
The Kolakoski Sequence and
Some Fast Algorithms,

Part 2

Richard P. Brent

Australian National University

and University of Newcastle

1 October 2017

Joint work with Judy-anne Osborn

Copyright c© 2017, R. P. Brent

Richard Brent Fast algorithms for the Kolakoski sequence

Introduction
This is part 2 of a talk describing joint work with Judy-anne
Osborn. The Kolakoski sequence K = (kj)j≥1 ∈ {1, 2}N was
defined in her talk, and is OEIS sequence A000002.

The first 27 term of K are

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, . . .

K has the property that its run-length encoding is itself (i.e. K):

1,︸︷︷︸
1

2, 2,︸︷︷︸
2

1, 1,︸︷︷︸
2

2,︸︷︷︸
1

1,︸︷︷︸
1

2, 2,︸︷︷︸
2

1,︸︷︷︸
1

2, 2,︸︷︷︸
2

1, 1,︸︷︷︸
2

2,︸︷︷︸
1

1, 1,︸︷︷︸
2

2, 2,︸︷︷︸
2

. . . ,

and indeed this property defines K uniquely, except that we could
omit the first term to obtain a sequence

2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, . . .

with the same property.
Richard Brent Introduction

The alphabet and the discrepancy function
It may be convenient to change the alphabet Σ = {1, 2}. In a
computer implementation, we can map (1, 2) 7→ (0, 1), i.e.
k 7→ k − 1, so that 64 consecutive terms such as k1 . . . k64 can be
represented in a single 64-bit computer word.

We are interested in the (open) question of whether K is
equidistributed. Thus, it may be convenient to map
(1, 2) 7→ (−1, 1), i.e. k 7→ (−1)k = 2k − 3.

We define the Kolakoski discrepancy function δ(n) by

δ(n) :=
n∑

j=1

(−1)kj .

Thus, δ(n) is the excess of twos over ones in the first n terms of
K , and K is equidistributed if and only if

δ(n) = o(n), i.e. lim
n→∞

δ(n)/n = 0.

Richard Brent Σ and δ(n)

Algorithms for the discrepancy function

The obvious algorithm to compute δ(n) takes time and space
linear in n. Nilsson (2012) gave an algorithm for computing
k1 . . . kn, and hence δ(n), in time O(n) and space O(log n). We
describe several algorithms that compute δ(n) faster, using a
space-time tradeoff. The algorithms use ideas of Nilsson and Rao.
It is conjectured that the fastest algorithm runs in time and space
O(nα), where α = log(2)/ log(3) ≈ 0.631.

Richard Brent Algorithms

A linear time and space algorithm

It is straightforward to generate k1k2 . . . kn in linear fashion, using
the fact that k is a fixed point of the “run-length decoding”
function T1(σ1σ2 . . .) = 1σ12σ21σ32σ4 . . .

Denote the complement of x ∈ Σ by x ′. Thus 1′ = 2, 2′ = 1,
but we can represent 2 by 0 if desired (to save space).

We use an array A of n + 1 bits A1 . . .An+1, and indices i , j .

Algorithm 1:

(A1,A2, i , j)← (1, 1′, 2, 2);
while i ≤ n do

if Aj = 1 then (Ai , i , j)← (A′i−1, i + 1, j + 1)
else (Ai ,Ai+1, i , j)← (A′i−1,A

′
i−1, i + 2, j + 1).

Now A1 . . .An = k1 . . . kn.

The algorithm uses time O(n) and space O(n).

Richard Brent Algorithm 1

Illustration of Algorithm 1
The algorithm can be illustrated by the following table. As the
indices i and j increase, the third and fourth columns both
represent initial segments of the Kolakoski sequence.

i increases by 2 when Aj = 2 (skipped values in parentheses).

i j Ai Aj

1 1 1 1

2 2 2 2
(3) 2
4 3 1 2

(5) 1
6 4 2 1
7 5 1 1
8 6 2 2

(9) 2
10 7 1 1

Richard Brent Algorithm 1

Saving space via recursion

Nilsson (2012) improved Algorithm 1 by reducing the space
required to generate kn (or δ(n)) from O(n) to O(log n).
The time required is still O(n).

