
Some Iterative Algorithms in

Experimental Mathematics

Matthew P. Skerritt
BCompSci BMath(Hons) MPhil

October 2020

A document submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

at
University of Newcastle, Australia

This research was supported by an Australian Government Research Training Program
(RTP) Scholarship.

Dedicated to the late Jon Borwein, who startedme down this path
originally yet never got to see it come to fruition.

Statement of Originality

I hereby certify that the work embodied in the thesis is my own work, conducted under
normal supervision. The thesis contains no material which has been accepted, or is being
examined, for the award of any other degree or diploma in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has beenmade. I give
consent to the final version of my thesis being made available worldwide when deposited
in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968
and any approved embargo.

Matthew P. Skerritt

iii

Acknowledgment of Authorship

I hereby certify that the work embodied in this thesis contains published papers of which
I am a joint author. I have included as part of the thesis a written declaration endorsed
in writing by my supervisor, attesting to my contribution to the joint publications.

Part I on page 6 in its entirety extends the work reported in the paper “Extending the
PSLQ Algorithm to Algebraic Integer Relations” by Skerritt and Vrbik [67], of which I
was the majority contributor. The extended results in this thesis are entirely my own
work.

Part II on page 99 consists of two published papers. Chapter 4 on page 99 is based on
the paper “Dynamics of the Douglas Rachford Method for Ellipses and p-Spheres” by
Borwein, Lindstrom, Sims, Schneider, and Skerritt [28]. Chapter 5 on page 121 is based
on the paper “Computing intersections of implicitly specified plane curves” by Lindstrom,
Sims, and Skerritt [53].

In each of the papers all of the authors contributed equally to the underlying research and
final preparation, through extensive group discussions. Each author contributed to all
aspects of the research while making their major contribution in their principal areas of
expertise, mine being in computational algorithmics and computer implementation. The
publications have been appropriately edited and some newmaterial has been included.

Matthew P. Skerritt

By signing below I confirm that Matthew P. Skerritt contributed as outlined above to the
papers in question.

Principal Supervisor
Michael Coons

iv

Abstract

We examine certain search problems and the methodology of experimental mathematics
as a paradigm for their investigation. The problems in question fall on either side of a
natural divide between those with a discrete search space, and those with a continuous
one. In the first instance we consider finding integer relations, and in the second, finding
an intersection of non-convex constraints (expressed as subsets of a Hilbert space). In
both cases we examine, experimentally, an iterative algorithm or algorithms to search
for solutions to the problem. In addition, we modify or extend the algorithms in some
way and compare the extension with the original algorithm.

We examine pslq and lll algorithms for solving real and complex integer relation prob-
lems. We also extend the notion of integer relations further to include relations consisting
of algebraic integers, although we restrict our attention to quadratic integers. We modify
the pslq algorithm to compute certain quadratic integer cases that correspond to norm
Euclidean quadratic fields and examine the use of pslq, lll, and the modified pslq algo-
rithms for finding quadratic integer relations in general.

In order to gain further insights into the behaviour of the Douglas–Rachford algorithm
in the case of non-convex constraint sets we consider two generalisations of a line and
sphere (circle) in 2 dimensional Euclidean space, namely: that of a line together with an
ellipse and that of a line together with a 𝑝-sphere.

We further apply the Douglas–Rachford algorithm to the problem of computing a point
in the intersection of two analytic plane curves in ℝ2 which we often identify with the
complex plane ℂ. The graphs of these curves act as the constraint sets for the (non-
convex) feasibility problem. We also extend the Douglas–Rachford algorithm by replac-
ing Euclidean reflection with Schwarzian reflection, and compare original and modified
algorithms.

v

Contents

Statement of Originality iii

Acknowledgment of Authorship iv

Abstract v

1 Introduction 1

1.1 Integer Relations . 1
1.2 Douglas-Rachford . 3

I Integer Relations 5

2 Classical Integer Relations 6

2.1 Preliminaries . 6
2.2 PSLQ . 7
2.3 LLL . 10

2.3.1 Reduced Lattice Bases . 11
2.3.2 Integer Relations with LLL . 12
2.3.3 Complex Integer Relations with LLL 14

2.4 Numeric Considerations . 16
2.4.1 Minimum Theoretical Required Precision 17
2.4.2 Candidate Integer Relations . 17
2.4.3 Identifying Candidate Integer Relations 19

2.5 Experimental Methodology . 24
2.5.1 Test Set Generation . 25
2.5.2 Testing Procedure . 27

2.6 Experimental Results . 30
2.6.1 Real Test Sets . 31
2.6.2 Complex Test Sets . 37

3 Algebraic Integer Relations 45

3.1 Preliminaries . 45
3.1.1 Algebraic Number Theory . 45
3.1.2 The Specific Case of Quadratic Fields 49

vi

Contents

3.2 Generalising Integer Relations to Include Algebraic Integers 51
3.3 Computing Quadratic Integer Relations 51

3.3.1 Reduction . 52
3.3.2 LLL and Complex Quadratic Relations 56
3.3.3 Algebraic PSLQ . 61

3.4 Experimental Methodology . 66
3.4.1 Test Set Generation . 67
3.4.2 Testing Procedure . 68

3.5 Experimental Results . 70
3.5.1 Classical Integer Relations . 71
3.5.2 Real Quadratic Extension Fields 78
3.5.3 Complex Quadratic Extension Fields 82

II Douglas–Rachford 98

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres 99

4.1 Preliminaries . 99
4.1.1 Notation . 102
4.1.2 Computation of Projections . 102

4.2 The Case of an Ellipse and a Line . 103
4.2.1 Studying Convergence: Numerical Motivations 105
4.2.2 Visualisation Through Parallelisation 106
4.2.3 Correctness and Reproducibility 108

4.3 Line and p-sphere . 110
4.4 A Theoretical Interlude: Local Convergence to a Feasible Point 111
4.5 Important Lessons About Global Behaviour 116

4.5.1 The Feasible Case . 116
4.5.2 Infeasible Cases . 118

5 Computing Intersections of Implicitly Specified Plane Curves 121

5.1 Preliminaries . 121
5.2 Local Convergence of the Modified Douglas-Rachford Algorithm 123
5.3 Alternative Approaches to the Problem 125
5.4 Experimental Results . 126

5.4.1 Two Circles . 126
5.4.2 Ellipse and Line . 128
5.4.3 Finding a Zero of a Function . 130

vii

Contents

III Summary 134

6 Final Remarks and Further Work 135

6.1 Integer Relations . 135
6.2 Douglas-Rachford . 137

IV Appendices 139

A Numeric Integer Relation Algorithm Implementations 140

A.1 (A)PSLQ . 140
A.2 LLL . 143

B Complete Collection of Numeric Result Graphs 145

Bibliography 226

viii

1 Introduction

We present herein a thesis focussing on certain search algorithms and the methodology
of experimental mathematics as a paradigm for their investigation. There is a natural
divide between algorithms for which the search space is discrete and those for which it is
continuous; each requiring very distinct methods of analysis. In the first case we consider
the problem of finding integer relations, while in the second we consider the problem of
finding an intersection of non-convex constraints (expressed as subsets of a Hilbert space)
In both cases we examine, experimentally, an iterative algorithm or algorithms to search
for solutions to the problem. In addition, we modify or extend the algorithms in some
way and compare against the base algorithm. The algorithms perform surprisingly well
in some cases for which we have no right to expect them to.

We work in the tradition of the late Jonathan M. Borwein who—before his death in
2016—was a supervisor for this work. Prof. Borwein long championed computed as-
sisted mathematical discovery incorporating both calculation and visualisation, under
the moniker of experimental mathematics.

Had the ancient Greeks (and other early civilizations who started the math-
ematics bandwagon) had access to computers, it is likely that the word “ex-
perimental” in the phrase “experimental mathematics” would be superfluous;
the kinds of activities or processes that make a particular mathematical ac-
tivity “experimental” would be viewed simply as mathematics. We say this
with some confidence because if you remove from our initial definition [of
experimental mathematics] the requirement that a computer be used, what
would be left accurately describes what most, if not all, professional mathe-
maticians spend much of their time doing, and always have done!

— Borwein and Devlin [21]

1.1 Integer Relations

The extended Euclidean algorithm is perhaps the simplest example of an integer relation
algorithm. For integers 𝑎 and 𝑏 the algorithm computes integers𝑚 and 𝑛with the property
that 𝑎𝑚 + 𝑏𝑛 = gcd(𝑎, 𝑏) or equivalently 𝑎𝑚 + 𝑏𝑛 − gcd(𝑎, 𝑏) = 0. Thus the Euclidean
algorithm relates 𝑎, 𝑏, and gcd(𝑎, 𝑏) by integers.

1

1 Introduction

A perhaps less well known variant of the Euclidean algorithm can be performed on real
numbers and is found in Proposition 3 of Book X of Euclid’s Elements (see Heath [50] for
an English translation). Given 𝑥, 𝑦 , ∈ ℝ the algorithm computes 𝑤 ∈ ℝ such that 𝑥 = 𝑚𝑤
and 𝑦 = 𝑛𝑤 for some 𝑚, 𝑛 ∈ ℤ, provided that 𝑥/𝑦 ∈ ℚ (i.e., 𝑥 and 𝑦 are commensurate).
If we let 𝑠 = 𝑛 and 𝑡 = −𝑚 then we have found the relation 𝑥𝑠 + 𝑦𝑡 = 0. If 𝑥 and 𝑦
are not commensurate then the Euclidean algorithm produces an infinite sequence of
increasingly good rational approximations to 𝑥/𝑦.

A general case for more than two real numbers is desirable. Euler, Jacobi, Poincaré,
Minkowski, Perron, Brun, Mahler, and others have all been involved in generalisation
efforts. These historic efforts are summarised in Ferguson and Forcade [43]. None of the
resulting iterative algorithms have been proved towork formore than three real numbers,
and numerous counterexamples have been found. Furthermore none of the algorithms
adequately generalised the increasing approximation property when no relation exists.

The first generalisation satisfying both properties was published by Ferguson and For-
cade [43] in 1979. Bergman [20] provided extensive, although unpublished, notes. The
resulting effort eventually—after Ferguson and Forcade [44] in 1982, and Ferguson [38,
39] in 1986 and 1987—led to the psos algorithm by Ferguson [40] in 1988 and ultimately
to the pslq algorithm by Ferguson and Bailey [41] in 1992.

Applications of integer relations are many. One may determine that a number 𝛼 is alge-
braic if one can find an integer relation for (𝛼0, 𝛼1, … , 𝛼𝑛) for some 𝑛 ∈ ℕ. Bailey and
Ferguson [10] used this technique with the psos algorithm to show that 𝛾, log 𝛾, log 𝜋, 𝜁 (3)
and other constants do not satisfy a simple low-degree polynomial. The discovery of the
Bailey-Borwein-Plouffe (bbp) formula [8] for 𝜋 came as a result of “inspired guessing and
extensive searching using the pslq integer relation algorithm”. A procedure by Bailey and
Plouffe [11] uses pslq to search for (or “recognise”) potential symbolic representations of
a floating point number; it was able to recognise ∫∞0 𝑡7/4e−𝑡 d𝑡 = 21𝜋√2/(16 Γ(1/4)) for
example. Meichsner’s Masters thesis [58] is dedicated to similarly recognising numerical
constants using integer relation algorithms, and his PhD thesis [59] uses an extension
of pslq to compute bivariate 𝑛th integer Chebyshev polynomials. Chamberland [31] uses
pslq to find relations between functions. Borwein and Lisoněk [22] give a survey of other
applications.

A further extension of the integer relation problem is from real numbers and integers to
complex numbers and Gaussian integers respectively. This extension was shown to be
handled by the pslq algorithm in the 1999 paper by Ferguson, Bailey and Arno [42] in
which they analysed the algorithm and proved bounds on the number of iterations re-
quired to find a relation. The complex case is rarely mentioned in the literature, although
we note that it is handled by Maple’s implementation of the algorithm.

2

1 Introduction

In addition to pslq, both the lll algorithm (introduced by Lenstra, Lenstra Jr, and Lovász
[52] in 1982) and the hjls algorithm (introduced by Hastad, Just, Lagarias, and Schnorr
[48] in 1989 with an erratum in 2014 [49]) can compute integer relations.

The lll algorithm is not an integer relation finding algorithm in and of itself, although
it may be leveraged as such. Instead its purpose is to find a reduced basis for a given
lattice. We look at this algorithm and its use in finding integer relations in Section 2.3 on
page 10.

The hjls algorithm on the other hand is specifically an integer relation finding algorithm.
It is, however, numerically unstable as noted by Borwein [29]. Borwein further notes that
when modified to become stable hjls is just pslq with a choice of parameter 𝛾 = √2 (we
discuss these parameters in Section 2.2 on page 7). So we simply mention hjls in passing
here, and do not consider it further.

We examine pslq and lll for the real and complex cases described above, which we call
the classical cases. We then extend the notion of integer relations further to include re-
lations consisting of algebraic integers, although we restrict our attention to quadratic
integers for this thesis. We modify the pslq algorithm to compute certain quadratic inte-
ger cases that correspond to norm Euclidean quadratic fields and examine the use of pslq,
lll, and the modified pslq algorithms for finding quadratic integer relations in general.
The results presented are an extension of those reported in Skerritt and Vrbik [67].

1.2 Douglas-Rachford

One of the most significant applications of metric fixed point theory, and the theory
of nonexpansive mappings in particular, has been establishing convergence of various
projection algorithms for solving the convex feasibility problem:

Find a point satisfying two (or more) convex constraints; that is, in the intersec-
tion of two (or more) closed convex subsets of a Hilbert space.

Of special interest to us is the algorithm first proposed by Douglas and Rachford [36] in
1956, which we call the Douglas–Rachford algorithm. Convergence was shown by Lions
and Mercier [54] in 1979. The efficacy of this algorithm is well known (see Bauschke,
Combettes, and Luke [14, 15, 16] and Bauschke and Borwein [12]).

It has been observed (and exploited) that, despite a lack of theoretical underpinning, the
algorithm continues to work well in many situations where at least one of the sets is no
longer convex. Elser, Rankenburg, and Thibault [37] in 2007 applied the algorithm exper-
imentally to several problems—including Graph Colouring, 3-SAT, Sudoku, and Protein
Folding—and found the algorithm to be surprisingly effective (and sometimes even supe-
rior) to dedicated algorithms for each problem. Gravel and Elser [46] in 2008 presented a

3

1 Introduction

construction to reduce a problem with more than two constraints to an equivalent prob-
lem with only two constraints. This reduction technique, which they called “divide and
concur” and which grew out of work by Pierra [62, 63], was applied to 3-SAT and sphere
packing problems and was similarly found to be effective (and occasionally superior to
the dedicated algorithm). A further treatise can be found in Aragón Artacho, Borwein,
and Tam [4].

Borwein and Sims [25] gave a first step toward a theoretical basis for the non-convex
case in 2011. They presented a prototypical non-convex two-set scenario in which one of
the sets is a line and the other (non-convex) set is the Euclidean sphere, and proved local
convergence of the algorithm. This result for such a seemingly simple case proved sur-
prisingly difficult. Global convergence was eventually proved by Benoist [19] in 2015.

Investigation into the algorithm has continued. See, for example, Aragón Artacho, Bor-
wein, and Tam [3], Bauschke and Moursi [17], Bauschke et al. [18], and Borwein and Tam
[23, 26].

In order to gain further insights into the behaviour of the Douglas–Rachford algorithm
in the case of non-convex constraint sets we consider, in Chapter 4, two generalisations
of a line and sphere (circle) in 2 dimensional Euclidean space: that of a line together
with an ellipse and that of a line together with a 𝑝-sphere. As we shall see, even such
simple generalisations from a circle yield very substantial increases in the complexity of
the algorithm’s behaviour.

