It is known that C4 is 4-normal.

We might consider using the (base 2) digits of a transcendental
number as a pseudo-random number generator. The figure
above shows that normality is not a sufficient condition for a
good random number generator! We would be better off using
the digits of π than the digits of C4 for such a purpose, even
though π has not been proved to be 4-normal.



Reproducibility

Jon was concerned with the question of reproducibility in
computational science (just as we should all be concerned
about reproducibility of the results of vaccine trials).
A 2014 paper by Reinhard Ganz in the journal Experimental
Mathematics claimed that the first 1013 decimal digits of π are
significantly non-random.
This seemed unlikely to me, so I raised the subject with Jon.
As a result, a 2017 paper by Jon (with Bailey, RPB, and Reisi),
whose final version was sent to the publisher just a few days
before Jon’s death, debunks Ganz’s claim.
Our paper points out the difficulties in reproducing Ganz’s
results, and reaches the opposite conclusion, i.e. we conclude
that there is no significant statistical evidence for
nonrandomness of the (first 1013) decimal digits of π.



History rhymes

“History doesn’t repeat itself, but it often rhymes”
– attributed to Mark Twain (1835–1910).

Curiously, an early paper2 by Metropolis, Reitwiesner and von
Neumann studied the first 2,000 decimal digits of π and e
(computed on the ENIAC) and concluded that, according to a
χ2 test, the digits of e were significantly non-random.
This phenomenon disappeared in later computations with more
digits.

2N. C. Metropolis, G. Reitwiesner and J. von Neumann, Statistical
treatment of values of first 2, 000 decimal digits of e and π calculated on the
ENIAC, Math. Tables and Other Aids to Computation 4 (1950), 109–111.
MR 0037598 (12,286j). Also in von Neumann’s Collected Works, Vol. 5.



2016–2021

In August 2016, Jon was on leave from Newcastle and on a
4-month visit to Canada as Distinguished Scholar in Residence
at Western University, London, Ontario. He died unexpectedly
on 2 August 2016 (aged 65). It was a shock to his friends and
colleagues, as no one expected it.
Jon was survived by his wife Judith, their three daughters
Naomi, Rachel, and Tova, and five grandchildren, as well as by
his brother Peter, sister Sarah, and parents David and Bessie.
Sadly, Peter died in August 2020 (aged 67), and David died in
September 2021 (aged 97). Our hopes for more “Borwein
mathematics” lie with younger generations, although they will
probably not have the surname “Borwein”.



Jon’s legacy

Jon’s legacy includes his books, papers, and the former
students who will carry on his work.
Another of Jon’s legacies is the research centre CARMA that
he established on his arrival in Newcastle. Its objectives were
“becoming a world-leading institution in: using computers as an
adjunct to mathematical discovery; researching and developing
computer-based decision-support systems; and promoting use
of appropriate tools in academia, education and industry”.



The need for CARMA

It would be a great pity if CARMA died, since there is a need for
an Australian organisation with objectives similar to those of
CARMA.
The utility of computation in mathematics was forseen by early
pioneers such as Turing, Von Neumann, and Shannon, but in
their day the technology available was far less powerful than
now. Thanks to Moore’s law and advances in algorithms and
software, that has changed. Computation (both numerical and
symbolic) is now indispensable in diverse areas of mathematics
as well as in related areas such as statistical mechanics. Still,
there is a tendency amongst some pure mathematicians to look
down on it, or to fail to appreciate what it can offer.
There is also a tendency for different subject areas to “reinvent
the wheel” due to ignorance of what has been done and what
software is available in different areas. Hence, an organisation
that can bring together researchers from different areas is
highly desirable.



Where next for CARMA?

There is no need for CARMA to remain closely linked to the
University of Newcastle. Indeed, if Jon were still alive today, he
would probably have moved or re-established it elsewhere.
The CARMA Executive is currently considering options for the
future of CARMA, not necessarily linked to Newcastle. If you
have any ideas, please contact the Director of CARMA
(Judy-anne Osborn) or someone else on the Executive.
Meanwhile, CARMA welcomes external members. If you are
interested in becoming one and/or participating in CARMA
activities, please contact the Director.
More information about CARMA and its history can be found on
the website https://carmamaths.org.

https://carmamaths.org


More Borwein family photos

Let’s conclude with some more Borwein family photos.

Jon at the Academy of Science, c. 2010.
Atypical, since Jon rarely wore a tie!



Jon in Adelaide, c. 2014.
More typical – no tie and probably wearing shorts



David, aged 90

David Borwein, 2014



The Borwein family, 1999

Peter, David, Jon, Bessie (L to R)
Univ. of Western Ontario, 1999
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