The idea is to generate the Kolakoski sequence by a recursive
procedure, where the reference to Aj in Algorithm 1 is replaced by
a recursive call to the same procedure, unless j ≤ 2.

This can be illustrated by the table on the next slide.

Richard Brent Nilsson’s algorithm

Recursive generation of the Kolakoski sequence
Each column A,B,C , . . . gives the Kolakoski sequence. Column B
generates column A, column C generates column B, etc. The
depth of recursion increases at each blue row.

index A B C D E F G . . .
1 1 1 1 1 1 1 1 . . .
2 2 2 2 2 2 2 2 . . .
3 2
4 1 2
5 1
6 2 1 2
7 1 1
8 2 2 1 2
9 2

10 1 1 1
11 2 2 2 1 2
12 2
13 1 2
14 1
15 2 1 1 1
16 1 2 2 2 1 2
17 1
18 2 2
19 2
20 1 1 2
21 2 1
22 1 2 1 1 1
23 1
24 2 1 2 2 2 1 2
. . .

Richard Brent Picturing the recursion

A sublinear algorithm (Algorithm 2)

Nilsson’s algorithm takes time of order n to generate kn or δ(n).
This is the best that we can do if all of k1, . . . , kn are required.

However, it is possible to generate a single kn or δ(n) value
(or a sparse sequence of such values) in time � n.

The first step is to convert Nilsson’s recursive algorithm into an
iterative algorithm that generates the table on the previous slide
row by row. This gives a non-recursive algorithm with essentially
the same time and space requirements as Nilsson’s algorithm.

Next, we observe that a row in the table determines some of the
following rows, as illustrated on the following slide.

Richard Brent Saving time as well as space

One row determines several following rows

index A B C D E F

1–10 · · ·
11 2 2 2 1 2
12 2
13 1 2
14 1
15 2 1 1 1

16 1 2 2 2 1 2
. . .

Row 11 determines rows 12–15 as the number of columns (5) in
row 11 is at least the number of columns in rows 12–15.

However, row 11 does not determine row 16, since row 16 has 6
columns, and the column labelled “F” could have an entry 1 or 2.

Richard Brent One row determines several

Another example

index A B C D

1–3 · · ·
4 1 2
5 1

6 2 1 2
7-12 · · ·
13 1 2
14 1

15 2 1 1 1
· · ·

Row 4 determines row 5, but not row 6. Row 13 is identical to row
4, so determines row 14, but not row 15. Note that row 6 and row
15 differ in the entries marked in red.

Richard Brent One row determines several

Using table lookup

For each d , 1 ≤ d ≤ dmax , where dmax is determined by the
amount of random-access memory available, we can construct a
table of 2d entries indexed by d-bit binary integers (the keys).
Each such integer m corresponds to a row (say row r) with d
symbols from Σ, which we can map to {0, 1}.
The table tells us how far we can skip ahead, say ` rows, and gives
sufficient information to construct row r + ` from row r . It also
contains

∑
r<j≤r+` (−1)kj , so there is enough information to

determine δ(n) when we reach row n.

In fact, it is sufficient to consider rows ending in 2, since rows
ending in 1 have ` = 0.

If a row has length > dmax , or if the table lookup would skip over
the desired index n, we revert to the “slow but sure” iterative
version of Nilsson’s algorithm.

Richard Brent Table lookup

Space-time tradeoff

The mean value of ` over all 2d d-bit keys is (3/2)d . On the
assumption that each possible key is equally likely to occur, we
expect a speedup of order (3/2)dmax/dmax , This is confirmed by
numerical experiments.

Note: the keys are not substrings of the Kolakoski sequence. The
latter can not include strings such as 111 or 222, so the number of
length-d substrings that occur in the Kolakoski sequence is (much)
less than 2d . (It is polynomial in d .)

