Asymptotic expansions and conjectures related to the exponential integral

Richard P. Brent

Australian National University and University of Newcastle

26 Sept 2018
Joint work with Larry Glasser and Tony Guttmann

Copyright (C) 2018, R. P. Brent

D-finite series and sequences

A formal power series $f(z):=\sum f_{n} z^{n}$ is D-finite (or differentially finite) if it satisfies a linear differential equation with polynomial coefficients (not all zero), e.g.

$$
(1-z)^{2} f^{\prime \prime}+(4 z-5) f^{\prime}+2 f=0
$$

Another name is holonomic.
If the series $\sum f_{n} z^{n}$ converges for sufficiently small $|z|$, then it represents an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$, but we allow the case where the radius of convergence is zero, e.g. $f_{n}=n!$.
A sequence $\left(a_{n}\right)_{n \geqslant 0}$ is D-finite (or P-recursive) if, for some N, $\left(a_{n}\right)_{n \geqslant N}$ satisfies a linear recurrence with a fixed number of polynomial coefficients (not all zero), e.g.

$$
n a_{n}-(2 n-1) a_{n-1}+(n-2) a_{n-2}=0, \quad n \geqslant 2
$$

The two concepts are equivalent: the formal power series $\sum f_{n} z^{n}$ is D-finite iff the sequence $\left(f_{n}\right)$ is D-finite.

Closure properties of D-finiteness

The set of D-finite power series is closed under addition and (ordinary) multiplication. (Recall that multiplication of power series corresponds to convolution of the corresponding sequences.)
It is also closed under the Hadamard product $(f \circ g)_{n}=f_{n} \cdot g_{n}$, which corresponds to pointwise multiplication of sequences.
However, it is not closed under division, e.g. the Maclaurin series for $\tan z=\sin z / \cos z$ and $\sec z=1 / \cos z$ are not D-finite.

Asymptotics of D-finite sequences

We are interested in the asymptotic behaviour of D-finite sequences $\left(a_{n}\right)$ as $n \rightarrow \infty$.
For example, it is clear from the polynomial recurrence satisfied by a D-finite sequence $\left(a_{n}\right)$ that, for some constant c, $a_{n} \ll \exp (c n \log n)$.
Thus, it is not possible for a_{n} to grow as fast as $\exp \left(n^{2}\right)$.
On the other hand, polynomial growth and exponential growth are certainly possible.

An example of "stretched exponential" growth

There are D-finite sequences $\left(a_{n}\right)$ such that

$$
a_{n} \sim A n^{g} \exp \left(B n^{\alpha}\right) \text { as } n \rightarrow \infty
$$

for certain constants $A \neq 0, B>0, g$, and $\alpha \in(0,1)$.
For example: from a result of Wright (1949), the coefficients in the Maclaurin series for

$$
\exp (1 / \sqrt{1-z})
$$

have this form of asymptotic behaviour, with

$$
A=\frac{1}{2^{1 / 3} \sqrt{3 \pi}}, \quad B=\frac{3}{2^{2 / 3}}, \quad g=-\frac{5}{6}, \alpha=\frac{1}{3} .
$$

Another example (our starting point)

From a result of Perron (1914), the coefficients a_{n} in the Maclaurin series for

$$
f_{0}(z):=\exp (z /(1-z))
$$

have the same "stretched exponential" form of asymptotic behaviour, with

$$
A=1 / \sqrt{4 \pi e}, B=2, g=-3 / 4, \text { and } \alpha=1 / 2
$$

so

$$
a_{n} \sim \frac{e^{2 \sqrt{n}}}{2 n^{3 / 4} \sqrt{\pi e}}
$$

Salvy's conjecture

Bruno Salvy recently conjectured that similar behaviour was possible with $B<0$. In particular, he conjectured that the function

$$
f_{1}(z):=e^{x} E_{1}(x)=e^{x} \int_{x}^{\infty} \frac{e^{-t}}{t} d t, \text { where } x=\frac{1}{1-z}
$$

has Maclaurin series coefficients b_{n} such that

$$
b_{n} \sim A n^{-3 / 4} \exp \left(-2 n^{1 / 2}\right)
$$

In the notation on the previous slides,

$$
B=-2, g=-3 / 4, \quad \text { and } \quad \alpha=1 / 2
$$

We have proved Salvy's conjecture. In fact, we have found a full asymptotic expansion for b_{n}.

