
A Multi-level Blocking Distinct

Degree Factorization Algorithm ∗

Richard P. Brent
Australian National University

Canberra, Australia
Fq8@rpbrent.com

Paul Zimmermann
INRIA Lorraine/LORIA
Villers-lès-Nancy, France

Paul.Zimmermann@loria.fr

12 July 2007

∗Copyright c©2007, R. P. Brent and P. Zimmermann.

Fq8t

Introduction

The problem of factoring a univariate
polynomial P (x) over a finite field F often
arises in computational algebra. An important
case is when F has small characteristic and
P (x) has high degree but is sparse (has only a
small number of nonzero terms).

Since I only have 20 minutes, I will restrict
attention to the case that F = GF(2) and P (x)
is a trinomial

P (x) = xr + xs + 1, r > s > 0,

although the ideas apply more generally.

The aim is to give an algorithm with good
amortized complexity, that is, one that works
well on average where, since we are restricting
attention to trinomials, we average over all
trinomials of fixed degree r.

2

Distinct degree factorization

I will only consider distinct degree factorization.
That is, if P (x) has several factors of the same
degree d, the algorithm will produce the
product of these factors. The
Cantor-Zassenhaus algorithm can be used to
split this product into distinct factors. This is
usually cheap because the product usually has
either small degree or consists of just one factor.

Factor of smallest degree

To simplify the complexity analysis and speed
up the algorithm in the common application of
searching for irreducible polynomials, I only
consider the time required to find one nontrivial
factor (it will be a factor of smallest degree) or
output “irreducible”.

Certificates of reducibility

A nontrivial factor (preferably of smallest
degree) gives a “reducibility certificate” that
can quickly be checked.

3

Factorization over GF(2)

It is well-known that x2d

+ x is the product of
all irreducible polynomials of degree dividing d.
For example,

x23

+ x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1) .

Thus, a simple algorithm to find a factor of
smallest degree of P (x) is to compute

GCD(x2d

+ x, P (x)) for d = 1, 2, . . .. The first
time that the GCD is nontrivial, it contains a
factor of minimal degree d. If the GCD has
degree > d, it must be a product of factors of
degree d.

If no factor has been found for d ≤ r/2, where
r = deg(P (x)), then P (x) must be irreducible.

4



Application to trinomials

Some simplifications are possible when
P (x) = xr + xs + 1 is a trinomial.

• We can skip the case d = 1 because a
trinomial can not have a factor of
degree 1.

• Since xrP (1/x) = xr + xr−s + 1, we only
need consider s ≤ r/2.

• By applying Swan’s theorem, we can often
show that the trinomial under
consideration has an odd number of
factors; in this case we only need check
d ≤ r/3.

Note that x2d

should not be computed
explicitly; instead compute x2d

mod P (x) by
repeated squaring. The complexity of squaring
modulo a trinomial of degree r is only O(r)
bit-operations. Thus, most of the time is spent
performing GCD computations.

5

Complexity of squaring

As well as performing GCD computations we
need to perform multiplications of polynomials
in GF(2)/P (x), and the special case of squaring
a polynomial, so let’s first consider the
bit-complexity of these operations.

Squaring means squaring of polynomials of
degree < r and reduction mod P (x). Squaring
over GF(2) can be performed in time
S(r) = Θ(r) ≪ M(r).

Where possible we use the memory-efficient
squaring algorithm of Brent, Larvala and
Zimmermann (2003), which (at least in our
implementation) is about 2.2 times faster than
the obvious squaring algorithm.

6

Complexity of multiplication

Multiplication of polynomials of degree r over
GF(2) can be performed in time
M(r) = O(r log r log log r). We have
implemented an algorithm of Schönhage (1977)
that achieves this bound. (Note: the algorithm
uses a base-3 FFT and is not the better-known
Schönhage-Strassen algorithm.)

We have also implemented classical, Karatsuba
and Toom-Cook algorithms that have
M(r) = O(rα), 1 < α ≤ 2, since these
algorithms are easier to implement and are
faster for small r. The Toom-Cook algorithms
TC3 and TC4 are based on recent ideas of
Bodrato (2007).

For brevity we assume that r is large and
Schönhage’s algorithm is used. On a 64-bit
machine the crossover versus TC4 occurs near
r = 108000. (The crossover versus the O(r2)
algorithm is much smaller.)

In the complexity estimates we assume that
M(r) is a sufficiently smooth and well-behaved
function.

7

Complexity of GCD

For GCDs we use a sub-quadratic algorithm
that runs in time G(r) = O(M(r) log r).