In Chapter 5 we apply the Douglas–Rachford algorithm to the problem of computing a
point in the intersection of two analytic plane curves in ℝ2 which we often identify with
the complex plane ℂ. The graphs of these curves act as the constraint sets for the (non-
convex) feasibility problem. We also extend the Douglas–Rachford algorithm by replac-
ing Euclidean reflection with Schwarzian reflection, and compare original and modified
algorithms.

The results on the Douglas–Rachford algorithm presented in this thesis appear in two
published papers to which the author contributed. Chapter 4 presents the results from
Borwein, Lindstrom, Sims, Schneider, and Skerritt [28] (2018) and Chapter 5 presents the
results from Lindstrom, Sims, and Skerritt [53] (2017).

4

Part I

Integer Relations

5

2 Classical Integer Relations

2.1 Preliminaries

The classical integer relation cases are covered by the following definition.

Definition 2.1.1 (Classical Integer Relation). Let 𝔽 ∈ {ℝ, ℂ}, 𝑛 ∈ ℕ s.t. 𝑛 > 1 and

𝒪 = {
ℤ if 𝔽 = ℝ

ℤ[√−1] if 𝔽 = ℂ

For 𝑥 ∈ 𝔽𝑛 an integer relation of 𝑥 is a vector 𝑎 ∈ 𝒪𝑛, 𝑎 ≠ 0, such that 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 = 0.

If 𝑥𝑖 = 0 for any 1 ≤ 𝑖 ≤ 𝑛 then for any 𝑘 ∈ 𝒪 the vector 𝑎 = (0, … , 0, 𝑘, 0, … , 0) (where 𝑘 is
in the 𝑖th position of 𝑎) is a trivial integer relation for 𝑥. As such, without loss of generality,
we may assume that 𝑥𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛 when considering integer relations.

We will see later on (in Chapter 3) that the ring 𝒪 may be generalised to more general
sets of integers (in a number theoretic sense), but for now we consider only the cases
as described above. With this in mind, in order to avoid confusion when speaking of
integers, we shall refer to the set ℤ specifically as the rational integers. The reason for
this follows from Definitions 3.1.6 and 3.1.7 on page 47, however we introduce the term
here in the interests of consistency.

Definition 2.1.2 (Rational integer). The set ℤ is referred to as the set of rational integers,
and any element of the set as a rational integer.

Observe that for the linear combination property of an integer relation to be well defined,
it must be the case that 𝒪 ⊂ 𝔽 (which is clearly the case for the cases encompassed by
Definition 2.1.1). We consider, then, the notion of a nearest integer to a given element of
the field. This is important for the pslq algorithm.

Definition 2.1.3 (Nearest Integer, ⌈ ⋅ ⌋, ⌈ ⋅ ⌋𝒪). Let 𝑥 ∈ 𝔽. An integer 𝑎 ∈ 𝒪 is a nearest integer
to 𝑥 if | 𝑥 −𝑎 | is minimal. We consider a function ⌈ ⋅ ⌋∶𝔽 → 𝒪 to be a nearest integer function
if it maps each 𝑥 ∈ 𝔽 to one of its nearest integers. When the ring of integers needs to be
specified, we will denote a nearest integer function by ⌈ ⋅ ⌋𝒪.

6

2 Classical Integer Relations

The lll algorithm relies heavily on the notion of a lattice, defined as follows.

Definition 2.1.4 (Lattice, Lattice Basis). Let 𝐵 = {𝑏1, … , 𝑏𝑛} ⊂ 𝔽𝑛 be a linearly independent
set of vectors. The set 𝐿 = {𝜆1𝑏1 + ⋯ + 𝜆𝑛𝑏𝑛 | 𝜆𝑖 ∈ 𝒪} is the lattice spanned by B. We call the
set 𝐵 the basis of the lattice 𝐿. When the ring of integers needs to be specified we will refer
to the lattice as a 𝒪-lattice, or otherwise prepend the term “lattice” with a description of the
integers in question (e.g., a Gaussian integer lattice and a ℤ[√−1]-lattice are one and the
same).

In general, there may be many bases for any given lattice. Any linearly independent
set of vectors which produce the same lattice is considered a basis for that lattice. We
sometimes represent a lattice by a matrix consisting of basis vectors as follows:

Definition 2.1.5 (Matrix representation of a lattice). Let 𝐿 be a lattice, and 𝐵 = {𝑏1, … , 𝑏𝑛}
be a basis for that lattice. The matrix representation of 𝐿 using basis 𝐵 is the matrix whose
row vectors are the basis vectors:

⎡
⎢
⎢
⎣

𝑏1
⋮
𝑏𝑛

⎤
⎥
⎥
⎦

Be aware that much (perhaps even most) of the literature represents a lattice using col-
umn vectors instead of row vectors. We have instead used row vectors because that is
the convention thatMaple’s lll implementation uses, and so in using it for this thesis we
ensure that the experimental results reported herein are consistent with the code used to
produce those results. To avoid confusionwewill avoidmatrix representations of lattices,
when it is practical to do so.

2.2 PSLQ

We provide a high level description of the pslq algorithm. We show the mathematical
details of the algorithm, but omit many technical considerations needed for a practical
and effective implementation. An alternative (but still high-level) introduction is given
by Straub [69].

Details more suitable for a practical implementation are presented in Appendix A on
page 140. For a more thorough treatment the interested reader should consult the liter-
ature; in particular: Bailey and Broadhurst [9], and Borwein [29] are good sources. Be
aware, however, that much of the literature presents only the real case of pslq, whereas
our treatment allows for the more general complex case. The modifications required for
the complex case are very minor and are easily applied to the real case; we point them
out where they occur, below.

7

2 Classical Integer Relations

The pslq algorithm has positive parameters 𝜏, 𝛾, and 𝜌 that must satisfy

1
𝜌
≥ |𝑥 − ⌈𝑥⌋ | ∀𝑥 ∈ 𝔽 (2.1)

1 < 𝜏 ≤ 𝜌 (2.2)
1
𝜏2

= 1
𝛾 2

+ 1
𝜌2

(2.3)

in order to establish runtime bounds on the algorithm [42].

For each 𝔽 there exists 𝜌 such that condition (2.1) is sharp. Using this value for 𝜌 gives
the most flexibility with the other parameters. From condition (2.3) we see that 𝜏 → 𝜌 as
𝛾 → ∞ and that for fixed 𝜌 there will be a greatest lower bound for 𝛾 such that 𝜏 > 1.

Definition 2.2.1 (𝛾1). Let 𝜌 be such that condition (2.1) is sharp. Then 𝛾1 is the positive value
of 𝛾 that satisfies 1 = 1/𝛾 2 + 1/𝜌2.

We use the value of 𝜌 such that condition (2.1) is sharp, and choose any 𝛾 > 𝛾1. So long
as 𝜌 > 1 (i.e., 1/𝜌 < 1) then all three conditions will be satisfied.

Note that when 𝔽 = ℝ and 𝒪 = ℤ then the above strategy gives 𝜌 = 2 and 𝛾1 = √4/3.
This value of 𝛾1 is precisely the lower bound on 𝛾 given in the literature.

Similarly when 𝔽 = ℂ and 𝒪 = ℤ[√−1] (i.e., Gaussian integers) then 𝜌 = √2 and 𝛾1 = √2.
This is precisely the bound on 𝛾 given in the literature for the complex case.

The pslq algorithm is presented in Algorithm 2.2.7 on page 10. In order to make sense of
it, we need the following definitions.

Definition 2.2.2 (Lower Trapezoidal). Let 𝐻 = (ℎ𝑖,𝑗) be an 𝑚×𝑛matrix. If ℎ𝑖,𝑗 = 0 whenever
𝑖 < 𝑗 then 𝐻 is lower trapezoidal.

Note that a lower trapezoidal square matrix is exactly a lower triangular matrix.

Definition 2.2.3 (𝐻𝑥). Let 𝑥 ∈ 𝔽𝑛. Then the 𝑛 × (𝑛 − 1) matrix 𝐻𝑥 = (ℎ𝑖,𝑗) is defined by

ℎ𝑖,𝑗 =
⎧⎪
⎨⎪
⎩

0 if 𝑖 < 𝑗

𝑠𝑖+1/𝑠𝑖 if 𝑖 = 𝑗

−𝑥𝑖𝑥𝑗/(𝑠𝑗𝑠𝑗+1) if 𝑖 > 𝑗

where 𝑠𝑖 =
√

𝑛
∑
𝑘=𝑖

𝑥𝑘𝑥𝑘

Note that the complex conjugates are needed for full generality to cope with the complex
case. Often the literature will present only the real case of pslq in which case 𝑥𝑘𝑥𝑘 =
𝑥2𝑘 and is reported as such. Similarly for the conjugates in Definition 2.2.5 on the next
page.

8

2 Classical Integer Relations

Definition 2.2.4 (Hermite Reduction, 𝐷𝐻). Let 𝐻 = (ℎ𝑖,𝑗) be a lower trapezoidal 𝑚×𝑛matrix
with ℎ𝑗,𝑗 ≠ 0 for all 𝑗. Then the 𝑚 × 𝑚 matrix 𝐷𝐻 = (𝑑𝑖,𝑗) where

𝑑𝑖,𝑗 =

⎧
⎪⎪

⎨
⎪⎪
⎩

0 if 𝑖 < 𝑗

1 if 𝑖 = 𝑗

⎡
⎢
⎢
⎢

−1
ℎ𝑗,𝑗

𝑖
∑

𝑘=𝑗+1
𝑑𝑖,𝑘ℎ𝑘,𝑗

⎥
⎥
⎥
⎦

if 𝑖 > 𝑗

is the reducing matrix of 𝐻. The matrix 𝐷𝐻 𝐻 is the Hermite reduction of 𝐻.

Observe that 𝐷𝐻 is a lower triangular matrix containing invertible integers on its diago-
nal. It is therefore an invertible matrix whose inverse is also integer valued.

Definition 2.2.5 (𝑄[𝐴,𝑘]). Let 𝐴 = (𝑎𝑖,𝑗) be an 𝑚 × 𝑛matrix with 𝑚 > 𝑛, and let 1 ≤ 𝑘 ≤ 𝑛. Let

𝛽 = 𝑎𝑘,𝑘, 𝜆 = 𝑎𝑘,𝑘+1, and 𝛿 = √𝛽𝛽 + 𝜆𝜆. Then the 𝑛 × 𝑛 block diagonal matrix

𝑄[𝐴,𝑘] ∶= {
𝐼𝑛 if 𝑘 = 𝑛

(𝑞𝑖,𝑗) otherwise

where (𝑞𝑖,𝑗) is the block diagonal matrix with submatrix

(
𝑞𝑘,𝑘 𝑞𝑘,𝑘+1
𝑞𝑘+1,𝑘 𝑞𝑘+1,𝑘+1

) = 1
𝛿
(
𝛽 −𝜆
𝜆 𝛽

)

and 1’s for all other diagonal entries.

Observe that multiplication on the right by 𝑄[𝐴,𝑘] changes only columns 𝑘 and 𝑘 + 1
in a way that is effectively multiplying those columns as a submatrix by the submatrix
explicitly stated in the definition.

𝑄[𝐻 ′,𝑟], when used in Line 8 of Algorithm 2.2.7 on the following page, is an orthogonal
matrix. The swapping of rows that occurs in the prior steps will usually cause𝐻 ′ to cease
to be lower trapezoidal. The post-multiplicationwith 𝑄[𝐻 ′,𝑟] ensures that𝐻 ′ is once again
lower trapezoidal [29, 42]. The only case where the row swap does not remove the lower-
trapezoidal property of 𝐻 ′ is when 𝑟 = 𝑛 − 1 in which case 𝑄[𝐻 ′,𝑟] is the identity matrix
and so 𝐻 ′ is unaffected.

Finally, we use the following notation to refer to rows and columns of matrices, when
needed.

Notation 2.2.6 (col𝑘, row𝑘). For a matrix 𝑀 we denote by col𝑘(𝑀) the 𝑘th column of 𝑀 and
by row𝑘(𝑀) the 𝑘th row of M.

9

2 Classical Integer Relations

Algorithm 2.2.7: PSLQ
Input : 𝑥 ∈ 𝔽𝑛, 𝛾 > 𝛾1
Output: 𝑎 ∈ 𝒪𝑛

/* Initialisation */

1 𝐻 ′ ← 𝐻𝑥/‖𝑥 ‖ 𝐴 ← 𝐼𝑛
/* Main Calculation */

2 repeat
3 𝐻 ′ ← 𝐷𝐻 ′ 𝐻 ′

/* Hermite reduce 𝐻 ′ */

4 𝐴 ← 𝐷𝐻 ′ 𝐴 /* Update 𝐴 */

5 𝑟 ← argmax1≤𝑟≤𝑛−1(𝛾
𝑟|𝐻 ′

𝑟 ,𝑟 |) /* Find 𝑟 such that 𝛾 𝑟|𝐻 ′
𝑟 ,𝑟 | is maximal */

6 row𝑟(𝐻 ′) ↔ row𝑟+1(𝐻 ′) /* Exchange rows 𝑟 and 𝑟 + 1 in 𝐻 ′ */

7 row𝑟(𝐴) ↔ row𝑟+1(𝐴) /* Exchange rows 𝑟 and 𝑟 + 1 in 𝐴 */

8 𝐻 ′ ← 𝐻 ′ 𝑄[𝐻 ′,𝑟] /* Make sure 𝐻 ′ is lower trapezoidal */

9 until 𝑟 = 𝑛 − 1 and 𝐻 ′
𝑛−1,𝑛−1 = 0

10 return col𝑛(𝐴−1)

After each iteration the value 1/max |𝐻 ′
𝑟 ,𝑟 | is a lower bound for the norm of any integer

relation of 𝑥. Furthermore if 𝑎 is the integer relation found by the algorithm, then ‖𝑎‖ ≤
𝛾 𝑛−2𝑀 where 𝑀 is the norm of the smallest possible integer relation [42, Theorem 3].

Note that the algorithm as presented does not terminate if there is no integer relation
for the input 𝑥. This can be remedied either by specifying termination after a maximum
number of iterations are performed, or after the lower bound for the norm of an integer
relation exceeds some value.

The algorithm is exact if the individual steps can be performed exactly. That is to say, if
we could compute with all real numbers exactly then the algorithm would always calcu-
late an integer relation if there is one to be found. Furthermore, it will find an integer
relation in a polynomially bounded number of iterations [29, 42]. In practice, however,
an implementation of the pslq algorithm must use floating point arithmetic and so nu-
merical error may prevent the detection of a valid integer relation. Nonetheless pslq has
shown remarkable numerically stability.

Finally, we reiterate that the algorithm as presented here lacks the details needed for
practical numeric application. There are many optimisations that can, and should, be
employed in order for an implementation to be effective. The interested reader should
consult the literature [9, 29].

2.3 LLL

The lll algorithm introduced by Lenstra, Lenstra Jr, and Lovász in 1982 [52], as stated
above, is not an integer relation algorithm per se. The algorithm takes a linearly inde-

10

2 Classical Integer Relations

pendent set of vectors describing a lattice, and computes a reduced basis for that lattice.
Lenstra, Lenstra Jr, and Lovász used this algorithm as a means to factor polynomials with
rational coefficients. The algorithm may, however, also be utilised to find integer rela-
tions (see Section 2.3.2).

2.3.1 Reduced Lattice Bases

Lenstra, Lenstra Jr, and Lovász define a reduced basis according to Definition 2.3.1. Bor-
wein [29] notes that a desirable definition of a reduced basis (for a lattice 𝐿, say) would
be a linearly independent set of vectors 𝑏1, … , 𝑏𝑛 with the property that 𝑏𝑖 is the shortest
vector in the lattice independent of all the vectors 𝑏1, … , 𝑏𝑖−1, but that no algorithm is
known to calculate such a basis in reasonable (presumably polynomial) time. Observe
that Definition 2.3.1 is a weaker condition.