We have to initialise the lookup tables. This takes time O(3dmax) if
done in a lazy manner, but O(2dmax) if done recursively, starting
from small d .

Thus, the total time to compute δ(n) is [conjectured to be]

O((2/3)dmax dmax n + 2dmax).

Richard Brent Space-time tradeoff

Choosing dmax

Choosing dmax = blog(n)/ log(3)c gives time O(nα log n)
and space O(nα), where α = log(2)/ log(3) ≈ 0.631.

For the values of n that we are interested in, say n ≈ 1019, this
would give dmax ≈ 39. Our program uses about 24× 2dmax bytes,
so on a machine with say 128 GB of memory available we are
limited to dmax ≤ 32. Thus, in practice, we are limited by the
availability of memory. Choosing the largest possible
dmax ≤ log(n)/ log(3), the runtime is O((2/3)dmax dmax n).

One way to interpret this analysis is as follows. Each time that
we double the amount of memory available for lookup tables, we
obtain a speedup by a factor of about 3/2. Since
(3/2)30 ≈ 191, 000, the speedup is significant. dmax = 30 is
optimal for n ≈ 330 ≈ 2× 1014, but sub-optimal for larger n.

Richard Brent The speedup in practice

Computing other quantities

It is possible to compute other functions related to δ(n) with only
a constant factor slowdown by extending Algorithm 2.

For example, we can compute

max
a≤n≤b

δ(n) and min
a≤n≤b

δ(n), and hence max
a≤n≤b

|δ(n)|,

at the expense of a factor 5/3 in memory for lookup tables, and a
small constant factor increase in running time.

Our computer implementations compute max1≤j≤n δ(j),
min1≤j≤n δ(j), and the least index j where each “significant”
max/min occurs.

Richard Brent Enhancements

Another fast algorithm

We outline another algorithm, Algorithm 3, which (conjecturally)
has better complexity than Algorithm 2, although only by a
logarithmic factor. It is based on an idea of Michaël Rao (2012).

Before describing Algorithm 3, we need to consider finite state
transducers. These are theoretical computing machines whose
power lies between that of finite automata and Turing machines.

Richard Brent Algorithm 3

Finite-state transducers
A finite-state transducer (FST) is a finite-state machine with an
input tape and an output tape.

For example, the Kolakoski sequence K is a fixed point of the FST
K defined by the table

initial state input output final state

1 1 1 2
1 2 11 2
2 1 2 1
2 2 22 1

or equivalently by the labelled, directed graph

Richard Brent Finite-state transducers

Composition of FSTs
By connecting the output of an FST K to the input of an FST L
we get an FST that is denoted by K ◦ L. (Note the order!) The
set of states of K ◦ L is the cartesian product of the sets of states
of K and L.

For example, K2 := K ◦ K can be represented by the graph

Richard Brent Composition of FSTs

Composition of FSTs cont.
K3 := K2 ◦ K can be represented by

The directed graph representing Kd has 2d vertices. Each vertex
has two out-edges and two in-edges, making a total of 2d+1

directed edges. The edges are labelled by inputs ∈ {1, 2}, and
outputs of variable length (strings over {1, 2}). The total length of
the outputs is 2 · 3d , so the average length of an output is (3/2)d .

Richard Brent Composition of FSTs

Remark

Rao’s graphs are related to, but not the same as, the graphs of
Chvátal, described in Part 1. In fact, a Chvátal graph of size 2d+1

can be mapped to a Rao graph of size 2d .

Acknowledgement: the graphs for K, K2, K3 are from Michaël
Rao’s website http://www.arthy.org/kola/kola.php.

Rufus Oldenburger William Kolakoski Michaël Rao

Richard Brent Remark

http://www.arthy.org/kola/kola.php

The “expander” interpretation of K
We can think of the transducer K as a black box with 1-bit state
(memory) that takes an initial segment of the Kolakoski sequence
K as input and outputs a (generally longer) initial segment of K .