More precisely,

G(2r) = 2G(r) + O(M(r)) ,

so

M(r) = O(rα) ⇒ G(r) = O(M(r)) ,

but

M(r) = O(r log r log log r) ⇒ G(r) = Θ(M(r) log r) .

In practice, for r ≈ 2.4 × 107 and our
implementation on a 2.2 Ghz Opteron,

S(r) ≈ 0.005 seconds,

M(r) ≈ 2 seconds,

G(r) ≈ 80 seconds,

M(r)/S(r) ≈ 400 ,

G(r)/M(r) ≈ 40 .

8



Avoiding GCD computations

In the context of integer factorization,
Pollard (1975) suggested a blocking strategy to
avoid most GCD computations and thus reduce
the amortized cost; von zur Gathen and
Shoup (1992) applied the same idea to
polynomial factorization.

The idea of blocking is to choose a parameter
ℓ > 0 and, instead of computing

GCD(x2d

+ x, P (x)) for d ∈ [d′, d′ + ℓ) ,

compute

GCD(pℓ(x
2d′

, x), P (x)) ,

where the interval polynomial pℓ(X, x) is
defined by

pℓ(X, x) =
ℓ−1∏

j=0

(
X2j

+ x
)

.

In this way we replace ℓ GCDs by one GCD and
ℓ − 1 multiplications mod P (x).

9

Backtracking

The drawback of blocking is that we may have
to backtrack if P (x) has more than one factor
with degrees in [d′, d′ + ℓ), so ℓ should not be
too large. The optimal strategy depends on the
expected size distribution of factors and the
ratio of times for GCDs and multiplications.

10

New idea - multi-level blocking

Our new idea is to use a finer level of blocking
to replace most multiplications by squarings,
which speeds up the computation in
GF(2)[x]/P (x) of the interval polynomials

pm(x2d

, x), where

pm(X, x) =
m−1∏

j=0

(
X2j

+ x
)

=
m∑

j=0

xm−jsj,m(X) ,

sj,m(X) =
∑

0≤k<2m, w(k)=j

Xk ,

and w(k) denotes the Hamming weight of k.

Note that sj,m(X2) = sj,m(X)2 in

GF(2)[x]/P (x). Thus, pm(x2d

, x) can be
computed with cost m2S(r) if we already know

sj,m(x2d−m

) for 0 < j ≤ m.

In this way we replace m multiplications and m
squarings by one multiplication and m2

squarings. Choosing m ≈
√

M(r)/S(r)
(about 20 if M(r)/S(r) ≈ 400), the speedup
over single-level blocking is about m/2 ≈ 10.

11

Fast initialization

The polynomials

sj,m(x) =
∑

0≤k<2m, w(k)=j

xk

satisfy a “Pascal triangle” recurrence relation

sj,m(x) = sj,m−1(x
2) + xsj−1,m−1(x

2)

with boundary conditions

sj,m(x) = 0 if j > m ,

s0,m(x) = 1 .

Thus, it is easy to compute sj,m(x) mod P (x) in
time O(m2r) even though the definition involves
O(2m) terms.

12



Recapitulation

To summarize, we use two levels of blocking:

• The outer level replaces most GCDs by
multiplications.

• The inner level replaces most
multiplications by squarings.

• The blocking parameter
m ≈

√
M(r)/S(r) is used for the inner

level of blocking.

• A different parameter ℓ = km is used for
the outer level of blocking.

13

Example

Figure 1: ℓ = 15, m = 5

In the example, S = 1/25, M = 1, G = 10

No blocking: cost 15G + 15S = 150.6

1-level blocking: G + 14M + 15S = 24.6

2-level blocking: G + 2M + 75S = 15.0

More realistically, suppose ℓ = 80, m = 20,
S = 1/400, M = 1, G = 40

No blocking: cost 80G + 80S = 3200.2

1-level blocking: G + 79M + 80S = 119.2

2-level blocking: G + 3M + 1600S = 47.0

14

Sieving

A small factor is one with degree d < 1
2 log2 r,

so 2d <
√

r. It would be inefficient to find small
factors in the same way as large factors.
Instead, let d′ = 2d − 1, r′ = r mod d′,
s′ = s mod d′. Then

P (x) = xr +xs +1 = xr′ +xs′ +1 mod (xd′ −1) ,

so we only need compute

GCD(xr′ + xs′ + 1, xd′ − 1) .

The cost of finding small factors is negligible
(both theoretically and in practice), so will be
ignored.

In the definition, the fraction 1
2 can be replaced

by 1 − ε.