Differential equations for f_{0} and f_{1}

Recall that $f_{0}(z)=\exp (z /(1-z))$. Differentiating, we see that f_{0} satisfies the differential equation

$$
(1-z)^{2} f_{0}^{\prime}(z)-f_{0}(z)=0
$$

Similarly, with

$$
f_{1}(z)=e^{x} E_{1}(x)=e^{x} \int_{x}^{\infty} \frac{e^{-t}}{t} d t, \text { where } x=1 /(1-z)
$$

we find that

$$
(1-z)^{2} f_{1}^{\prime}(z)-f_{1}(z)=z-1
$$

Only the right-hand sides (and initial conditions) differ. Differentiating twice more, we get a third-order differential equation

$$
(1-z)^{2} f^{\prime \prime \prime}+(4 z-5) f^{\prime \prime}+2 f^{\prime}=0
$$

satisfied by both f_{0} and f_{1}.

Recurrence relation for a_{n}

Putting $f_{0}(z)=\sum a_{n} z^{n}$ in the differential equation satisfied by f_{0} and equating coefficients, we get the 3-term recurrence relation

$$
n a_{n}-(2 n-1) a_{n-1}+(n-2) a_{n-2}=0 \text { for } n \geqslant 2 .
$$

Initial conditions are $a_{0}=a_{1}=1$. Using the recurrence, we can compute $\left(a_{n}\right)_{n \geqslant 0}=(1,1,3 / 2,13 / 6,73 / 24,167 / 40, \ldots)$.
A closed form is

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \quad(n \geqslant 1) .
$$

We can also write $a_{n}=L_{n}^{(-1)}(-1)$, where the generalised Laguerre polynomials $L_{n}^{(\alpha)}(x)$ are orthogonal over $[0, \infty)$ with respect to the weight function $x^{\alpha} e^{-x}$.

Recurrence relation for b_{n}

The differential equation satisfied by $f_{1}(z)=\sum b_{n} z^{n}$ implies a 3-term recurrence

$$
n b_{n}-(2 n-1) b_{n-1}+(n-2) b_{n-2}=0 \text { for } n \geqslant 3
$$

This is the same recurrence that is satisfied by $\left(a_{n}\right)$, but the initial conditions are different.
For $\left(b_{n}\right)$, the initial conditions are $b_{0}=G, b_{1}=G-1$, $b_{2}=(3 G-2) / 2$, where $G:=e E_{1}(1) \approx 0.596$ is the Euler-Gompertz constant.
The recurrence can be used to compute more terms, but it is numerically unstable if used in the forward direction.

Asymptotic expansions of a_{n} and b_{n}

Recall that $a_{n}=\left[z^{n}\right] f_{0}(z)$ and $b_{n}=\left[z^{n}\right] f_{1}(z)$.
Using the recurrence relation satisfied by $\left(a_{n}\right)$ and $\left(b_{n}\right)$, we can prove that a_{n} and b_{n} have closely related asymptotic expansions:

$$
\begin{aligned}
a_{n} & \sim \frac{e^{2 \sqrt{n}}}{2 n^{3 / 4} \sqrt{\pi e}} \sum_{k \geqslant 0} c_{k} n^{-k / 2}, \\
b_{n} & \sim-\frac{\sqrt{\pi e}}{n^{3 / 4} e^{2 \sqrt{n}}} \sum_{k \geqslant 0}(-1)^{k} c_{k} n^{-k / 2},
\end{aligned}
$$

for certain constants $c_{k} \in \mathbb{Q}, c_{0}=1$.
The expansion for a_{n} is known [Perron (1914), Wright (1932)], but the expansion for b_{n} appears to be new.