For example, if we assume that K has initial state 1 and we input
the first 5 symbols 12211 of K , we obtain the first 7 symbols
1221121. This can be seen from the picture

1︸︷︷︸
1

2︸︷︷︸
22

2︸︷︷︸
11

1︸︷︷︸
2

1︸︷︷︸
1

· · ·

I find it easier to write K from right to left, since I store bits in
computer words least-significant bit first, and these bits are
traditionally regarded as at the right end of the word. Thus the
action of K can be pictured as

· · · 11221→ K → · · · 1211221

This convention is natural if inputs are on the left and outputs on
the right. If you don’t like it, put the inputs on the right!

Richard Brent Interpretation of K

Interpretation of Kd

Remembering the right-to-left convention for inputs and outputs,
we have

· · · 11221→ K → · · · 1211221

and
· · · 1211221→ K → · · · 1221211221

which may be abbreviated as

· · · 11221→ K2 → · · · 1221211221

Similarly,

· · · 11221→ K3 → · · · 211221221211221

We can think of Kd as a black box with d-bit state. The
“amplification factor” is (conjecturally) (3/2)d .

Richard Brent Interpretation of Kd

The idea of Algorithm 3

The idea of Algorithm 3 is to choose some exponent d (say
d = 32) and precompute a representation of Kd . Then we can
input the Kolakoski sequence (generated for example by Nilsson’s
algorithm) and use Kd to “accelerate” the input generator by a
factor of (hopefully) about (3/2)d .

The problem with this idea is that we still have to generate the
entire output sequence. We can not hope to generate k1, . . . , kn in
time of order less than n.

An important observation is that, in order to compute the
Kolakoski discrepancy function δ at a sufficiently sparse set of
points, we do not need to generate all of an initial segment
k1, . . . , kn.

In the computed representation of Kd , we can abbreviate the
output string s1 · · · s` by (`, η), where ` is the length and
η :=

∑
1≤j≤`(−1)sj is the contribution to the discrepancy function

arising from s1 · · · s`.
Richard Brent Idea of Algorithm 3

Algorithm 3 (outline)

To represent Kd , we could use lookup tables of size 2d+1, indexed
by the state (2d possibilities) and input symbol (2 possibilities).
The table entries contain `, η, and the resulting state (d bits). If
d ≤ 32 it is sufficient to allow 20 bits for ` and 11 bits for η, so the
entries fit into a 64-bit word. This makes a total of 16× 2d bytes.

In fact, we can save a factor of two in storage by taking advantage
of a symmetry which is evident by inspection of the graph of K3. If
the vertex label (i.e. state) is σ1 · · ·σd , we can assume that
σd = 1, since the vertices with σd = 2 and their corresponding
edges are easily reconstructed (the outputs are flipped 1↔ 2).
Thus, we need only 8× 2d bytes for tables. For example, if d = 32,
this is 32GB (a factor of 4 less than Algorithm 2 for dmax = 32).

If 32 < d ≤ 36 we can use 23 bits for ` and 12 bits for η, so 9× 2d

bytes for tables. For example, if d = 34, this is 144GB, which will
fit on a machine with 256GB (the largest available to us).

Richard Brent Algorithm 3

Algorithm 3 (some details)

As described so far, Algorithm 3 would output δ(n) at irregularly
spaced values of the index n, separated on average by about
(3/2)d (≈ 431440 if d = 32). Since we aim to compute δ(n) for n
of order 1020, we would prefer to output δ(n) at equally spaced
values of n separated by say 1016.

To solve this problem, if the current interval covered by the table
lookup process is [n0, . . . , n0 + η] and a value for which we want
output falls in this interval, then we revert to the “slow but sure”
process of generating kn0 , kn0+1, . . . , kn0+η. Provided this
exceptional case occurs sufficiently rarely, the amortised complexity
(or average speed) of the algorithm is hardly affected. Since
1016/(3/2)32 ≈ 2.3× 1010 is large, this is the case in practice.