Definition 2.3.1 (LLL Reduced Basis). Let 𝑏1, … , 𝑏𝑛 be a basis for a lattice, 𝐿 We call these
vectors LLL reduced if

|𝜇𝑖,𝑗 | ≤
1
2 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 (2.4)

‖𝑏∗𝑖 + 𝜇𝑖,𝑖−1𝑏∗𝑖−1 ‖2 ≥
3
4 ‖𝑏

∗
𝑖−1 ‖2 for 1 < 𝑖 ≤ 𝑛 (2.5)

where

𝑏∗𝑖 = 𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝜇𝑖,𝑗𝑏∗𝑗 and 𝜇𝑖,𝑗 =
𝑏𝑖 ⋅ 𝑏∗𝑗
‖𝑏∗𝑗 ‖2

The vectors 𝑏∗𝑖 are precisely the vectors one constructs when using the Gram-Schmidt
orthogonalisation process on the vectors 𝑏𝑖. Condition (2.4) ensures that the vectors are
“close” to orthogonal (and gives a quantitative measurement of such). Conditions (2.4)
and (2.5) together bound the values of ‖𝑏𝑖 ‖ in terms of the norms of the shortest vectors
in the lattice.

The constant 3/4 in condition (2.5) is arbitrary, andmay freely be chosen in the real range
(1/4, 1) [52]. If a different number is chosen then some of the values in the following
results will change, so we will adhere to the value 3/4 for simplicity.

The lll algorithm takes a basis for a lattice 𝐿 and produces an LLL reduced basis for
that lattice. We will omit the algorithm details in this section because the algorithm is
not an integer relation algorithm in and of itself. The algorithm is presented, instead, in
Appendix A.2 on page 143.

The following theorem is needed to show that lll can find integer relations. It is proved
in Borwein [29, Appendix B].

11

2 Classical Integer Relations

Theorem 2.3.2. Let 𝑏1, … , 𝑏𝑛 be an LLL reduced basis for a lattice, 𝐿. Then for every nonzero
vector 𝑥 ∈ 𝐿 we have ‖𝑏1 ‖ ≤ 2(𝑛−1)/2‖𝑥‖

2.3.2 Integer Relations with LLL

In order to use lll to find an integer relation, we must express the problem of finding
an integer relation in terms of lattice reduction. In more precise terms we reduce the
problem of finding an integer relation for a vector, 𝑥, to a particular lattice reduction
case. The process we use is described (and proved correct) by Borwein [29].

To perform the reduction, simply speaking, we construct the latticeΛ𝑥(𝑁), defined below,
and then perform lll on that lattice. If there is an integer relation to be found, it will be
encoded in the reduced lattice given by lll. The details are given presently.

Definition 2.3.3 (RealΛ𝑥(𝑁)). Given a vector 𝑥 ∈ ℝ𝑛, we denote byΛ𝑥(𝑁) the lattice spanned
by the (𝑛 + 1)-dimensional vectors:

{(1, 0, … , 0, 𝑁𝑥1), (0, 1, 0, … , 0, 𝑁𝑥2), … , (0, 0, … , 1, 𝑁𝑥𝑛)}

where 𝑁 ∈ ℝ.

We will introduce an analogous Λ𝑥(𝑁) for complex vectors in Section 2.3.3 (see Defi-
nition 2.3.6 on page 14). The essential approach is the same for both lattices, and it is
expected that the intended lattice will be clear in context. For now, we consider only the
Λ𝑥(𝑁) for the real case.

Proposition 2.3.4. Let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 and suppose that an integer relation of 𝑥 exists.
Suppose {𝑏1, … , 𝑏𝑛} is an LLL reduced basis for Λ𝑥(𝑁). Then so long as 𝑁 was sufficiently
large, 𝑏1 must be of the form (𝑏11, … , 𝑏1𝑛, 0) and (𝑏11, … , 𝑏1𝑛) is an integer relation of 𝑥.

Proof. Let 𝑎 = (𝑎1, … , 𝑎𝑛) be a smallest integer relation for 𝑥. Consider the set of vectors
{𝑦 ∈ ℤ𝑛 ∶ ‖𝑦‖ < 2𝑛/2‖𝑎‖ and ∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖 ≠ 0}, and observe that the set is finite and non-
empty. We choose from this set a vector 𝑦 such that |∑𝑛

𝑘=1 𝑦𝑘𝑥𝑘 | is minimal, and choose
𝑁 such that 𝑁 |∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖 | > 2𝑛/2‖𝑎‖.

12

2 Classical Integer Relations

Let 𝜆 ∈ Λ𝑥(𝑁); it must be of the form (𝑙1, … , 𝑙𝑛, 𝑁 ∑𝑛
𝑘=1 𝑙𝑘𝑥𝑘) for 𝑙𝑖 ∈ ℤ. Now suppose that

∑𝑛
𝑘=1 𝑙𝑘𝑥𝑘 ≠ 0 (i.e., (𝑙1, … , 𝑙𝑛) is not an integer relation for 𝑥). Then

‖𝜆‖ =
√
𝑙21 + ⋯ + 𝑙2𝑛 + (𝑁

𝑛
∑
𝑘=1

𝑙𝑘𝑥𝑘)
2

>
√
𝑁 2 (

𝑛
∑
𝑘=1

𝑙𝑘𝑥𝑘)
2

= 𝑁 |
𝑛
∑
𝑘=1

𝑙𝑘𝑥𝑘 | ≥ 𝑁 |
𝑛
∑
𝑘=1

𝑦𝑘 𝑥𝑘 | > 2𝑛/2‖𝑎‖ > 2(𝑛−1)/2‖𝑎‖

Weknow that 𝑎 is an integer relation of 𝑥, so∑𝑛
𝑘=1 𝑎𝑘 𝑥𝑘 = 0, and hence 𝜆𝑎 ∶= (𝑎1, … , 𝑎𝑛, 0) ∈

Λ𝑥(𝑁). It is easy to see that ‖𝑎‖ = ‖𝜆𝑎 ‖. So from the calculation above we know that ‖𝜆‖
is greater than 2(𝑛−1)/2 times the norm of a vector in Λ𝑥(𝑁) (specifically, the vector 𝜆𝑎).
Consequently 𝜆 cannot be the reduced basis vector 𝑏1 by Theorem 2.3.2. The result fol-
lows.

Note that the integer relation 𝑎 from the beginning of the proof is not necessarily the
integer relation embedded in the reduced basis vector 𝑏1.

The value 𝑁 effectively acts as a penalty, raising the norm of any lattice point which
does not have an integer relation embedded in it above the value for which it can be a
candidate for the reduced basis vector 𝑏1. The required magnitude of 𝑁, however, is not
given by the theorem and depends on the norm of any smallest integer relation for 𝑥. As
such, since the goal is to find an integer relation in the first place, this value is not known
in advance.

Although the proposition guarantees that the reduced lattice vector 𝑏1 will contain an in-
teger relation embeddedwithin it, it is not difficult to see that any element ofΛ𝑥(𝑁)which
is of the form (𝑚1, … , 𝑚𝑛, 0) contains an embedded integer relation, 𝑚 = (𝑚1, … , 𝑚𝑛), of
𝑥. So, after running lll on Λ𝑥(𝑁), the resulting reduced lattice might contain multiple
integer relations. We may identify them simply by looking to see which vectors have a 0
as the final element. We will give this element a name.

Definition 2.3.5 (discriminant). Let 𝐿 be a lattice used to find integer relations. For all 𝑘 for
which the 𝑘th entry of any lattice vector is used in the identification of an embedded integer
relations, we call 𝑎𝑘 a discriminant of 𝑎 for all 𝑎 ∈ 𝐿.

Note that the above definition allows for the possibility of multiple discriminants. This
will be needed when we explore methods of finding Gaussian integer relations with lll
in the next subsection, and for more abstracted integer notions discussed in Chapter 3.

13

2 Classical Integer Relations

2.3.3 Complex Integer Relations with LLL

The lll algorithm as written specifically computes rational integer (i.e., ℤ) lattices, and
not Gaussian integer lattices. It is possible, however, to reduce the problem of finding
a reduced Gaussian integer lattice to the problem of finding a reduced rational integer
lattice, but at the expense of doubling both the size of the vectors, and the number of
vectors in the lattice basis.

The technique we use is a special case of a more general technique described by Gan,
Ling, and Mow [45] for using lll to compute reduced bases of Gaussian integer lattices.
Given a matrix representation1 𝑀 for a lattice we construct a new lattice with matrix
representation 𝑀′ by

𝑀′ = [
ℜ𝑀 ℑ𝑀
−ℑ𝑀 ℜ𝑀

]

and then the lll algorithm is performed on the new lattice.

Gan, Ling, and Mow note that in general the reduced lattice returned by lll is not in the
same block format as the constructed lattice represented by 𝑀′. As such, it is difficult or
impossible to extract the reduced Gaussian integer lattice basis. Consequently, the output
must be specially processed in such a way as to cope with the obfuscated information

We note here that Gan, Ling, and Mow have created a modification of the algorithm
to directly compute lll reduced Gaussian integer lattices. This modification avoids the
problems described above. In principle, this modified lll could directly compute Gaus-
sian integer relations using the technique described in the previous section. In practice,
however, Maple’s implementation of the lll algorithm does not implement this modifi-
cation and the author discovered the modification sufficiently late as to lack the time to
implement it.

In lieu of the direct modification to lll, we instead apply the above reduction technique
directly to the Λ𝑥(𝑁) lattice (from Definition 2.3.3) and perform lll on the resulting lat-
tice. In contrast to the general reduction technique, we are always able to easily extract
the Gaussian integer relation from the output of the lll algorithm. The modified Λ𝑥(𝑁)
is given in the following definition.

1Recall that we are using the unusual convention whereby the row vectors of the matrix are the lattice
basis vectors.

14

2 Classical Integer Relations

Definition 2.3.6 (Complex Λ𝑥(𝑁)). Given a vector 𝑥 ∈ ℂ𝑛, we denote by Λ𝑥(𝑁) the lattice
spanned by the (2𝑛 + 2)-dimensional vectors:

{(1, 0, … , 0, 𝑁ℜ𝑥1, 0, … , 0, 𝑁ℑ𝑥𝑛), … , (0, … , 0, 1, 𝑁ℜ𝑥𝑛, 0, ⋯ , 0, 𝑁ℑ𝑥𝑛)}

∪
{(0, … , 0, −𝑁ℑ𝑥1, 1, 0, … , 0, 𝑁ℜ𝑥1), … , (0, … , 0, −𝑁ℑ𝑥𝑛, 0, ⋯ , 0, 1, 𝑁ℜ𝑥𝑛)}

where 𝑁 ∈ ℝ.

A vector in this lattice will have the form (𝑙1, … , 𝑙𝑛, 𝑑1, 𝑚1, … , 𝑚𝑛, 𝑑2). The elements 𝑑1
and 𝑑2 are discriminants. If both of discriminants are 0 then the lattice vector encodes a
Gaussian integer relation, 𝑎 say, of 𝑥which we can extract as 𝑎 = (𝑚1 + 𝑙1i, … , 𝑚𝑛 + 𝑙𝑛i). It
is not immediately obvious that this is the case, so we take some pains to prove it here.

Lemma 2.3.7. Let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛 and consider the lattice Λ𝑥(𝑁). For every Gaussian
integer relation, 𝑎, of 𝑥 there is a vector

(ℜ𝑎1, … ,ℜ𝑎𝑛, 0, ℑ𝑎1, … , ℑ𝑎𝑛, 0) ∈ Λ𝑥(𝑁)

Moreover, for every lattice element of that form there is a corresponding Gaussian integer
relation of 𝑥.

Proof. An arbitrary element of the lattice Λ𝑥(𝑁) is of the form (𝑙1, … , 𝑙𝑛, 𝑑1, 𝑚1, … , 𝑚𝑛, 𝑑2)
where

𝑑1 = 𝑁
𝑛
∑
𝑘=1

𝑙𝑘ℜ𝑥𝑘 − 𝑁
𝑛
∑
𝑘=1

𝑚𝑘 ℑ𝑥𝑘 = 𝑁
𝑛
∑
𝑘=1

(𝑙𝑘ℜ𝑥𝑘 − 𝑚𝑘 ℑ𝑥𝑘)

𝑑2 = 𝑁
𝑛
∑
𝑘=1

𝑚𝑘 ℑ𝑥𝑘 + 𝑁
𝑛
∑
𝑘=1

𝑚𝑘ℜ𝑥𝑘 = 𝑁
𝑛
∑
𝑘=1

(𝑙𝑘 ℑ𝑥𝑘 + 𝑚𝑘ℜ𝑥𝑘)

For any vector 𝑎 = (𝑎1, … , 𝑎𝑛) ∈ ℤ[i]𝑛 we have

𝑛
∑
𝑘=1

𝑎𝑘𝑥𝑘 =
𝑛
∑
𝑘=1

(ℜ𝑎𝑘 + ℑ𝑎𝑘i)(ℜ𝑥𝑘 + ℑ𝑥𝑘i)

=
𝑛
∑
𝑘=1

(ℜ𝑎𝑘ℜ𝑥𝑘 + ℜ𝑎𝑘ℑ𝑥𝑘i + ℑ𝑎𝑘ℜ𝑥𝑘i − ℑ𝑎𝑘ℑ𝑥𝑘)

=
𝑛
∑
𝑘=1

(ℜ𝑎𝑘ℜ𝑥𝑘 − ℑ𝑎𝑘ℑ𝑥𝑘) + i
𝑛
∑
𝑘=1

(ℜ𝑎𝑘ℑ𝑥𝑘 + ℑ𝑎𝑘ℜ𝑥𝑘)

15

2 Classical Integer Relations

Since ℜ𝑎𝑘 and ℑ𝑎𝑘 are all integers, the vector (ℜ𝑎1, … ,ℜ𝑎𝑛, 𝑑1, ℑ𝑎1, … , ℑ𝑎𝑛, 𝑑2) ∈ Λ𝑥(𝑁).
In this case 𝑑1 and 𝑑2 are precisely the real and imaginary parts, respectively, of𝑁 ∑𝑛

𝑘=1 𝑎𝑘𝑥𝑘.

If 𝑎 is a Gaussian integer relation for 𝑥 then ∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 = 0 and so 𝑑1 = 𝑑2 = 0 giving us

(ℜ𝑎1, … ,ℜ𝑎𝑛, 0, ℑ𝑎1, … , ℑ𝑎𝑛, 0) ∈ Λ𝑥(𝑁). Conversely, if (𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ∈ Λ𝑥(𝑁),
then

𝑁
𝑛
∑
𝑘=1

(𝑙𝑘ℜ𝑥𝑘 − 𝑚𝑘 ℑ𝑥𝑘) = 𝑁
𝑛
∑
𝑘=1

(𝑙𝑘 ℑ𝑥𝑘 + 𝑚𝑘ℜ𝑥𝑘) = 0

and∑𝑛
𝑘=1(𝑙𝑘+𝑚𝑘i)𝑥𝑘 = 𝑑1+𝑑2i = 0, hence 𝑎 = (𝑙1 + 𝑚1i, … , 𝑙𝑛 + 𝑚𝑛i) is a Gaussian integer

relation for 𝑥.

In essence, this lemma establishes a bijective correspondence between Gaussian integer
relations, and vectors in the lattice with both discriminants equal to 0. We further observe
that the norm of a Gaussian integer relation and the norm of its corresponding lattice
vector coincide.