15

Distribution of degrees of factors

In order to predict the expected behaviour of
our algorithm, we need to know the expected
distribution of degrees of irreducible factors.
Our complexity estimates here are based on the
assumption that trinomials of degree r behave
like the set of all polynomials of the same
degree, up to a constant factor:

Assumption 1 Over all trinomials xr + xs + 1
of degree r over GF(2), the probability πd that a

trinomial has no nontrivial factor of degree ≤ d
is at most c/d, where c is a constant and

1 < d ≤ r.

This assumption is plausible and in agreement
with experiments, though not proven. Under
the assumption, we use an amortized model to
obtain the total complexity over all trinomials
of degree r.

From Assumption 1, the probability that a
trinomial does not have a small factor is
O(1/ log r).

16



Simpler approximation

Although not strictly correct, it is a good
approximation to say that the probability
pd = πd−1 − πd that the smallest nontrivial
factor of a randomly chosen trinomial has
degree d ≥ 2 is of order 1/d2, provided d is not
too large.

I will use this approximation because it
simplifies the amortized complexity analysis,
but the same results can be obtained from
Assumption 1 using summation by parts.

17

Table 1: Statistics for r = 6972593

d dπd d2pd

2 1.33 1.33
3 1.43 1.71
4 1.52 1.52
5 1.54 1.84
6 1.60 1.47
7 1.60 1.85
8 1.67 1.29
9 1.64 2.10
10 1.65 1.73
100 1.77
1000 1.76
10000 1.88
100000 1.62
226887 2.08
r − 1 2.00

18

Outer level blocking strategy

The blocksize in the outer level of blocking is
ℓ = km. We take an increasing sequence

k = k0j for j = 1, 2, 3, . . . ,

where k0m is of order log r (since small factors
will have been found by sieving). This leads to
a quadratic polynomial for the interval bounds.

There is nothing magic about a quadratic
polynomial, but it is simple to implement and
experiments show that it is reasonably close to
optimal.

Using the data that we have obtained on the
distribution of degrees of smallest factors of
trinomials, and assuming that this distribution
is insensitive to the degree r, we could obtain a
strategy that is close to optimal. However, the
choice k0j with suitable k0 is simple and not too
far from optimal. The number of GCD and
sqr/mul operations is usually within a factor of
1.5 of the minimum possible.

19

Expected cost of sqr/mul

Recall that the inner level of blocking replaces
m multiplications by m2 squarings and one
multiplication, where m ≈

√
M(r)/S(r) makes

the cost of squarings about equal to the cost of
multiplications.

For a smallest factor of degree d, the expected
number of squarings is m(d + O(

√
d)).

Averaging over all trinomials of degree r, the
expected number is

O


m

∑

d≤r/2

d + O(
√

d)

d2


 = O (m log r) .

Thus, the expected cost of sqr/mul operations
per trinomial is

O
(
S(r) log r

√
M(r)/S(r)

)

= O
(
log r

√
M(r)S(r)

)

= O
(
r(log r)3/2(log log r)1/2

)
.

20



Expected cost of GCDs

Suppose that P (x) has smallest factor of
degree d. The number of GCDs required to find
the factor, using our (quadratic polynomial)
blocking strategy, is O(

√
d). By Assumption 1,

the expected number of GCDs for a trinomial
with no small factor is

1 + O




∑

(lg r)/2<d≤r/2

√
d

d2


 = 1 + O

(
1

√
log r

)
.

Thus the expected cost of GCDs per trinomial is

O(G(r)/ log r) = O(M(r)) = O(r log r log log r) .

This is asymptotically ≪ expected cost of
sqr/mul operations

On the other hand, if M(r) = O(rα) with α > 1,
the expected cost of GCDs is O(rα/ log r)
≫ expected cost of sqr/mul O(r(1+α)/2 log r).

In practice, for r ≈ 2.4 × 107, α ≈ 1.2 and
GCDs take about 65% of the time versus 35%
for sqr/mul.

21

Comparison with classical algorithms

For simplicity I will use the Õ notation which
ignores log factors.

The “classical” algorithm, as implemented by
BLZ (2003) and others, takes an expected time
Õ(r2) per trinomial, or Õ(r3) to cover all
trinomials of degree r.

The new algorithm takes expected time Õ(r)
per trinomial, or Õ(r2) to cover all trinomials of
degree r.

In practice, the new algorithm is faster by a
factor of about 160 for r = 6972593, and by a
factor of about 560 for r = 24036583.

22

Primitive trinomials

We are particularly interested in trinomials
xr + xs + 1 where r is a Mersenne exponent,
i.e. 2r − 1 is prime, because any irreducible
trinomial of degree r must be primitive.

The largest published primitive trinomial is

x6972593 + x3037958 + 1 (Bibury)

found by Brent, Larvala and Zimmermann in
2002 using a classical algorithm.