Richard Brent Algorithm 3

Computing the max/min in Algorithm 3
As for Algorithm 2, we would like to compute max1≤j≤n δ(j) and
min1≤j≤n δ(j) as well as δ(n) at a set of regularly spaced points.
(Who knows what extreme behaviour could be hiding in an interval
of length 1016 ?)

The lazy approach is to compute the max and min values once per
table lookup. We also compute how much δ(n) can vary in the
intervals given by a table lookup (577 for d = 32, and 905 for
d = 34). Thus, our estimates of the max and min values will be in
error by less than 1000, which is sufficient to estimate the
asymptotic behaviour.

If we want the exact max and min values, we can simply use the
“slow but sure” process whenever the current δ(n) is sufficiently
close to the current max/min that a new max/min might lie in the
current interval. This potentially reduces the average speed of the
algorithm, but in practice we have found that it causes a slowdown
of less than 10 percent on average (although it causes a large
slowdown in rare cases). There is no significant storage penalty.

Richard Brent Algorithm 3

Complexity of various algorithms

The complexity analysis of Algorithm 3 is similar to that of
Algorithm 2, except that the log n factor can be avoided.

To summarise:

Algorithm 1: T = O(n), S = O(n).

Nilsson: T = O(n), S = O(log n).

Algorithm 2: T = O(nα log n), S = O(nα),
or, for S � nα, T = O(n log S/Sβ).

Algorithm 3: T = O(nα), S = O(nα),
or, for S � nα, T = O(n/Sβ).

Here α = log 2/ log 3 ≈ 0.63, β = log2(3/2) = 1/α− 1 ≈ 0.58.

The time bounds for Algorithms 2–3 are conjectured because they
depend on unproved assumptions such as equidistribution.

Richard Brent Complexity summary

Rao’s algorithm

Michaël Rao (2012) uses composition of FSTs to compute a
function equivalent to the Kolokoski discrepancy function δ(n), for
various n ≤ 1018. In fact he computes (n − δ(n))/2, which is the
number of ones in the sequence k1, . . . , kn. So far as we know, he
does not compute the max/min values of δ(n).

Rao does not describe his approach in detail, but presumably it is
similar to our Algorithm 3. Since he does not say how long his
computation to 1018 took, we can not compare the efficiency of
our algorithms/implementations.

Our implementation of Algorithm 3, running on a 3.47Ghz machine
with d = 34 and using 144GB of memory, takes about 38 hours to
compute δ(1018) = 111, 069, 790 (this is 2.6× 1016 per hour).

We are now (as at 29 Sept 2017) up to 7.6× 1019, and hope to
reach 1020 in about 7 weeks.

Richard Brent Rao’s algorithm

Computation of δ(n)
The table gives some values of δ(n) and scaled values of δ(n) and
∆(n) := max1≤j≤n |δ(j)|.

n δ(n) δ(n)/n1/2 ∆(n)/n1/2

103 - 4 - 0.1265 0.1897
106 +28 +0.0280 0.0660
109 - 2,446 - 0.0773 0.1560
1012 - 101,402 - 0.1014 0.1515
1015 - 1,954,842 - 0.0618 0.1390
1018 +111,069,790 +0.1111 0.1415
1019 +548,593,100 +0.1735 0.1782

7× 1019 +1,177,987,702 +0.1408 0.1581

The δ(n) values are in agreement with those computed by Michaël
Rao, up to his limit of 1018. All results have been computed by at
least two runs, and usually by two different programs (e.g. using
Algorithms 2 and 3, or Algorithm 3 with different values of d).

Richard Brent Computational results

Some extreme values of δ(n)

Our computations show that

∀n ∈ [1572, 7.6× 1019] |δ(n)| < 0.2663 n1/2.

The constant here is essentially the best possible because, for
n = 15, 337, 359, 163, 568, 838, 683 ≈ 1.5× 1019, we have
δ(n) = 1, 042, 818, 353, and δ(n)/n1/2 = 0.2662 . . .