‖𝑎‖ = √|𝑎1 |2 + ⋯ + |𝑎𝑛 |2

= √(ℜ𝑎1)
2 + (ℑ𝑎1)

2 + ⋯ + (ℜ𝑎𝑛)
2 + (ℑ𝑎𝑛)

2 = ‖(ℜ𝑎1, … ,ℜ𝑎𝑛, 0, ℑ𝑎1, … , ℑ𝑎𝑛, 0) ‖

Armed with these facts, we can apply the same essential argument used to prove Proposi-
tion 2.3.4 to conclude that performing lll on the lattice above will find a Gaussian integer
relation so long as one exists and 𝑁 is sufficiently large. We state the analogous lemma,
but omit the proof due to its similarity.

Proposition 2.3.8. Let 𝑧 = (𝑧1, … , 𝑧𝑛) ∈ ℂ𝑛 and suppose that a Gaussian integer relation
of 𝑧 exists. Suppose {𝑏1, … , 𝑏2𝑛} is an LLL reduced basis for Λ𝑥(𝑁). Then so long as 𝑁 was
sufficiently large, 𝑏1 must be of the form (𝑏11, … , 𝑏1𝑛, 0, 𝑏1(𝑛+2), … , 𝑏1(2𝑛+1), 0) and (𝑏11 +
𝑏1(𝑛+2) i, … , 𝑏1𝑛 + 𝑏1(2𝑛+1) i) is a Gaussian integer relation of 𝑥.

2.4 Numeric Considerations

Both the pslq and lll algorithms as presented assume perfect real arithmetic. In par-
ticular, any guarantee of finding relations is contingent on this assumption. In practice
these algorithms are run on computers using floating point arithmetic, and the limited
precision of such computations (even if that precision is large in computational terms)
can yield incorrect results in some cases; particularly if the integers in a relation are large
compared to the precision of the calculation.

16

2 Classical Integer Relations

Furthermore, the nature of floating point arithmetic requires extra considerations in the
implementation and use of these algorithms over and above that needed for the pure
mathematics of the algorithms. We discuss these herein.

2.4.1 Minimum Theoretical Required Precision

Bailey and Broadhurst [9] make mention of an information theoretic argument stating
that in order to find an integer relation of 𝑛 numbers where the integers of that relation
are of no more than 𝑑 digits, then at least 𝑛𝑑 precision must be used for the computation.
The argument is not given, nor is a reference for it. Furthermore, they state that pslq
“can reliably recover relations with only a few percent more digits of precision than the
information theory bound”. Borwein [29] clarifies that pslq “usually recovers a given
relation using only about 15% more digits than this bound suggests are necessary.”

The literature in question considers only the real pslq case, so it is not clear how this
argument applies to Gaussian integers for the complex case of pslq. In particular, it is
not clear how to measure the number of digits of a Gaussian integer with regard to this
information bound (e.g., is 12 + 34i a 2-digit or 4-digit Gaussian integer?).

We have explored these precision questions experimentally and present this exploration
below (see Sections 2.5 and 2.6). For the purposes of this discussion we can say that we
have found that for the purposes of this information theoretic bound the number of digits
of a Gaussian integer is equal to the number of digits of the real part or of imaginary part,
whichever is largest. As such, our example 12+34i is a 2-digit Gaussian integer, whereas
12 + 345i would be a 3-digit Gaussian integer.

In practice, we tend not to know ahead of time howmany digits the elements of an integer
relation will have, yet we may still make use of this relation. If we suppose that we are
attempting to find an integer relation for a vector 𝑥 ∈ 𝔽𝑛 using a precision of 𝑝 decimal
digits, then we can infer that any integer relation whose maximum element has more
than 𝑝/𝑛 digits should be considered highly suspect (since we ought to have required
more than 𝑝 decimal digits of precision to find such an integer relation).

2.4.2 Candidate Integer Relations

In the absence of the certainty of perfect real arithmetic, some extra care must be taken
with the output of both pslq and lll (and, indeed, any integer relation algorithm).

A common occurrence is that the algorithm terminates yielding a “false” integer relation.
Such a relation gives∑𝑎𝑘𝑥𝑘 ≈ 0when computed to the precision of the computation, but
if checked at higher precision the same calculation is no longer approximately 0.

17

2 Classical Integer Relations

For example, attempting to compute an integer relation for 𝑥 = (𝜋, e, 𝛾) in Maple using
pslq with 50 decimal digits of precision gives the result

𝑎 = (68770636450125990, −105820702627301623, 124045778945321093)

however, when we check the relation (also to 50 decimal digits of precision) we find that
∑3

𝑘=1 𝑎𝑘𝑥𝑘 ≈ −1.8 × 10−32. Checking to twice as much precision (100 decimal digits) gives
∑3

𝑘=1 𝑎𝑘𝑥𝑘 ≈ −1.18 × 10−32 If 𝑎 were an integer relation we would have expected a value
closer to 10−50 for the first check, and closer to 10−100 for the second check.

Applying the analysis from the previous section here we have 𝑝 = 50 and 𝑛 = 3. We
observe that the largest integer contains 18 decimal digits, which is larger than the bound
of 𝑝/𝑛 = 50/3 ≈ 16.6. Equivalently, to find such an integer relation the theoretical bound
stipulates that should have needed at least 18𝑛 = 54 decimal digits of precision, which is
more than we used. So this relation should have been immediately suspect.2

If instead we use 100 decimal digits of precision then pslq yields the result

𝑎 = (− 58008562265955389466919139441407, 48900683858791174575736827116846,

85433289021827429309535576346023)

Checking at the same precision gives ∑3
𝑘=1 𝑎𝑘𝑥𝑘 ≈ 1.4 × 10−67, and checking to twice the

precision gives ∑3
𝑘=1 𝑎𝑘𝑥𝑘 ≈ 1.82 × 10−67. If 𝑎 were an integer relation we would have

expected a value closer to 10−100 for the first check, and closer to 10−200 for the second
check.

Again applying the analysis from the previous section here we have 𝑝 = 100 and 𝑛 = 3.
We observe that the largest integer contains 32 decimal digits, which is actually within
the bound of 𝑝/𝑛 = 100/3 ≈ 33.3. Equivalently, to find such an integer relation the
theoretical bound stipulates that should have needed at least 32𝑛 = 96 decimal digits of
precision, which is lower than we used (although not within the 15% margin specified by
Borwein). It is worth noting, then, that a candidate relation being within the theoretical
bounds is not a guarantee of its correctness.

Although neither of these are an integer relation for (𝜋, e, 𝛾), they are sufficiently close
numerically forMaple’s implementation of pslq to give them as output when computing
at the indicated numeric precision. It is important to note that no error is indicated;
Maple’s pslq function simply gives the output as the result of its computation.

We should consider the output of any integer relation finding algorithm (whether it be
pslq, lll, or any other) with some suspicion. As such, we consider any such integer

2The author notes that, as a coarse heuristic, candidate relations consisting entirely of large integers of
approximately the same magnitude are usually not actual integer relations. Moreover these are often
recognisable “by eye”, although one should not fail to check them anyway.

18

2 Classical Integer Relations

relations as candidates (see Definition 2.4.1). It is a good habit to verify the veracity of
candidate relations by computing ∑𝑛

𝑘=1 𝑎𝑘𝑥𝑘. Ideally such verification should be done at
higher precision than was used to compute the integer relation to begin with (notwith-
standing that extra precision was unnecessary in the examples above).

Definition 2.4.1 (Candidate Integer Relation). The output of any numerically inexact (e.g.,
floating point) implementation of an integer relation finding algorithm is considered to be a
candidate integer relation, or simply a candidate relation.

2.4.3 Identifying Candidate Integer Relations

The above discussion raises the question of how, exactly, the algorithms decide when
they have a candidate relation in practical numeric implementations. The answer differs
somewhat between the pslq and lll, and we will discuss each one separately.

PSLQ

In principle, pslq as presented in Algorithm 2.2.7 on page 10 could simply be modified to
terminate when 𝑟 = 𝑛 − 1 and |𝐻 ′

𝑛−1,𝑛−1 | < 𝜖 where 𝜖 is some threshold (we discuss the
choice of such thresholds below). In practice, however, more significant modifications
are made to the algorithm. The modified algorithm is presented in Algorithm 2.4.2.

Algorithm 2.4.2: pslq
Input : 𝑥 ∈ 𝔽𝑛, 𝑇 > 0, 𝛾 ≥ 𝛾1, 𝜖 > 0
Output: A vector in 𝒪𝑛 or FAIL

/* Initialisation */

1 𝑦 ← 𝑥/‖𝑥‖ /* Normalise input vector */

2 𝐻 ′ ← 𝐷𝐻𝑦 𝐻𝑦 𝐵 ← 𝐷−1
𝐻𝑦

𝑦 ← 𝑦𝐷−1
𝐻𝑦

/* Initial Hermite reduction */

/* Main Calculation */

3 repeat
4 𝑟 ← argmax1≤𝑟≤𝑛−1(𝛾

𝑟 |𝐻 ′
𝑟 ,𝑟 |) /* Find 𝑟 s.t. 𝛾 𝑟|𝐻 ′

𝑟 ,𝑟 | is maximal */

5 row𝑟(𝐻 ′) ↔ row𝑟+1(𝐻 ′) /* Swap rows 𝑟 and 𝑟 + 1 in 𝐻 ′ */

6 col𝑟(𝐵) ↔ col𝑟+1(𝐵) /* Swap columns 𝑟 and 𝑟 + 1 in 𝐵 */

7 𝑦𝑟 ↔ 𝑦𝑟+1 /* Swap elements 𝑟 and 𝑟 + 1 in 𝑦 */

8 𝐻 ′ ← 𝐻 ′ 𝑄[𝐻 ′,𝑟] /* Make sure 𝐻 ′ is lower trapezoidal */

9 𝐻 ′ ← 𝐷𝐻 ′ 𝐻 ′
/* Hermite reduce 𝐻 ′ */

10 𝐵 ← 𝐵𝐷−1
𝐻 ′ 𝑦 ← 𝑦𝐷−1

𝐻 ′ /* Update 𝐵 and 𝑦 */

11 𝑘 ← argmin1≤𝑘≤𝑛(|𝑦𝑘 |) /* Find 𝑘 s.t. |𝑦𝑘 | is minimal */

12 until | 𝑦𝑘 |/‖col𝑘(𝐵)‖ < 𝜖 or 1/max1≤𝑖≤𝑛|𝐻 ′
𝑖,𝑖 | ≥ 𝑇

13 if | 𝑦𝑘 |/‖col𝑘(𝐵)‖ < 𝜖 then return col𝑘(𝐵) else return 1/max1≤𝑖≤𝑛|𝐻 ′
𝑖,𝑖 |

19

2 Classical Integer Relations

This is effectively the algorithm as described by Borwein [29, fig. B.5], which in turn is
based on the algorithms as described in Bailey and Broadhurst [9], Bailey and Plouffe [11],
and Ferguson, Bailey, and Arno [42]. We note that—by virtue of our definitions of 𝐻 and
𝑄 (Definitions 2.2.3 and 2.2.5 on page 8 and on page 9)—our formulation correctly handles
the complex case, whereas the algorithm presented in Borwein is specialised to the real
case. Additionally, we have kept to the high-level description for better mathematical
understanding.

The matrix 𝐵 is simply the matrix 𝐴−1 from Algorithm 2.2.7. Each column of 𝐵 is con-
sidered as a possible integer relation of 𝑥/‖𝑥‖, and the vector 𝑦 is kept updated so that
𝑦 = (𝑥/‖𝑥‖) 𝐵. As such, if 𝑦𝑘 = 0 for some 𝑘, then col𝑘(𝐵) must be an integer relation
for 𝑥/‖𝑥‖ and thus also for 𝑥. Any relation, 𝑎 say, found this way will not necessarily
have the property ‖𝑎‖ ≤ 𝛾 𝑛−2𝑀 that is guaranteed for a relation given by Algorithm 2.2.7,
however.

In practice, because we are performing numeric (floating point) computations, the ele-
ments of 𝑦 are unlikely to be exactly 0, even if we have found an integer relation. To
detect termination we consider only the smallest | 𝑦𝑘 | as the best possibility for a candi-
date integer relation. We scale the value of | 𝑦𝑘 | by 1/‖col𝑘(𝐵)‖ in order to avoid missing
a possible relation if the norm the column of 𝐵 is particularly large. If the scaled value,
| 𝑦𝑘/‖col𝑘(𝐵)‖ | is sufficiently close to 0 (i.e., less than some specified threshold 𝜖), then
the algorithm terminates giving col𝑘(𝐵) as the candidate integer relation. Typically the
threshold used is the so-called “machine epsilon”, 𝑏−(𝑝−1), where 𝑏 is the base of the float-
ing point implementation, and 𝑝 is the precision of the computation3.

As a secondary condition the algorithm terminates if the lower bound on the norm of
any integer relation exceeds some pre-defined threshold (specified as an input to the
algorithm). In this case the lower bound is returned. This only happens if the algorithm
has not otherwise detected a candidate relation.

Borwein does not discuss how to choose the threshold 𝑇. We suggest that a good approach
would be to choose based on the precision of the calculation and the relationship between
integer sizes and minimal theoretical precision (as discussed in Section 2.4.1).

Given 𝑥 ∈ ℝ𝑛, and 𝑝 digits of precision, then we should not see any integer relations with
more than 𝑝/𝑛 digits for any element. The integer relation with the smallest norm which
has an element exceeding 𝑝/𝑛 decimal digits is

𝑎min = (10⌊ 𝑛/𝑑 ⌋, 0, … , 0)

3A value of 𝑏−(𝑝−1)/2 is sometimes called “machine epsilon”, for example by Prof. Demmel or in the software
LAPACK, and Scilab, but we do not use this here.

20

2 Classical Integer Relations

(or any permutation of these elements) and ‖𝑎min ‖ = 10⌊ 𝑛/𝑑 ⌋. The integer relation with
the largest norm whose elements do not exceed 𝑝/𝑛 decimal digits is

𝑎max = (10⌊ 𝑛/𝑑 ⌋ − 1, 10⌊ 𝑛/𝑑 ⌋ − 1,… , 10⌊ 𝑛/𝑑 ⌋ − 1)

and ‖𝑎max ‖ = √𝑛 (10⌊ 𝑛/𝑑 ⌋ − 1).

In the complex case (when 𝑥 ∈ ℂ𝑛) the vector 𝑎min is the same, but 𝑎max becomes

𝑎max = ((10⌊ 𝑛/𝑑 ⌋ − 1)(1 + i), (10⌊ 𝑛/𝑑 ⌋ − 1)(1 + i), … , (10⌊ 𝑛/𝑑 ⌋ − 1)(1 + i))

and in this case ‖𝑎max ‖ = √2𝑛 (10⌊ 𝑛/𝑑 ⌋ − 1).

In either case, if the norm of a suspected integer relation is lower than ‖𝑎min ‖ then it
cannot have an element greater than 𝑝/𝑛 decimal digits. Similarly if the norm of a sus-
pected integer relation is higher than ‖𝑎max ‖ then it must have an element greater than
𝑝/𝑛 decimal digits. Finally if the norm of a suspected integer relation is between ‖𝑎min ‖
and ‖𝑎max ‖ (inclusive), then it may or may not have an element greater than 𝑝/𝑛.

The threshold 𝑇 should be chosen between ‖𝑎min ‖ and ‖𝑎max ‖. If set to ‖𝑎min ‖ then the
algorithm will terminate before it could possibly find a candidate relation with integers
that are too large, but might fail to find a legitimate relation whose norm is above the
threshold. If set to ‖𝑎max ‖ then the algorithm will terminate at the point at which it can
no longer find candidate integer relations whose elements are all below the maximum
allowed by the theoretical bound, but may nonetheless find a relation with integers that
are too large. Since one ought to check any candidate integer relation anyway, and since
a candidate relation may not be an actual integer relation even if all its elements are
sufficiently small, it seems most sensible to choose 𝑇 = ‖𝑎max ‖.