The Hadamard product

In the Hadamard product $\rho_{n}:=a_{n} b_{n}$, the exponentials and constant $\sqrt{\pi e}$ cancel, giving

$$
\rho_{n} \sim-\frac{1}{2 n^{3 / 2}}\left(c_{0}+c_{1} h+c_{2} h^{2}+\cdots\right)\left(c_{0}-c_{1} h+c_{2} h^{2}-\cdots\right),
$$

where $h=n^{-1 / 2}$. Observe that

$$
\begin{aligned}
\left(F\left(h^{2}\right)\right. & \left.+h G\left(h^{2}\right)\right)\left(F\left(h^{2}\right)-h G\left(h^{2}\right)\right) \\
& =F\left(h^{2}\right)^{2}-h^{2} G\left(h^{2}\right)^{2} \\
& =F\left(n^{-1}\right)^{2}-n^{-1} G\left(n^{-1}\right)^{2}
\end{aligned}
$$

so

$$
\rho_{n} \sim-\frac{1}{2 n^{3 / 2}}\left(d_{0}+\frac{d_{1}}{n}+\frac{d_{2}}{n^{2}}+\cdots\right)
$$

for certain constants $d_{k} \in \mathbb{Q}, d_{0}=1$.

The constants c_{k}

Let $(\tau)_{m}$ denote the ascending factorial $\tau(\tau+1) \cdots(\tau+m-1)$.
The constants c_{k} appearing in the asymptotic expansions of a_{n} and b_{n} can be computed from

$$
c_{k}=(-1)^{k} \sum_{j=0}^{k}\left[h^{k-j}\right] \exp (\mu(h)) \frac{(k-2 j+3 / 2)_{2 j}}{4 j!},
$$

where

$$
\mu(h)=\frac{1}{h}-\frac{1}{e^{h}-1}-\frac{1}{2}=-\sum_{m=1}^{\infty} \frac{B_{2 m}}{(2 m)!} h^{2 m-1}
$$

and the $B_{2 m}$ are Bernoulli numbers. This follows from results of Temme (2013).
Numerically,

$$
\left(c_{k}\right)_{k \geqslant 0}=\left(1,-\frac{5}{48},-\frac{479}{4608},-\frac{15313}{3317760}, \frac{710401}{127401984}, \ldots\right) .
$$

The constants d_{k}

The constants d_{k} appearing in the asymptotic expansion of $\rho_{n}=a_{n} b_{n}$ can be computed from the c_{k} using

$$
d_{k}=\sum_{j=0}^{2 k}(-1)^{j} c_{j} c_{2 k-j}
$$

This gives the following numerical values:

$$
\left(d_{k}\right)_{k \geqslant 0}=\left(1,-\frac{7}{32}, \frac{43}{2048},-\frac{915}{65536},-\frac{521101}{8388608}, \ldots\right) .
$$

We observe that the denominators appear to be powers of two! In other words, the $\left(d_{k}\right)$ appear to be dyadic rationals.

A conjecture

$$
\text { Let } r_{k}:=2^{6 k} d_{k} \text {, so }
$$

$$
\left(r_{k}\right)_{k \geqslant 0}=(1,-14,86,-3660,-1042202,-247948260, \ldots) .
$$

Conjecture: for all $k \geqslant 0, r_{k} \in \mathbb{Z}$.
We have verified the conjecture numerically for all $k \leqslant 1000$.
We also showed that $r_{k}<0$ for $k \geqslant 3, r_{k}$ is even for $k>0$, and $4 \mid r_{k}$ unless k is zero or a power of two (all for $k \leqslant 1000$).
Towards the conjecture: we can prove that $k!r_{k} \in \mathbb{Z}$ (even this weak result is not obvious).