For n ≤ 7× 1019, the maximum of |δ(n)| is 1, 322, 572, 912 at
n = 48, 613, 959, 221, 650, 774, 546 ≈ 4.9× 1019,
and δ(n)/n1/2 ≈ 0.1897.

Richard Brent Extreme values

A graph of the computational results to 7.6× 1019

The plot shows δ(n)/n1/2 ∈ [−0.27, 0.27] versus log10(n) ∈ [4, 20].
It looks like a stationary process.

δ(n)/
√
n vs log10(n), 104 ≤ n ≤ 7.617× 1019, in [4, 20]× [−0.27,+0.27]

Richard Brent Computational results

Conjecture

From the numerical results up to 7.6× 1019, it would be plausible
to conjecture that δ(n) = O(n1/2).

For a random walk with i.i.d. random variables, we would get
δ(n)� √n log log n almost surely (Khinchin’s law of the iterated
logarithm). More precisely,

lim sup
δ(n)√

2n log log n
= 1 a.s.

The function
√

log log n grows too slowly to make a significant
difference to the numerical results.

Thus, to be on the safe side, I will only conjecture that

δ(n) = O(
√

n log log n).

Richard Brent Conjecture

A dubious conjecture

John Smith and Ariel Scolnikov (2013)1 conjectured that

δ(n) = O(log n).

Our numerical results make this conjecture extremely unlikely.
For example,

δ(n)

log n
> 2.5× 107 for n = 5× 1019.

1http://planetmath.org/kolakoskisequence. The conjecture is
repeated at http://codegolf.stackexchange.com/questions/8369/.

Richard Brent A dubious conjecture

http://planetmath.org/kolakoskisequence
http://codegolf.stackexchange.com/questions/8369/

References
A. Carpi, On repeated factors in C∞-words, Information
Processing Letters 52 (1994), 289–294.

V. Chvátal, Notes on the Kolakoski sequence, DIMACS Tech.
Report 93-84, Dec. 1993. http://dimacs.rutgers.edu/
TechnicalReports/abstracts/1993/93-84.html

F. M. Dekking, What is the long range order in the Kolakoski
sequence?, Report 95–100, TU-Delft, 1995. http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6839

W. Kolakoski, Self generating runs, Problem 5304, Amer. Math.
Monthly 72 (1965), 674. Partial solution: Ü. Necdet, ibid 73
(1966), 681–682.

J. Nilsson, A space-efficient algorithm for calculating the digit
distribution in the Kolakoski sequence, J. of Integer Sequences 15,
article 12.6.7 (2012).

J. Nilsson, Letter frequencies in the Kolakoski sequence, Acta
Physica Polonica A 126 (2014), 549–552.

Richard Brent References

http://dimacs.rutgers.edu/TechnicalReports/abstracts/1993/93-84.html
http://dimacs.rutgers.edu/TechnicalReports/abstracts/1993/93-84.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6839
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6839

References cont.

R. Oldenburger, Exponent trajectories in symbolic dynamics,
Trans. Amer. Math. Soc. 46 (1939), 453–466.
OEIS, Sequence A000002, Kolakoski sequence,
http://oeis.org/A000002.

OEIS, Sequence A088568, partial sums of Oldenburger-Kolakoski
sequence A000002, http://oeis.org/A088568.

M. Rao, Trucs et bidules sur la séquence de Kolakoski, Oct. 1,
2012. http://www.arthy.org/kola/kola.php.

Wikipedia, Kolakoski sequence,
https://en.wikipedia.org/wiki/Kolakoski_sequence.

Wikipedia, L-system,
https://en.wikipedia.org/wiki/L-system.

Richard Brent References

http://oeis.org/A000002
http://oeis.org/A088568
http://www.arthy.org/kola/kola.php
https://en.wikipedia.org/wiki/Kolakoski_sequence
https://en.wikipedia.org/wiki/L-system