We note in passing that this use of the lower bound threshold would be useful in number
theoretic uses of pslq, such as searching for minimal polynomials of algebraic numbers.
An analysis similar to the above allows for a way to relate the (Euclidean) norm lower
bound of any integer relation for (𝛼𝑛, … , 𝛼, 1) to a bound on the height of a polynomial
for which ∑𝑛

𝑘=0 𝜆𝑛𝛼𝑛 = 0 with 𝜆𝑘 ∈ ℤ. See Section 3.1.1 on page 45 for an introductory
treatment of algebraic numbers.

Returning to the question of numeric termination conditions of the pslq algorithm, we
note that pslq variants as presented in Bailey and Broadhurst [9], Bailey and Plouffe [11],
and Ferguson, Bailey, and Arno [42] (the literature on which the algorithm presented by
Borwein’s is based) do not use norm lower bound as a secondary termination condition,
although they do keep track of the increasing norm lower bound. Their primary termi-
nation method is essentially the same as the one we present, above, although they do not
scale by the norm of the column of 𝐵; they simply check whether | 𝑦𝑘 | < 𝜖. For a sec-
ondary termination condition, they instead look to see if precision has been exhausted.

21

2 Classical Integer Relations

If the integers in the algorithm are stored as floating point numbers, then if any of these
numbers are larger than the largest integer that can be exactly represented by the floating
point system, numeric precision has been exhausted. This is easily detected. If, however,
the integers in the algorithm are stored using a fixed size integer data type this detection
may be much harder.

Our experimental exploration in this chapter uses Maple’s implementation of pslq and
we note that it is not entirely clear what approach it uses for termination. Maple’s imple-
mentation accepts neither a maximum iteration count, nor a threshold for norm lower
bound; indeed the only argument that it takes is the vector of numbers to find an integer
relation for. Moreover, it does not return any lower bound information whatsoever, only
a candidate integer relation.

If we examine the code ofMaple’s PSLQ() function4 we see the details of an initialisation
procedure that performs initial checks and setup before calling the actual pslq imple-
mentation. Of particular interest: the input vector (of length 𝑛, say) is pre-evaluated to
a precision of 𝑝 + 5 (where 𝑝 is the precision in decimal digits of the forthcoming com-
putation), and a value of 𝜖 = 10−𝑝+log10 2𝑛 is used. No other parameter information is
forthcoming and the details of the actual pslq implementation are hidden; we presume
that 𝛾 = 𝛾1 is chosen.

It is likely thatMaple is using an implementation similar to Borwein’s; probably one of the
more sophisticated (and faster) variants described by Bailey and Broadhurst. Moreover
it seems likely that 𝜖 is being used to determine termination in a manner at least similar
to the one described above. It is unclear if there is any other termination condition at
play.

LLL

Proposition 2.3.4 and Lemma 2.3.7 on pages 12 and 15, respectively, assure us that the
discriminants of a reduced lattice vector that contains an embedded integer relation will
be exactly 0 in the real and complex cases respectively. When computing numerically,
however, it is unlikely that the discriminants will be exactly 0. This is easily solved by
checking to see if the absolute value of each discriminant is less than some threshold
(most likely machine epsilon as discussed above).

A more significant challenge to numerically finding integer relations with lll is the
choice of the value of 𝑁 with which to construct the lattice Λ𝑥(𝑁). Proposition 2.3.4
on page 12 guarantees that lll will find an integer relation so long as 𝑁 is sufficiently
large, although we do not know ahead of time the minimum value of𝑁. In practice, when

4Using eval(IntegerRelations[PSLQ])

22

2 Classical Integer Relations

performing numerical computation, we have found that 𝑁 may be too large, as well as
too small.

In choosing the value of 𝑁 to use, an immediately obvious choice would be 𝑏𝑝 where 𝑏 is
the base of the floating point implementation being used and 𝑝 is the precision that the
constants have been computed to. In many (perhaps even most) cases this will be 𝑏 = 2
for a binary floating point representation, as is the case with modern computer hardware
and commonly used extended precision libraries5 at the time of writing. It is of note,
then, that Maple uses a base 10 floating point representation, and consequently we use
𝑏 = 10 for our experimental exploration.

We have found that this choice of 𝑁 causes Maple’s implementation of lll to incorrectly
diagnose the lattice vectors as being linearly dependent, prematurely halting the compu-
tation with an error. This is in spite of the fact that—by construction—the lattice vectors
must be linearly independent. Some imprecise experimentation6 suggests that Maple
might be coming to this incorrect diagnosis by computing the rank of the matrix rep-
resentation of the lattice. Regardless of the reason, this choice of 𝑁 does not work for
Maple’s lll implementation.

Moreover, we have found that even in the absence of this strangeMaple idiosyncrasy (i.e.,
when the calculation performs as expected), the value of 𝑁 can still be too large. In these
the cases, no candidate relations are embedded in the returned lattice, even if candidate
relations can be found with smaller values of 𝑁 for the same vector. A significantly lower
value than 𝑁 = 𝑏𝑝 is typically needed in order to find an integer relation (see Section 2.6
on page 30).

Returning to the question of how to choose the value of 𝑁, and motivated by the above,
the general tactic we adopt is to repeatedly try computing lll on Λ𝑥(𝑁) using different
values of 𝑁 until a candidate integer relation is detected in the output reduced lattice
vectors. We start with 𝑁 = 10𝑝−1, and decrement the power of 10 after each failed
attempt, giving up if we ever get to 𝑁 = 100. The details are given below in the LLL
Integer Relation procedure

Note that there may be several reduced lattice vectors 𝑏𝑖 which contain an embedded
candidate integer relation. Conversely, there may also be none (i.e., the empty set may
be returned), but only in the case that the loop reached 𝑘 = 0.

Each candidate should, as discussed in Section 2.4.2 above, be checked to higher precision.
If all candidates fail such testing the computation could be resumed at the next value of 𝑘,
although we do not currently do so in our experimental exploration, presented below.

5e.g., GMP and MPFR
6We performed several computations to diagnose the linear (in)dependence of the row vectors and only
rank gave an incorrect result.

23

2 Classical Integer Relations

Procedure LLL Integer Relation
Input : 𝑥 ∈ 𝔽𝑛, 𝜖 > 0
Output: 𝑎 ∈ 𝒫 (𝒪𝑛)
1 𝑘 ← 𝑝 − 1
2 repeat
3 𝑀 ← Λ𝑥(10𝑘)
4 𝐵 ← 𝐿𝐿𝐿(𝑀)
5 𝑘 ← 𝑘 − 1
6 until 𝑘 = 0 or | 𝑏𝑛+1 | < 𝜖 for some 𝑏 ∈ 𝐵
7 return { 𝑏 ∈ 𝐵 ∶ |𝑏𝑛+1 | < 𝜖 }

2.5 Experimental Methodology

We created collections of instances of integer relation problems. Each collection, referred
to as a test set, consisted of 1000 integer relation problems each of which has a known
integer relation.

We note that that the testing reported in both this and the next chapter were performed
as part of a single suite of tests. In fact, the testing reported in in this and the next section
is simply a particular case of the testing reported in Chapter 3; we simply report only the
cases relevant to the discussion in this chapter. The testing reported in this entire thesis
extends the testing reported in Skerritt and Vrbik [67].

We tested both pslq and lll to see how many of the problems in each test set could be
solved (i.e., the known relation recovered) by the algorithm in question. For those prob-
lems that were able to be solved we found and recorded the smallest numeric precision
that was able to solve the problem, as well as the time taken to solve the problem at that
minimal precision. We also measured the time taken to compute the entire test set.

In the case of lll we additionally recorded parameters from the LLL Integer Relation
procedure. We recorded the starting value of 10𝑘 and the number of lll computations
attempted. In addition, for the problems which could be solved, we recorded the value
of 10𝑘 with which a relation was found, and the number of attempted lll computations
needed.

We usedMaple’s implementation of both pslq and lll for all testing. For pslqwe used the
algorithm directly for all cases. For lll we used the appropriate Λ𝑥(𝑁) (Definitions 2.3.3
and 2.3.6) depending on the case being tested.

The code and results are available through GitHub [66]. Note that the testing described in
this chapter is a special case of a more general testing method encompassing the testing
from both here, and the next chapter (see Sections 3.4 and 3.5 on page 66 and on page 70).
Additionally, the testing reported in this entire thesis extends the testing reported in
Skerritt and Vrbik [67].

24

2 Classical Integer Relations

We note that Maple’s pslq implementation does not allow for any choice of the param-
eters described above for that algorithm. All algorithmic parameters have been decided
by the developers; one simply calls the function and passes to it the list of constants (𝑥 in
Algorithm 2.2.7). As such we are unable to report on the effects of changing them.

As discussed in Section 2.4.3 on page 19, we know that the input vector (of length 𝑛,
say) is pre-evaluated to a precision of 𝑝 + 5 (where 𝑝 is the precision in decimal digits
of the forthcoming computation), and a value of 𝜖 = 10−𝑝+log10 2𝑛 is used for identifying
0. No other parameter information is forthcoming and the details of the actual pslq
implementation are hidden; we presume that 𝛾 = 𝛾1 is chosen.

When using Algorithm - on the previous page to compute integer relations we use a
threshold of 𝜖 = 1. This is significantly higher than the suggested value of machine
epsilon, and was first chosen when experimenting with exact rational computations for
lll.This higher value simply results in potentially more candidate relations to check, al-
though the large value of𝑁will likely cause the discriminant of any lattice vector without
an embedded integer relation to be significantly larger than 1. When looking at the re-
sults, we see the majority produced only a single candidate relation (7,253 out of 12,000 of
cases) or two candidate relations (3,451 out of 12,000 cases) accounting for approximately
88% of all lll classical integer relation computations. We occasionally see as many as 9
candidates.

In the subsections that follow we describe in greater detail the methods by which we
create the test sets, perform the testing, and report the results.

2.5.1 Test Set Generation

The test sets are classified by three parameters: a field (𝔽), a set of constants (𝐶 ⊂ 𝔽),
and a size (𝜄 ∈ ℕ) of the integers generated as part of the individual integer relation
problems within the test set. We created a single test set for each valid combination of
these parameters. The parameters are described below, along with the values we used in
our testing.

Field

The field, 𝔽, indicates the type of the test set. Since we are computing classical integer
relations, test sets are either real (when 𝔽 = ℝ) or complex (when 𝔽 = ℂ)

The type of the test set dictates which integer ring will be used when generating the inte-
ger relation problems for that test set. Real test sets use the integers, ℤ, and complex test
sets use the Gaussian integers, ℤ[√−1]. Note that these are precisely the combinations
of ℤ and 𝒪 from Definition 2.1.1.

25

2 Classical Integer Relations

Furthermore, the type of the test set indicates which sets of constants (see below) may
be used in test set problem generation.

Constants

The set of constants, 𝐶, is a finite subset of the field, 𝔽, which contains all constants that
were used when generating problems for the test set. In practice, the set of constants was
chosen first, and the integer relation problems in the set were generated using only that
set.

Exactly two sets of constants were used: one containing real constants, the other com-
plex. The real set was

𝐶ℝ = {𝜋𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {𝑒𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {𝛾 𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9}

∪ {sin 𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {ln 2, ln 3, ln 5, ln 7}

The complex set consists of complex numbers with integer arguments in the range [−9, 9]
such that each argument appears exactly once. For each of these numbers, the modulus
was randomly chosen in the range [1, 9].

𝐶ℂ = {5 𝑒−9 𝑖, 4 𝑒−8 𝑖, 9 𝑒−7 𝑖, 5 𝑒−6 𝑖, 2 𝑒−5 𝑖, 9 𝑒−4 𝑖, 8 𝑒−3 𝑖, 3 𝑒−2 𝑖, 2 𝑒−𝑖,

4, 4 𝑒𝑖, 5 𝑒2 𝑖, 2 𝑒3 𝑖, 7 𝑒4 𝑖, 6 𝑒5 𝑖, 3 𝑒6 𝑖, 3 𝑒7 𝑖, 5 𝑒8 𝑖, 5 𝑒9 𝑖}

Real test sets may only use the real constants. Complex test sets may use either set of
constants.

In order to avoid unexpected results in our testing we ran pslq (inMaple) on each of these
coefficient sets. Computationwas performed using 10,000 decimal digits of precision, and
verification was performed using 20,000 decimal digits of precision. No integer relations
were found.

Integer Size

Integer size, 𝜄, is a positive integer indicating the maximum number of decimal digits of
any of the known integer relations for the problems within the set. We used two cases in
our testing: 𝜄 = 1 and 𝜄 = 6. These cases are referred to as small and large respectively.

In the case of complex test sets then the coefficients (i.e., the real and imaginary parts) of
the Gaussian integers are each of the indicated size. In practice, this value is chosen first,
and the integer relation problems in the set are generated using integers in the range
[−10𝜄 + 1, 10𝜄 − 1].

26

2 Classical Integer Relations

Integer Relation Problem Creation

A single test set was generated for each valid combination of the parameters used in our
testing. For a fixed 𝔽, 𝐶, and 𝜄, the test set corresponding to these parameters was cre-
ated by generating 1,000 integer relation problems with a known solution. The creation
procedure is detailed in the Generate Test Instance procedure.

Procedure Generate Test Instance(𝔽, 𝐶, 𝜄)
Input : 𝔽 (a field; either ℝ or ℂ)

𝐶 (a set of constants)
𝜄 (number of decimal digits of the integers to be generated)

Output: 𝑥 (an integer relation input vector)
𝔞 (known integer relation of 𝑥)

1 𝑛 ← random integer(2… 10) /* Generate a uniform random integer 2 ≤ 𝑛 ≤ 10 */

2 𝐶′ ← randompermutation(𝐶) /* Randomise the order of the constants */

3 for 𝑘 from 1 to 𝑛 do /* Generate 𝑛 uniform random integers each with 𝜄 digits */

4 𝑎𝑘 ← random integer(−10𝜄 + 1…10𝜄 − 1)
5 if 𝔽 = ℂ then
6 𝑎𝑘 ← 𝑎𝑘 + i ⋅ random integer(−10𝜄 + 1…10𝜄 − 1)

7 𝑥 ← (∑𝑛
𝑘=1(𝑎𝑘 𝐶

′
𝑘), 𝐶

′
1, … , 𝐶′𝑛) /* Construct the integer relation problem */

8 𝔞 ← (−1, 𝑎1, … , 𝑎𝑛) /* Construct a known integer relation solution */

9 return 𝑥, 𝔞

2.5.2 Testing Procedure

For each test set, we attempted to solve the problems within it using pslq, and lll (as
appropriate) in Maple. Our aim was to see if the algorithm could recover the known
integer relation, 𝔞, from the input vector 𝑥. Any integer multiple of the known relation
was considered to be an equivalent relation for this purpose.

Each test set was used twice. Once with so called short input wherein only the coefficients
in the known relation 𝔞 were used, and once with so called long input wherein twice as
many coefficients were used (or all the coefficients from the set if there were not enough).
The purpose of this was to verify the robustness of the algorithm in the presence of
unnecessary information, and to see the effect on the needed precision and time.

We compute at multiple precisions until we find the known integer relation, or until the
precision becomes too large. If the known relation can be found, we define the most
favourable computation as the one which finds the known relation using the smallest
precision. All recorded measurements are either for the most favourable computation (if
it exists), or for the computation performed with the largest precision otherwise.

27

2 Classical Integer Relations

We measure and record the precision used, and the time taken7 for all computations.
For lll computations we also measure and record the number of lll attempts before the
relation was recovered, and the number of candidate integer relations.