An analogy

The modified Bessel functions $I_{0}(z)$ and $K_{0}(z)$ are solutions of the same ordinary differential equation $z y^{\prime \prime}+y^{\prime}-z y=0$, but $I_{0}(z)$ increases with z while $K_{0}(z)$ decreases. $K_{0}(z)$ is a minimal solution of the ODE.
The product $I_{0}(Z) K_{0}(z)$ has an asymptotic expansion

$$
I_{0}(z) K_{0}(z) \sim \frac{1}{2 z} \sum_{k \geqslant 0} e_{k} z^{-2 k} .
$$

Here

$$
e_{k}=\frac{(2 k)!^{3}}{2^{6 k} k!^{4}}=\frac{(2 k)!}{2^{6 k}}\binom{2 k}{k}^{2}
$$

so clearly $2^{6 k} e_{k} \in \mathbb{Z}$ (in fact $\left.2^{4 k} e_{k} \in \mathbb{Z}\right)$.
Similarly if $\left(I_{0}, K_{0}\right) \mapsto\left(I_{\nu}, K_{\nu}\right)$. Here $I_{\nu}(z), K_{\nu}(z)$ are independent solutions of the differential equation $z^{2} y^{\prime \prime}+z y^{\prime}-\left(z^{2}+\nu^{2}\right) y=0$, and we assume that $\nu \in \mathbb{Z}$.

A recurrence for d_{k}

The rational numbers d_{k}, and hence the [conjectured] integers $r_{k}=2^{6 k} d_{k}$, may be computed as follows, avoiding any mention of the sequence $\left(c_{k}\right)$.

$$
d_{0}=1 \text { and, for all } k \geqslant 1, d_{k}=\frac{1}{8 k} \sum_{j=0}^{k-1} \alpha_{j, k} d_{j}
$$

Here the coefficients $\alpha_{j, k}$ are defined by

$$
\begin{aligned}
\alpha_{j, k}= & \left(-1+3 \cdot 2^{m-1}-2 \cdot 3^{m}\right)(\tau)_{m-1} /(m-1)! \\
& +\left(7-17 \cdot 2^{m}+17 \cdot 3^{m}\right)(\tau)_{m} / m! \\
& +\left(-13+38 \cdot 2^{m}-33 \cdot 3^{m}\right)(\tau)_{m+1} /(m+1)! \\
& +6\left(1-4 \cdot 2^{m}+3 \cdot 3^{m}\right)(\tau)_{m+2} /(m+2)!,
\end{aligned}
$$

where $m:=k-j$ and $\tau:=j+1 / 2$.

A recurrence for ρ_{n}

To prove the result on the previous slide, we use a recurrence satisfied by $\rho_{n}=a_{n} b_{n}$. Since $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are D-finite, so also is $\left(\rho_{n}\right)$, so such a recurrence must exist.
Using $\sigma_{n}:=n \rho_{n}$, the recurrence may be written as

$$
\begin{aligned}
& n(n-1)(2 n-3) \sigma_{n}=(2 n-1)\left(3 n^{2}-5 n+1\right) \sigma_{n-1} \\
& \quad-(2 n-3)\left(3 n^{2}-5 n+1\right) \sigma_{n-2}+(n-2)(n-3)(2 n-1) \sigma_{n-3}
\end{aligned}
$$

(for $n \geqslant 3$), with $\sigma_{0}=0, \sigma_{1}=G-1, \sigma_{2}=9 G / 2-3$.
The mysterious constants in the definition of $\alpha_{j, k}$ on the previous slide arise in a natural way from the polynomials in the recurrence for σ_{n}.

Confluent hypergeometric functions

Kummer's differential equation may be written as

$$
z w^{\prime \prime}+(b-z) w^{\prime}-a w=0,
$$

with a regular singular point at $z=0$ and an irregular singular point at $z=\infty$. It has two (usually) linearly independent solutions $M(a, b, z)$ and $U(a, b, z)$. Kummer (1837) considered

$$
\begin{equation*}
M(a, b, z):={ }_{1} F_{1}(a ; b ; z)=\sum_{k \geqslant 0} \frac{(a)_{k} z^{k}}{(b)_{k} k!}, \tag{1}
\end{equation*}
$$

which is undefined if b is zero or a negative integer. In the case $a \neq b=0$, we can use the solution