In March–April 2007, we tested our new
program by verifying the published results on
primitive trinomials for Mersenne exponents
r ≤ 6972593, and in the process produced
certificates of reducibility (lists of smallest
factors for each reducible trinomial). These are
available from my website http://wwwmaths.

anu.edu.au/~brent/trinom.html .

23

New world record

Since 25 April 2007 we have been running our
new algorithm to search for primitive trinomials
of degree r = 24036583. This is the next
Mersenne exponent, apart from two that are
trivial to exclude by Swan’s theorem. It would
take about 41 times as long as for r = 6972593
by the classical algorithm, but our new program
is 560 times faster than the classical algorithm.
Each trinomial takes on average about 16
seconds on a 2.2 Ghz Opteron.

We have now checked more than 75 percent of
the trinomials of degree 24036583, using about
24 Opteron and Core 2 processors located at
ANU and INRIA (France).

We have found two new primitive trinomials of
(equal) record degree:

x24036583 + x8412642 + 1 (Eugénie)

x24036583 + x8785528 + 1 (Judy-anne)

24



Independent verification

Allan Steel kindly verified irreducibility of
Judy-anne (which we found on 27 June) using
Magma.

The verification took 247348 secs (2.86 days) on
an 2.4GHz Intel Core 2 processor.

Postscript (9 July)

Allan Steel has also verified irreducibility of
Eugénie (which we found on 4 July).

25

Conclusion

The new double-blocking strategy works and,
combined with fast multiplication and GCD
algorithms, has allowed us to find new primitive
trinomials of record degree.

The same ideas work over finite fields GF(p) for
small prime p > 2, and for factoring sparse
polynomials P (x) that are not necessarily
trinomials: all we need is that the time for p-th
powers (mod P (x)) is much less than the time
for multiplication (mod P (x)).

26

References

[1] M. Bodrato, Towards Optimal Toom-Cook
Multiplication for Univariate and
Multivariate Polynomials in Characteristic
2 and 0, Lecture Notes in Computer

Science 4547, 119–136. Springer, 2007.
http://bodrato.it/papers/#WAIFI2007

[2] W. Bosma, and J. Cannon, Handbook of

Magma Functions, School of Mathematics
and Statistics, University of Sydney, 1995.
http://magma.maths.usyd.edu.au/

[3] R. P. Brent, S. Larvala and
P. Zimmermann, A fast algorithm for
testing reducibility of trinomials mod 2 and
some new primitive trinomials of degree
3021377, Math. Comp. 72 (2003),
1443–1452. http://wwwmaths.anu.edu.
au/~brent/pub/pub199.html

27

[4] R. P. Brent, S. Larvala and
P. Zimmermann, A primitive trinomial of
degree 6972593, Math. Comp. 74 (2005),
1001–1002, http://wwwmaths.anu.edu.
au/~brent/pub/pub224.html

[5] D. G. Cantor and H. Zassenhaus, A new
algorithm for factoring polynomials over
finite fields, Math. Comp. 36 (1981),
587–592.

[6] J. von zur Gathen and J. Gerhard,
Polynomial factorization over F2, Math.

Comp. 71 (2002), 1677–1698.

[7] J. von zur Gathen and V. Shoup,
Computing Frobenius maps and factoring
polynomials, Computational Complexity 2

(1992), 187–224.
http://www.shoup.net/papers/

28



[8] T. Kumada, H. Leeb, Y. Kurita and M.
Matsumoto, New primitive t-nomials
(t = 3, 5) over GF(2) whose degree is a
Mersenne exponent, Math. Comp. 69

(2000), 811–814. Corrigenda: ibid 71

(2002), 1337–1338.

[9] A.-E. Pellet, Sur la décomposition d’une
fonction entière en facteurs irréductibles
suivant un module premier p, Comptes

Rendus de l’Académie des Sciences Paris

86 (1878), 1071–1072.

[10] J. M. Pollard. A Monte Carlo method for
factorization, BIT 15 (1975), 331–334,

[11] A. Schönhage, Schnelle Multiplikation von
Polynomen über Körpern der
Charakteristik 2, Acta Inf. 7 (1977),
395–398.

[12] V. Shoup, NTL: A library for doing number
theory, http:www.shoup.net/ntl/

29

[13] L. Stickelberger, Über eine neue
Eigenschaft der Diskriminanten
algebraischer Zahlkörper, Verhandlungen

des ersten Internationalen Mathematiker-

Kongresses, Zürich, 1897, 182–193.

[14] R. G. Swan, Factorization of polynomials
over finite fields, Pacific J. Math. 12

(1962), 1099–1106.

[15] G. Woltman et al, GIMPS, The Great
Internet Mersenne Prime Search,
http://www.mersenne.org/

30