Result Diagnosis

The result of a computation on an individual test instance is classified as outlined in
Table 2.1.

Table 2.1: Result Classifications

good The known integer relation was recovered.
unexpected A different, correct integer relation was found.
bad An incorrect (“false”) integer relation was found.
fail The algorithm produced no candidate relations.

No unexpected results were found during our testing. This classification was originally
introduced in the testing of an early implementation as a result of an oversight in which
log 2, log 3 and log 6 were together in some problems. This oversight has since been cor-
rected, yet it remains possible (although unlikely) that other unexpected relations may
still be computed, so we keep the classification as a possibility.

A fail result can occur if an unrecoverable error happens during the computation of
the integer relation, although in practice we have never seen this. Alternatively, an lll
computation might produce an output with no candidate integer relations (i.e., none of
the discriminants are sufficiently close to 0). We note that we have never seen Maple’s
pslq implementation fail to produce a candidate relation, even when given input which
is integer linearly independent.

To assess each result classification, we immediately diagnose a fail result if no result
is produced by the algorithm. Otherwise, we inspect the output of the integer relation
computation and look to see if it is an integer multiple of the known integer relation.
Observe that if 𝑎 = (𝑎1, … , 𝑎𝑛) is the output of the integer relation computation and
𝔞 = (−1, 𝑧1, … , 𝑧𝑘) is the known relation, then if 𝑎 = 𝜆𝔞 it must be the case that 𝜆 = −𝑎1.
Finally, if we did not see a multiple of the known relation, we check to see if the output
of the integer relation computation nonetheless appears to be a valid integer relation to
a precision of 1,000 decimal digits (which is almost double the maximum precision that
our integer relation calculations ever use; see below).

In the case that lll is the integer relation computation function, then we may have mul-
tiple columns vectors whose last element is less than 1 in absolute value (i.e., multiple

7measured in CPU seconds using Maple’s time() function

28

2 Classical Integer Relations

candidates for an integer relation). If this happens, we diagnose each individually, and
take the best result using the order good > unexpected > bad > fail.

Procedure Diagnose(𝑥, 𝐴, 𝔞)
Input : 𝑥 (integer relation problem)

𝐴 (set of candidate integer relations for 𝑥)
𝔞 (known integer relation for 𝑥)

Output: result ∈ {good,unexpected, bad, fail}
relation ∈ 𝐴 ∪ {none}

1 result ← fail, relation ← none
2 for each 𝑎 ∈ 𝐴 do
3 if 𝑎 = (−𝑎1)𝔞 then
4 if result < good then result ← good, relation ← 𝑎 end
5 else
6 val ← ∑𝑛

𝑘=1 𝑎𝑘𝑥𝑘 /* compute using 1000 decimal digit precision */

7 if |val | ≤ 10−998 then
8 if result < unexpected then result ← unexpected, relation ← 𝑎 end
9 else
10 if result < bad then result ← bad, relation ← 𝑎 end

11 return (result , relation)

Numeric Precision

In order to find the minimum required numeric precision, each integer relation problem
was computed multiple times using different precisions. We start at a precision of 1
decimal digit, and double the precision until we produce a GOOD result (or until we
exceed some threshold; at which point we stop computing that problem). At this point
(provided we are still computing) we have bounded theminimum precision inside a range
of (2𝑘, 2𝑘+1] and use a binary search to find the minimum precision within this bound that
gives a good result.

We note that this procedure assumes that if a good result is found for some precision 𝑝,
then it will be found for all 𝑝′ > 𝑝. We do not know a priori that this is the case, but it is
infeasible to test each precision individually. To ameliorate this problem, after we have
found our minimal precision, we compute the integer relation again using a precision 1
decimal digit higher, and record this result for later comparison.

29

2 Classical Integer Relations

Procedure Find Minimal Precision(𝑥, 𝔞)
Input : 𝑥 (an integer relation input vector)

𝔞 (known integer relation of 𝑥)
Output: 𝑝 (Minimum precision required for a good result)

1 𝑝 ← 1/2
2 repeat /* Double precision until a good result is produced, or p is too large */

3 𝑝 ← 2𝑝
4 candidates ← Integer_Relation(𝑥) /* Use 𝑝 decimal digit precision */

5 result ← Diagnose(𝑥, candidates, 𝔞)
6 until result = good or 𝑝 > 500
7 if result = good then /* Perform a binary search to find where the result changes */

8 lower ← max {1, 𝑝/2}, upper ← 𝑝
9 repeat
10 𝑚 ← ⌊(lower + (upper − lower))/2⌋
11 candidates ← Integer_Relation(𝑥) /* Use 𝑚 decimal digit precision */

12 result ← Diagnose(𝑥, candidates, 𝔞)
13 if result = good then upper ← 𝑚 else lower ← 𝑚 end
14 until upper − lower ≤ 1
15 𝑝 ← upper /* The upper bound must be the minimal precision we seek */

16 return p

2.6 Experimental Results

In all cases, the known integer relation was able to be successfully computed by the
integer relation finding algorithm (whether it be pslq, or lll). This is summarised in
Table 2.2.

Table 2.2: Experimental results for classical integer relations

Test Set Parameters Short Input Long Input
𝔽 𝐶 𝜄 pslq lll pslq lll

ℝ 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℝ 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℂ 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℂ 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℂ 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℂ 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

We explore themore detailed results exploringminimum required precision, and compar-
ison between lll and pslq below. In all plots in the following subsections, the horizontal
axis represents the individual problems within the test set, numbered from 1 to 1000 after
being ordered in ascending order first by theoretical minimum required precision, then
by the number of digits in the known relation. Note that this ordering is different to the
ordering of the problems in the test set (keyed by the index “ID” in the input file).

30

2 Classical Integer Relations

2.6.1 Real Test Sets

Precision

The precisions required for the real test sets are shown in Fig. 2.1. We depict, for each
test problem, the theoretical minimum precision for that problem along with the smallest
precision needed for both pslq, and lll.

We see that required precision tends to grow with minimum theoretical precision, as
ought to be expected. We also see that the required lll precision is more varied than that
needed for pslq, and is typically significantly larger.

We observe that some computations needed lower precision than the theoretical min-
imum. These are predominantly lll computations, although there are also some such
pslq computations. We are uncertain why this happens, although we do note that it is
rare. We suspect that these computations simply got lucky.

We look at the distribution of the required precisions (as a multiple of the theoretical
minimum precision) in Fig. 2.2. This is with an eye to verifying Borwein’s claim that
pslq frequently requires less than 15% more than the theoretcial minimum. As such we
have marked on each graph the line representing 115% as a horizontal dashed line. For
each combination of coefficient size (value of 𝜄) and input length we have grouped the
test problems by minimum theoretical precision, and plot the each required precision we
found for any test instance with that theoretical minimum. We indicate number of test
instances with that required precision by the width of the line.

We see that for small coefficient (i.e., single digit) integer relations we are frequently
over the 115% mark (sometimes as much as four times higher). We do not consider this
to be particularly significant, as most of these precisions are ridiculously low for practical
computationwhere hardware floating point sizes are approximately 7 or 16 decimal digits
of precision (for single or double precision IEEE floating point numbers). We also note
that for the low theoretical precisions a difference of 1 or 2 decimal digits in precision is
a significant percentage of the theoretical minimum, so a larger variance in percentages
is expected. This observation does not, however, explain the difference in behaviour
(in this regard) of 18 and 19 decimal digits of theoretical minimum precision. It is worth
considering that, for similar sized theoreticalminimums, when comparing small and large
coefficient test sets the former will have an input vector length approximately 6 times
larger than the latter.

For the large coefficient test sets we see as theoretical minimum rises that the required
precisions usually do fall at or below 115%, although not always. Based on the data seen
here, we suggest that 120% is a better bound.

31

2 Classical Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure 2.1: Precision required for real test sets using real constants.

32

2 Classical Integer Relations

3 4 5 6 7 8 9 10 11

100

200

300

400

115Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and short input length

5 7 9 11 13 15 17 19 21

100

150

200

250

115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and long input length

18 24 30 36 42 48 54 60 66

80

100

120
115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and short input length

30 42 54 66 78 90 102 114 126

100

120
115

Minimum Theoretical Precision (width of line indicates number of cases)

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and long input length

Figure 2.2: pslq precision needed for real test sets (as a percentage of theoretical precision).

33

2 Classical Integer Relations

Timing

We compare the time required for pslq and lll computations on the same test sets. The
results are shown in Fig. 2.3. A logarithmic vertical scale is used to better show the small
times compared to the larger ones. Recall that the times reported are, as stated above,
for the most favourable computation (the one using the lowest precision that nonetheless
produces a good result).

We see that lll uses significantly more time than pslq, often two orders of magnitude
greater. This is partly explained by the fact that to compute a single integer relation with
lll (a single run of the LLL Integer Relation procedure) requires multiple executions of
the lll algorithm itself, whereas pslq requires only a single execution. As the lll com-
putation times are frequently in the order of 100 times greater than the pslq computation
times it seems that individual lll computations are predominantly slower than individ-
ual pslq computations. The relative speed of a single lll computation to a single pslq
computation is moot, however. Using lll to find an integer relation requires multiple
lll computations and so for the purposes of finding integer relations lll is demonstrably
considerably slower.

We note in passing that the slowness of the lll algoritihm is compounded when com-
puting an entire test set. This is because each test problem requires multiple executions
of the algorithm in question at different precisions in order to find the optimal required
precision. In the worst case of real classical test sets (𝜄 = 6 and long input length) we saw
a total time of approximately half a minute for pslq compared to approximately three
and a half days for lll. This situation was even more pronounced for other cases de-
scribed in the next chapter; the longest time we recorded was over two months (around
77 days). These total execution times are not particularly relevant to the performance of
the algorithms, so we do not discuss them further.

LLL Attempts

If we look at the number of lll attempts reported in the output files, we see that in the
case of small coefficients and short input length that the number of attempts varies from
1 to 28. Similarly, if we look at the case of small coefficients and long input we see that
the number of attempts varies from 3 to 40.

In the case of large coefficients, we see a similar effect. For short input we see the num-
ber of attempts ranges between 5 and 69, and for long input we see a range of 5 to 126
attempts.

If we look at all the real test set lll computations, and compare the number of attempts
against the precision (in decimal digits) of the computation, we see the results given

34

2 Classical Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure 2.3: Computation time taken for real test sets using real constants.

35

2 Classical Integer Relations

in Fig. 2.4. We see that the number of attempts is usually in the vicinity of half the
computation precision. Moreover, the number of attempts is frequently over 50. We also
see that occasionally we need very few attempts, and that this phenomenon occurs for
all precision.

100

200

All real test sets

Precision used (decimal digits) LLL attempts

Figure 2.4: lll computation precision compared against number of lll attempts (real test sets)

The number of attempts is related to the value of 𝑘 for which computing lll on Λ𝑥(10𝑘)
was successful by 𝑘 = 𝑝 − attempts. If we plot the value of 𝑘 as a multiple of computation
precision, with an eye to choosing a better starting value of 𝑘 in the LLL Integer Relation
procedure on page 24, we see no clear relation which may be useful. The results can be
seen in Fig. 2.5.

The number of attempts also speaks to the phenomenon whereby the value of 𝑁 may,
numerically, be too large. In extreme cases, we needed to reduce the value of 𝑁 by a
factor of more than 10−100 before we were able to compute a known integer relation.
This particular case happened 161 times out of the 4000 total tests performed for the real
cases, and we note that in 882 cases the number of attempts was 50 or above. Most cases
were not this extreme, however, with the median number of attempts being 16.

0

0.2

0.4

0.6

0.8

All real test sets

𝑘 from Λ𝑥(10𝑘) as a multiple of precision

Figure 2.5: 𝑘 from first successful Λ𝑥(10𝑘) as a multiple of precision for lll (real test sets)

36

2 Classical Integer Relations

2.6.2 Complex Test Sets

Precision

The precisions required for the complex test sets are shown in Figs. 2.6 and 2.7. We
depict, for each test problem, theoretical minimum precision and the smallest precision
needed for pslq. We show two bounds for the theoretical minimumprecision: the smaller
assumes that the number of digits of a Gaussian integer is the number of digits of the
largest coefficient (i.e., real or imaginary part), and the larger assumes that the number
of digits of a Gaussian integer is the total number of digits in both the real and imaginary
parts. In our case, the larger is twice the smaller.

We answer the question alluded to in Section 2.4.1. Although for small coefficients (both
with real and complex constants) we see the successful precision clusters around the
larger of the twominimum precision options, we see that for large coefficients the needed
precision hovers slightly above the lower theoretical minimum (and significantly below
the larger).

We conclude that for the complex case of pslq, the argument referenced by Bailey and
Broadhurst should be as follows. In order to find an integer relation of 𝑛 numbers where
the integers of that relations have real and imaginary parts of no more than 𝑑 digits, then
at least 𝑛𝑑 precision must be used for the computation.

The distribution of the required precisions (as a multiple of the theoretical minimum
precision) is shown in Figs. 2.8 and 2.9.

We see that for small coefficient (i.e., single digit) integer relations we are almost always
over the 115% mark (sometimes as much as four times higher). The extremes we see are
not as high as those of the real case, however, for the most part the precisions are larger
for the classical cases.

For the large coefficient test sets we see, contrary to the real cases, that the as theoretical
minimum rises, the required precision also rises. Furthermore, also in contrast to the real
case, se see that as the theoretical minimum increases, more of progressively more of the
required precisions are above the 115% bound. We do note that, for these large coefficient
cases, the requried precision is almost always bounded by 130%.

Timing

The timing required for pslq and lll computations on the same test sets are shown in
Fig. 2.10 for the cases with real constants, and Fig. 2.11 for the cases with complex con-
stants. We see the same behaviour we saw in the real case, but with a more pronounced
difference between lll and pslq.

37

2 Classical Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure 2.6: Precision required for complex test sets using real constants.

38

2 Classical Integer Relations

10

20

30

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure 2.7: Precision required for complex test sets using complex constants.

39

2 Classical Integer Relations

3 4 5 6 7 8 9 10 11

100

200

300

400

115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and short input length

5 7 9 11 13 15 17 19 21

100

200

300

115Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and long input length

18 24 30 36 42 48 54 60 66
60

80

100

120

140

115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and short input length

30 42 54 66 78 90 102 114 126

100

120
115

Minimum Theoretical Precision (width of line indicates number of cases)

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and long input length

Figure 2.8: pslq precision needed for complex test sets using real constants (as a percentage of
theoretical precision).

40

2 Classical Integer Relations

3 4 5 6 7 8 9 10 11

100

200

300

115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and short input length

5 7 9 11 13 15 17 19 20

100

150

200

250

115Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

small coefficients, and long input length

18 24 30 36 42 48 54 60 66

100

120

140

160

115

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and short input length

30 42 54 66 78 90 102 114 120

100

110

120

130

115

Minimum Theoretical Precision (width of line indicates number of cases)

Re
qu

ir
ed

Pr
ec
is
io
n

(%
of

th
.m

in
.)

large coefficients, and long input length

Figure 2.9: pslq precision needed for complex test sets using complex constants (as a percentage
of theoretical precision).

41

2 Classical Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure 2.10: Computation time taken for complex test sets using real constants.

42

2 Classical Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure 2.11: Computation time taken for complex test sets using complex constants.

43

2 Classical Integer Relations

100

200

All real test sets

Precision used (decimal digits) LLL attempts

Figure 2.12: lll computation precision compared against number of lll attempts (real test sets)

0

0.2

0.4

0.6

0.8

All real test sets

𝑘 from Λ𝑥(10𝑘) as a multiple of precision

Figure 2.13: 𝑘 from first successful Λ𝑥(10𝑘) as a multiple of precision for lll (real test sets)

LLL Attempts

Looking at the comparison of the number of attempts against the precision (in decimal
digits) of the computation for all complex test sets we see the results given in Fig. 2.12.
A plot of the value of 𝑘 as a multiple of computation precision is given in Fig. 2.13. We
see the same behaviour as in the real cases.