$$
z M(a+1,2, z)=\lim _{b \rightarrow 0} \frac{b}{a} M(a, b, z)
$$

A second solution

For a second solution to Kummer's differential equation, Tricomi (1954) introduced

$$
\begin{aligned}
U(a, b, z):= & \frac{\Gamma(1-b)}{\Gamma(a+1-b)} M(a, b, z) \\
& +\frac{\Gamma(b-1)}{\Gamma(a)} z^{1-b} M(a+1-b, 2-b, z)
\end{aligned}
$$

where the right side is undefined if $b \in \mathbb{Z}$, but the definition may be extended by continuity. To avoid this problem, we can use the integral representation (for $\Re(a)>0, \Re(z)>0$)

$$
U(a, b, z)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

We are interested in the case $(a, b, z)=(n, 0,1)$.

The connection between a_{n}, b_{n} and Kummer functions

Recall that $a_{n}=\left[z^{n}\right] f_{0}(z)$ and $b_{n}=\left[z^{n}\right] f_{1}(z)$.
We can prove
Theorem
For $n \geqslant 1$,

$$
a_{n}=e^{-1} M(n+1,2,1) \text { and } b_{n}=-\Gamma(n) U(n, 0,1) .
$$

Sketch of proof. For a_{n}, we show that a_{n} and $e^{-1} M(n+1,2,1)$ satisfy the same recurrence (a so-called "connection formula", due to Gauss) and the same initial conditions, so must be equal.
For b_{n}, we use an integral representation of U to obtain a generating function.

Application to computing the c_{k}

Slater (1960) and Temme (2013) give asymptotic expansions of the Kummer functions $M(n, b, z)$ and $U(n, b, z)$ for large n. We can use their results to obtain asymptotic expansions of a_{n} and b_{n}. However, it is possible to derive the asymptotic expansions of a_{n} and b_{n} independently, using the recurrence that both sequences satisfy.
The latter approach has the advantage of showing that the same constants c_{k} occur in both asymptotic expansions (apart from a change of sign).
Using these two different methods, we obtain two different formulas for the c_{k}.

Two formulas for the c_{k}

The direct method gives a recursive formula: $c_{0}=1$ and, for all $k \geqslant 1$,
$k c_{k}=\left[h^{k+3}\right] \sum_{j=0}^{k-1} c_{j} h^{j} \sum_{s \in\{ \pm 1\}}\left(1+s h^{2}\right)^{\frac{1-2 j}{4}} \exp \left(\frac{2}{h}\left(\left(1+s h^{2}\right)^{\frac{1}{2}}-1\right)\right)$.
The results of Slater and Temme lead to the formula that we mentioned earlier. It does not involve recursion, but does involve Bernoulli numbers:

$$
c_{m}=(-1)^{m} \sum_{j=0}^{m}\left[h^{m-j}\right] \exp (\mu(h)) \frac{(m-2 j+3 / 2)_{2 j}}{4 j j!},
$$

where $\mu(h)=h^{-1}-\left(e^{h}-1\right)^{-1}-\frac{1}{2}=-\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!} h^{2 k-1}$.

Conclusion

I hope that I have given you an interesting conjecture to occupy idle hours - but not, of course, during subsequent talks!

References

A. B. O. Daalhuis, Confluent hypergeometric functions, Ch. 13 in NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/13/, version 1.0.19, 22 June 2018.
O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Archiv d. Math. u. Phys. (3), 22 (1914), 329-340.
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
R. P. Stanley, Differentiably finite power series, European J.

Combinatorics 1 (1980), 175-188.
N. M. Temme, Remarks on Slater's asymptotic expansions of Kummer functions for large values of the a-parameter, Advances in Dynamical Systems and Applications. Also arXiv:1306.5328, 2013.
E. M. Wright, The coefficients of a certain power series, J. Lond. Math.

Soc. 7 (1932), 256-262.
E. M. Wright, On the coefficients of power series having exponential singularities (second paper), J. Lond. Math. Soc. 24 (1949), 304-309.