For test sets using real constants we count 275 out of 4000 test problems for which the
number of attempts was above 100 and 1,071 where the number of attempts was 50 or
above; the median number of attempts was 26. For test sets using complex constants we
count 239 out of 4000 test problems for which the number of attempts was above 100 and
1,067where the number of attempts was 50 or above; the median number of attempts was
21. In aggregate we have 514 test problems out of the total 8000 for which the number of
attempts was above 100 and 2,138 cases where the number of attempts was 50 or above;
the median number of attempts was 23.

44

3 Algebraic Integer Relations

We extend the idea of integer relations to include integers from algebraic extension fields.
As a first step toward this we will focus on quadratic extension fields.

3.1 Preliminaries

We give a brief overview of algebraic number theory; enough to introduce algebraic in-
tegers and to facilitate the necessary modifications to the algorithm. We begin with an
overview of the general theory, and then provide details for the specific case of quadratic
number fields which we concentrate on for this section.

For a more thorough study, the reader is referred to the literature. For example, Hardy
and Wright [47], Milne [60], and Stewart and Tall [68].

3.1.1 Algebraic Number Theory

We begin with the notion of a field extension.

Definition 3.1.1 (Field Extension, 𝕂 ∶ 𝔽). Let 𝔽 be a field. A field, 𝕂, for which 𝔽 ⊆ 𝕂
(i.e., 𝔽 is a subfield of 𝕂) is called a field extension (or equivalently an extension field) of
𝔽. We denote this by 𝕂∶𝔽 when we need to unambiguously identify the field that is being
extended.

This definition allows us to consider a field as a trivial extension of itself (the case when
𝕂 = 𝔽). Doing so will be useful when extending pslq.

We note in passing that a common notation in the literature for field extensions is 𝕂/𝔽.
The notation we have presented is the one used by Stewart and Tall [68], and is a little
more consistent with Definition 3.1.2, below, so we adhere to it.

An extension field 𝕂∶ 𝔽 forms a vector space over the base field 𝔽. This is not difficult
to see; 𝕂 is a field so there is already a well defined addition operation on it that satisfies
the required vector space axioms. Moreover 𝔽 ⊂ 𝕂 so scalar multiplication is similarly
well defined, and the relevant axioms satisfied.

45

3 Algebraic Integer Relations

The dimension of this implicit vector space structure is of interest to us.

Definition 3.1.2 (Order of a Field Extension, [𝕂∶𝔽]). Let 𝕂 ∶ 𝔽 be a field extension. The
order of 𝕂 over 𝔽, denoted [𝕂∶𝔽], is the dimension of 𝕂 as a vector space over 𝔽.

We make use of the notion of algebraic elements in a field extension. That is, those that
are a zero of a (non-trivial) polynomial with coefficients in the base field.

Definition 3.1.3 (Algebraic over a field). Let 𝔽 be a field, and consider an extension field
𝕂 ∶ 𝔽. An element 𝑘 ∈ 𝕂 is said to be algebraic over 𝔽 if 𝑘 is a zero of a polynomial with
coefficients in 𝔽. That is, if it satisfies

𝑓𝑛 𝑘𝑛 + ⋯ + 𝑓1 𝑘 + 𝑓0 = 0

for some 𝑛 ∈ ℕ where 𝑓𝑖 ∈ 𝔽 and 𝑓𝑛 ≠ 0.

Observe that, because 𝔽 is a field, we may assume without loss of generality that the
polynomial is monic. That is, the leading coefficient 𝑓𝑛 is equal to the identity element of
𝔽 (usually denoted as 1).

If, instead of the field 𝔽, we consider an integral domain, 𝐷 say, (i.e., a commutative ring
with a multiplicative identity element, and no non-zero elements 𝑑1, 𝑑2 with the property
that 𝑑1 𝑑2 = 0), then we have a notion of integral elements. In this case we need to
explicitly define the polynomial to be monic (unlike Definition 3.1.3 in which it could be
assumed without loss of generality).

Definition 3.1.4 (Integral over a field). Let 𝐷 be an integral domain, and consider an exten-
sion field 𝕂∶𝔽 such that 𝐷 ⊆ 𝕂. An element 𝑘 ∈ 𝕂 is said to be integral over 𝔽 if 𝑘 is a zero
of a monic polynomial with coefficients in 𝐷. That is, if it satisfies

𝑘𝑛 + 𝑑𝑛−1𝑘𝑛−1 + ⋯ + 𝑑1 𝑘 + 𝑑0 = 0

for some 𝑛 ∈ ℕ where 𝑑𝑖 ∈ 𝐷.

We are primarily interested in field extensions, 𝕂 ∶ ℚ, of the rational numbers. Note
that both ℝ and ℂ are, by Definition 3.1.3, field extensions of ℚ, although there are many
others. The following notation is useful for describing important classes of rational field
extension.

Notation 3.1.5 (ℚ(⋅), ℤ[⋅]). Let 𝑧 ∈ ℂ. We denote by ℚ(𝑧) the smallest subfield of ℂ that
contains both ℚ and 𝑧. We denote by ℤ[𝑧] the smallest subring of ℂ that contains both ℤ
and 𝑧.

46

3 Algebraic Integer Relations

Note that it must be the case that ℚ ⊆ ℚ(𝑧) and ℤ ⊆ ℤ[𝑧]. Moreover ℚ(𝑧) is a field
extension of ℚ, and is non-trivial so long as 𝑧 ∉ ℚ.

We may think of ℚ(𝑧) as the field we get when we take ℚ ∪ {𝑧} and then append the
minimum amount of new elements required to make a field (in a similar manner to which
the real numbers may be extended to the complex numbers after the inclusion of i).

Inasmuch as we are interested in field extensions of the rational numbers, we are partic-
ularly interested in field extensions consisting of elements which are algebraic over the
rationals. We call these algebraic numbers as a shorthand and note in general that any
time we do not specify the base field, we mean it to be the rational numbers. Note that
this definition of an algebraic number is typical in the literature, and the general case of
being algebraic over a base field is sometimes omitted.

Definition 3.1.6 (Algebraic Number). A number 𝑧 ∈ ℂ is an algebraic number (or simply
algebraic) if it is algebraic over the rational numbers.

We are further interested numbers which are integral over the rational integers. These
numbers behave in relation to algebraic numbers analogously to theway rational integers
behave in relation to the rational numbers. The collection of all such numbers forms a
subring of the algebraic numbers [68]—and thus also of the complex numbers— and so is
closed under addition and multiplication.

Definition 3.1.7 (Algebraic Integer,𝒜). Anumber 𝑧 ∈ ℂ is an algebraic integer if it is integral
over the rational integers. The ring of all algebraic integers is denoted by 𝒜.

The above definition, as noted by Hardy and Wright1, is motivated by the fact that any
rational number 𝑞 = (𝑎/𝑏) ∈ ℚ is a zero of the polynomial 𝑏 𝑥 − 𝑎, and any rational
integer 𝑚 ∈ ℤ is a zero of the monic polynomial 𝑥 − 𝑚 (corresponding to the case 𝑏 = 1
in the general rational case). It follows that rational numbers are algebraic, and that if
an algebraic integer is a rational number, then it is a rational integer. It is for this reason
that we introduced the term “rational integer” in Definition 2.1.2 on page 6

With our notion of rational extension fields, algebraic numbers, and algebraic integers
we consider rational extension fields consisting entirely of algebraic numbers.

Definition 3.1.8 (Algebraic Extension). An extension field, 𝕂 ∶ ℚ, of the rational numbers
is an algebraic extension field (or simply an algebraic extension) if every 𝑘 ∈ 𝕂 has the
property that 𝑘 is an algebraic number.

Given an algebraic extension we also consider the elements within it that are algebraic
integers. The collection of all such elements forms a subring of the extension field.

1Although Hardy and Wright specifically say that “the definition is natural”.

47

3 Algebraic Integer Relations

Definition 3.1.9 (Algebraic Integers of an Algebraic Extension, 𝒪𝕂). Let 𝕂 be an algebraic
extension field. The ring of integers of 𝕂, denoted 𝒪𝕂, is the intersection 𝕂 ∩ 𝒜 of the
extension field with the ring of all algebraic integers.

We note that all algebraic numbers, by virtue of being zeros of rational-coefficient poly-
nomials, must be contained in the set of complex numbers, ℂ. As such, all algebraic
extension fields are subfields of the complex numbers. We sub-divide these fields into
real and complex fields in the obvious way.

Definition 3.1.10 (Real and Imaginary Algebraic Extensions). Let 𝕂 be an algebraic exten-
sion field. If 𝕂 ⊆ ℝ then 𝕂 is a real algebraic extension field, otherwise it is a complex
algebraic extension field.

For any algebraic extension,𝕂, there will be a number of unique embeddings (one-to-one
mappings that preserve the field structure), 𝜎𝑖 ∶ 𝕂 → ℂ. The number of these embeddings
is precisely the order, [𝕂∶ℚ], of 𝕂 as a vector field over the rationals.See Stewart and
Tall for a proof of this2.

We use these embeddings to (amongst other things) define a norm on algebraic numbers.
This norm is distinct from—and so should not be confused with—the norm in the sense
of a normed linear space. In particular, an algebraic norm may be negative.

Definition 3.1.11 (Norm of an Algebraic Number, Algebraic norm). Let 𝕂 be an algebraic
extension field of order 𝑛. We define a function 𝑁 ∶ 𝕂 → ℂ by

𝑁(𝑘) ∶=
𝑛

∏
𝑖=1

𝜎𝑖(𝑘)

where 𝜎1, … , 𝜎𝑛 are the 𝑛 unique embeddings of 𝕂 into ℂ. We call this function the algebraic
norm of𝕂 (or more generally an algebraic norm). The value𝑁(𝑘) is the norm of the algebraic
number 𝑘 in 𝕂 (or, when the context is clear, the norm of 𝑘).

Finally, we consider rings in which an analogue of the (rational integer) Euclidean algo-
rithm may be performed. We call such rings Euclidean domains.

Definition 3.1.12 (Euclidean domain, Euclidean function). Let 𝐷 be an integral domain. If
there is a function 𝜙 ∶ 𝐷 ⧵ {0} → ℕ that satisfies the properties

𝜙 (𝑑1𝑑2) ≥ 𝜙 (𝑑2) for all 𝑑1, 𝑑2 ∈ 𝐷 ⧵ {0}, (3.1)

and for each 𝑑1, 𝑑2 ∈ 𝐷, there exists 𝑞, 𝑟 ∈ 𝐷 s.t. 𝑑1 = 𝑑2 𝑞 + 𝑟 and 𝑟 = 0 or 𝜙(𝑟) < 𝜙(𝑑2).
(3.2)

2Be aware that Stewart and Tall use the more precise term monomorphism for these embeddings.

48

3 Algebraic Integer Relations

then 𝐷 is a Euclidean domain. The function 𝜙 is called a Euclidean function.

There is some subtlety in the definition of a Euclidean function, and several variations of
the conditions exist in the literature. Ağargün and Fletcher [1] give a thorough treatment
of the different variations and their implications. For our purposes, these variations and
subtleties are not relevant, and we use the given definition.

In particular we are interested in algebraic extensions whose ring of integers is such a
ring. Such fields are referred to as Euclidean.

Definition 3.1.13 (Euclidean Field). Let𝕂 be an algebraic extension field. If𝒪𝕂 is a Euclidean
domain, then 𝕂 is a Euclidean Field

The algebraic norm can, in some instances, act as a Euclidean function on the ring of
integers of an algebraic extension. Such fields are referred to as norm Euclidean.

Definition 3.1.14 (Norm Euclidean Field). Let 𝕂 be a Euclidean field. If the field norm, 𝑁, of
𝕂 is a euclidean function for the ring of integers, 𝒪𝕂, then 𝕂 is a norm Euclidean field.

3.1.2 The Specific Case of Quadratic Fields

For the purposes of this thesis we focus on quadratic extension fields. That is, fields of
the form ℚ(√𝐷) for 𝐷 ∈ ℤ where 𝐷 is square free. The particular manifestations of the
above general definitions are discussed in this subsection.

The order of a quadratic extension field is 2. Stewart and Tall [68] show that all algebraic
extension fields of order 2 are of this form. Consequently, quadratic extension fields and
algebraic extension fields of order 2 coincide.

Real quadratic extension fields are those for which 𝐷 ≥ 0. Complex quadratic extension
fields are those for which 𝐷 < 0.

Quadratic fields can be written as ℚ(√𝐷) = {𝑞1 + 𝑞2√𝐷 | 𝑞1, 𝑞2 ∈ ℚ}, and so consequently
are of order 2. The ring of integers of such fields depend on the value of 𝐷. Specifically,
𝒪ℚ(√𝐷) = ℤ[𝜔] = {𝑚1 + 𝑚2 𝜔 | 𝑚1, 𝑚2 ∈ ℤ} where

𝜔 = {
√𝐷 if 𝐷 ≡ 2, 3 (mod 4)

(1 + √𝐷)/2 if 𝐷 ≡ 1 (mod 4)
(3.3)

It should be clear that √𝐷 ∈ 𝒜 and, more specifically, is a quadratic integer because it is
a zero of the polynomial 𝑥2 − 𝐷. To see the same for (1 + √𝐷)/2 when 𝐷 ≡ 1 (mod 4)

49

3 Algebraic Integer Relations

requires us to observe that 𝑥2−𝑥−(𝐷−1)/4 is a monic quadratic polynomial with integer
coefficients for which (1 + √𝐷)/2 is a zero.

An arbitrary quadratic integer may be written in the form 𝛼 + 𝛽√𝐷, although the 𝛼 and
𝛽 are not necessarily rational integers. In the case that 𝐷 ≡ 2, 3 (mod 4) the result is
immediate because

ℤ[𝜔] = ℤ[√𝐷] = {𝑚1 + 𝑚2 √𝐷 | 𝑚1, 𝑚2 ∈ ℤ} = {𝛼 + 𝛽√𝐷 | 𝛼, 𝛽 ∈ ℤ}

However in the case that 𝐷 ≡ 1 (mod 4), the result is not immediately obvious.

ℤ[𝜔] = ℤ[(1 + √𝐷)/2] = {𝑚1 + 𝑚2 (1 + √𝐷)/2 | 𝑚1, 𝑚2 ∈ ℤ}

= {(2𝑚1 + 𝑚2 + 𝑚2 √𝐷)/2 | 𝑚1, 𝑚2 ∈ ℤ}

= {(𝑎 + 𝑏 √𝐷)/2 | 𝑎, 𝑏 ∈ ℤ and 𝑎 ≡ 𝑏 (mod 2)}

= {𝛼 + 𝛽√𝐷 | 𝛼, 𝛽 ∈ 1
2ℤ and 2𝛼 ≡ 2𝛽 (mod 4)}

We will use both forms 𝛼 + 𝛽√𝐷 and 𝑚1 + 𝑚2 𝜔 of quadratic integers as appropriate.

The two distinct embeddings of ℚ(√𝐷) into the complex numbers are

(𝑞1 + 𝑞2√𝐷) ↦ 𝑞1 + 𝑞2√𝐷 and (𝑞1 + 𝑞2√𝐷) ↦ 𝑞1 − 𝑞2√𝐷

The algebraic norm, therefore, is 𝑁(𝑞1 + 𝑞2√𝐷) = 𝑞21 − 𝐷 𝑞22 . In the particular case of the
quadratic integers, using the 𝑚1 + 𝑚2 𝜔 form, the norm works out to be

𝑁 (𝑚1 + 𝑚2 𝜔) = {
𝑚2
1 − 𝐷𝑚2

2 if 𝐷 ≡ 2, 3 (mod 4)

(𝑚1 +
1
2 𝑚2)

2
− 1

4 𝐷𝑚2
2 if 𝐷 ≡ 1 (mod 4)

Note that Hardy andWright [47] define 𝜔 to be (√𝐷−1)/2 instead of our definition. Con-
sequently their expression for the norm in the case of 𝐷 ≡ 1 (mod 4) is correspondingly
different than the above. These different definitions are equivalent.

There are only finitely many norm Euclidean quadratic fields [68]. They areℚ(√𝐷) for

𝐷 ∈ {−11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73}

We note in passing that there are Euclidean quadratic fields that are not norm Euclidean
fields, for example ℚ(√69) as discovered by Clark [32]. It is known, however, that there
are no other complex Euclidean quadratic fields (Stewart and Tall [68] give a prove of this).
As such the complex norm Euclidean fields and the complex Euclidean fields coincide.

50

3 Algebraic Integer Relations

3.2 Generalising Integer Relations to Include Algebraic Integers

In order to extend the notion of integer relations to allow for algebraic integers, we first
establish the relationship between algebraic integers, algebraic extension fields, and in-
teger relations. We want to generalise, and thus wish to encapsulate the cases already
handled by the existing theory.

A naïve strategy would be to replace 𝔽 in Definition 2.1.1 on page 6 with an arbitrary
extension field, and to replace 𝒪 with the ring of integers of that extension field. Such
a strategy will not capture the classical cases, however. Observe that neither ℝ nor ℂ
are algebraic extension fields of ℚ, although they are general extension fields of ℚ in the
sense of Definition 3.1.1 As such Definition 3.1.9 does not apply and, strictly speaking,
we do not have a ring of integers with which to replace 𝒪. If we extend the idea of a ring
of integers to ℝ and ℂ by computing ℝ ∩ 𝒜 and ℂ ∩ 𝒜 we see that these rings are not,
respectively, ℤ and ℤ[i] and so we still fail to capture the classical cases.

We instead generalise by introducing an intermediate extension field, as follows.

Definition 3.2.1 (Algebraic Integer Relation, 𝕂 integer relation, 𝒪 relation). Let 𝔽 ∈ {ℝ, ℂ},
and let𝕂 be an algebraic extension field. Denote by 𝒪 the ring of integers of𝕂 (i.e., 𝒪 = 𝒪𝕂).
For 𝑥 ∈ 𝔽𝑛 a 𝕂-integer relation (or, equivalently, a 𝒪 relation) of 𝑥 is a vector 𝑎 ∈ 𝒪𝑛, 𝑎 ≠ 0,
such that the linear combination 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 = 0. More generally, such relations are
referred to as algebraic integer relations.

Similarly to Definition 2.1.1, trivial integer relations occur when 𝑥𝑖 = 0 for any 𝑖. So we
consider only 𝑥 for which 𝑥𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛.

Observe that algebraic integer relations are indeed a generalisation of classical integer
relations. When 𝔽 = ℝ and 𝕂 = ℚ (thinking of ℚ = ℚ∶ℚ as a trivial algebraic extension
of itself) then an algebraic integer relation is also a classical integer relation satisfying
Definition 2.1.1. The same is true for the complex case when 𝔽 = ℂ and 𝕂 = ℚ(√−1).

Definition 3.2.1 allows, in principle, for complex integer relations of real extension fields.
In practice none of the techniques we discuss, below, for computing quadratic integer
relations allow for finding such cases. We restrict our attention to the cases where 𝔽 is
the Archimedean norm closure of 𝕂 (i.e., 𝔽 = ℝ if 𝕂 is a real algebraic extension field,
and 𝔽 = ℂ otherwise)3.

3.3 Computing Quadratic Integer Relations

We consider three methods for computing quadratic integer relations.
3Note that this is a slightly stronger condition than 𝕂 ⊆ 𝔽.

51

3 Algebraic Integer Relations

3.3.1 Reduction

One approach to computing algebraic integer relations is to reduce the problem to a one
which we already know how to solve. Mostly, this will be reduction to a classical inte-
ger relation problem. We may then solve the problem with an existing classical integer
relation finding algorithm, such as pslq. We will also see that lll allows a direct reduc-
tion to a rational integer lattice problem similar to the one we used for Gaussian integer
relations in Section 2.3.3 on page 14.

If we consider an arbitrary quadratic integer relation, 𝑎 of 𝑥, we observe that a single
term in the linear combination∑𝑎𝑘𝑥𝑘 is of the form (𝑚1 + 𝑚2 𝜔) 𝑥 = 𝑚1 𝑥 +𝑚2(𝑥 𝜔). This
suggests a method of reduction.

Procedure Reduction(𝑥, 𝐷)
Input : 𝑥 ∈ 𝔽𝑛 (where 𝔽 = ℝ if 𝐷 > 1, 𝔽 = ℂ if 𝐷 < −1)

𝐷 ∈ ℤ (𝐷 ∉ {0, 1, −1})
Output: 𝑎 (an integer relation candidate, albeit maybe not from ℚ(√𝐷)𝑛)
1 𝑥′ ← (𝑥1, 𝑥1𝜔,… , 𝑥𝑛, 𝑥𝑛𝜔)
2 𝑎′ ← integer relation(𝑥′) /* Compute 𝑥′ as a classical integer relation problem. */

3 𝑎 ← (𝑎′1 + 𝑎′2 𝜔,… , 𝑎′2𝑛−1 + 𝑎′2𝑛 𝜔)
4 return a

In essence, for a quadratic extension field ℚ(√𝐷) ⊂ 𝔽, and input 𝑥 ∈ 𝔽𝑛 we exploit the
fact that 1 and 𝜔 are integrally linearly dependent in ℤ[𝜔] and attempt to compute the
coefficients of each separately in a single double-length classical integer relation problem.
The candidate relation we get back might not contain quadratic integers from ℚ(√𝐷),
however.

In the real case (i.e., when 𝐷 > 0 and so 𝔽 = ℝ) it is straightforward to see that each
𝑎𝑘 ∈ 𝒪ℚ(√𝐷), and so the reconstructed candidate relation must always be a candidate

ℚ(√𝐷)-integer relation. Moreover, if 𝑎′ truly is a classical integer relation of 𝑥′ then it
must be the case that 𝑎 is a ℚ(√𝐷)-integer relation for 𝑥.

In contrast, for the complex case (i.e., when 𝔽 = ℂ) each 𝑎′𝑘 is a Gaussian integer 𝑚1,𝑘 +
𝑚2,𝑘 𝑖 where 𝑚1,𝑘, 𝑚2,𝑘 ∈ ℤ. Then

𝑎𝑘 = (𝑚1,2𝑘−1 + 𝑚2,2𝑘−1 i) + (𝑚1,2𝑘 + 𝑚2,2𝑘 𝑖) 𝜔 (3.4)

= (𝑚1,2𝑘−1 + 𝑚1,2𝑘 𝜔) + (𝑚2,2𝑘−1 + 𝑚2,2𝑘 𝜔)i (3.5)

= (𝛼1,𝑘 + 𝛽1,𝑘√𝐷) + (𝛼2,𝑘 + 𝛽2,𝑘√𝐷) i (3.6)

= 𝛼1,𝑘 + 𝛽1,𝑘 i√|𝐷| + 𝛼2,𝑘 i − 𝛽2,𝑘 √|𝐷| (3.7)

which is not a quadratic integer of ℚ(√𝐷) if 𝛼2,𝑘 ≠ 0 or 𝛽2,𝑘 ≠ 0.

52

3 Algebraic Integer Relations

In fact, 𝑎𝑘 is an algebraic integer for the (non-quadratic) algebraic extension field ℚ(i +

√|𝐷|) (which can be considered asℚ(i, √|𝐷|), the smallest field containingℚ, i, and√|𝐷|).
If 𝑎′ truly is a classical integer relation of 𝑥′ then we will have found an algebraic integer
relation for 𝑥, but not necessarily from the desired quadratic extension field.

We note in passing that this is not a completely reliable method to find ℚ(i + √|𝐷|)-
integer relations. The ring of integers of ℚ(i+√|𝐷|) consists of more elements than can
be reconstructed from the possible 𝑎′ vectors.

Ideally, for solving the original problem of a ℚ(√𝐷)-integer relation for 𝑥, we want the
𝑎′𝑘 to only ever be rational integer valued. There is, however, no way to guarantee this
when we are computing a complex classical integer relation problem. So instead we wish
to recover a correct relation from 𝑎′ or from 𝑎 using some reliable method. We have not
yet found a such a method which provably works in general, but we nonetheless consider
two methods by which we might extract a quadratic integer relation whose integers are
in the desired quadratic extension field.

Decomposition Method

The first method is to simply ignore the parts we aren’t interested in. This may seem
glib at first, but it is motivated by the observation that in Eq. (3.5) we have effectively
decomposed 𝑎𝑘 into two embedded quadratic integers. Extending this out we see

𝑛
∑
𝑘=1

𝑎𝑘𝑥𝑘 =
𝑛
∑
𝑘=1

((𝑚1,2𝑘−1 + 𝑚1,2𝑘 𝜔) + i (𝑚2,2𝑘−1 + 𝑚2,2𝑘 𝜔)) 𝑥𝑘

=
𝑛
∑
𝑘=1

(𝑚1,2𝑘−1 + 𝑚1,2𝑘 𝜔) 𝑥𝑘 + i
𝑛
∑
𝑘=1

(𝑚2,2𝑘−1 + 𝑚2,2𝑘 𝜔)𝑥𝑘

=
𝑛
∑
𝑘=1

𝜉1,𝑘 𝑥𝑘 + i
𝑛
∑
𝑘=1

𝜉2,𝑘 𝑥𝑘 where 𝜉𝑗,𝑘 ∶= 𝑚𝑗,2𝑘−1 + 𝑚𝑗,2𝑘 𝜔

Observe that 𝜉𝑗,𝑘 are quadratic integers in ℚ(√𝐷). If 𝜉1 ∶= (𝜉1,1, … , 𝜉1,𝑛) is a quadratic
integer relation for 𝑥 then∑𝑛

𝑘=1 𝜉1,𝑘 𝑥𝑘 = 0 and so it must be the case that∑𝑛
𝑘=1 𝜉2,𝑘 𝑥𝑘 = 0

hence 𝜉2 ∶= (𝜉2,1, … , 𝜉2,𝑛) must also be a quadratic integer relation for 𝑥.

It is not guaranteed, however, that these embedded quadratic integer vectors (𝜉1 and 𝜉2)
are actually quadratic integer relations for the original input, 𝑥, even if a quadratic integer
relation exists. As a simple counterexample, consider the vector

𝑥 = ((1 + 2√−2) 𝜋, (3 + 5√2 + 7 i + 11√−2) 𝜋, 𝜋)

53

3 Algebraic Integer Relations

which has a ℚ(√−2)-integer relation (−1, 0, 1 + 2√−2), as well as a ℚ(i + √2)-integer
relation (0, −1, 3 + 5√2 + 7 i + 11√−2). Re-writing the latter relation as per the above we
get

0 = 0 𝑥1 − 𝑥2 + (3 + 5√2 + 7 i + 11√−2) 𝑥3
= 0 𝑥1 − 𝑥2 + (3 + 11√−3) 𝑥3 + i (7 − 5√−2)𝑥3
= (0 𝑥1 − 𝑥2 + (3 + 11√−2) 𝑥3) + i (0 𝑥1 + 0 𝑥2 + (7 − 5√−2) 𝑥3)

= ((−3 − 5√2 − 7 i − 11√−2) 𝜋 + (3 + 11√−2) 𝜋) + i ((7 − 5√−2) 𝜋)

= ((−5√2 − 7 i) 𝜋) + i ((7 − 5√−2) 𝜋)

but neither (−5√2−7 i) 𝜋 nor (7−5√−2) 𝜋 are equal to 0. So neither 0 𝑥1−𝑥2+(3+11√−2) 𝑥3
nor 0 𝑥1+0 𝑥2+(7−5√−2) 𝑥3 are equal to 0, meaning that the embedded quadratic integers
do not form quadratic integer relations. That is, neither of the two embedded quadratic
integer vectors (0, −1, 3 + 11√−2) nor (0, 0, 7 − 5√−2) are quadratic integer relations for
𝑥.

The ℚ(i + √|𝐷|)-integer relation in the counterexample is, in a sense, intrinsic to ℚ(i +

√|𝐷|) (in the sense that it could not be decomposed into a ℚ(√𝐷)-integer relations). A
direct modification of the above counterexample shows that is possible for a vector 𝑥 ∈ ℂ𝑛

to have a ℚ(i + √|𝐷|)-integer relation and not a ℚ(√𝐷)-integer relations, however the
converse is not true because ℚ(√𝐷) ⊂ ℚ(i + √|𝐷|). We note that if 𝑥 has a ℚ(√𝐷)-
integer relation, but not any intrinsic ℚ(i+√|𝐷|)-integer relations (i.e., no relations that
decompose into ℚ(√𝐷)-integer relations) then the above method must find a quadratic
integer relation.

The vectors 𝜉1 and 𝜉2 can be obtained directly from 𝑎′ when reconstructing the vector
𝑎. If we take only the real part of each 𝑎′𝑘 when reconstructing 𝑎 then we recover 𝜉1.
Similarly, if we take only the imaginary part then we recover 𝜉2. It is in this sense that
we introduced this method by stating, somewhat disingenuously, that we ignore the parts
we aren’t interested in.

We need only check one of the two recovered candidates (𝜉1 or 𝜉2), since if one is a
quadratic integer relation then the other must be. Some small care must be taken to
ensure that neither of them is the zero vector. This might happen if 𝑎′ consists entirely
of complex numbers with no real part, or entirely of complex numbers with no imaginary
part. In such an eventuality then, unless 𝑎′ is the zero vector (which should not happen),
only one of 𝜉1 or 𝜉2 will be the zero vector and so we take the other as the candidate.

Despite the limitations, in the absence of a provably correct method, this one shows
promise. Indeed, in our experimental exploration (described later in this chapter) we
found this method to be remarkably reliable.

54

3 Algebraic Integer Relations

Conjugate Method

Another method we might employ is to see if the vector 𝑎 is an algebraic integer multiple
of a quadratic integer vector. To this end we use one of the embeddings of ℚ(i + √|𝐷|)
into ℂ to transform elements of ℚ(i + √|𝐷|) into elements of ℚ(√𝐷).

We note that ℚ(i+√|𝐷|) = {𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i+ 𝑞4 √𝐷 | 𝑞𝑖 ∈ ℚ}, and so is of order 4. The
four distinct embeddings into the complex numbers are

𝜎1 ∶ (𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷) ↦ 𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷

𝜎2 ∶ (𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷) ↦ 𝑞1 − 𝑞2 √|𝐷| − 𝑞3 i + 𝑞4 √𝐷

𝜎3 ∶ (𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷) ↦ 𝑞1 − 𝑞2 √|𝐷| + 𝑞3 i − 𝑞4 √𝐷

𝜎4 ∶ (𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷) ↦ 𝑞1 + 𝑞2 √|𝐷| − 𝑞3 i − 𝑞4 √𝐷

We note in passing that, for a fixed 𝑧 ∈ ℚ(i+√|𝐷|) the values of 𝜎𝑘(𝑧) are the ℚ(i+√|𝐷|)
conjugates of 𝑧. This is a specific case of𝕂 conjugates as described in Stewart and Tall [68]
for the general case of an algebraic number. It is from this that the method is named.

For the purposes of extracting a quadratic integer from the Reduction procedure we are
interested in the second of these embeddings, 𝜎2.

If 𝑧 ∈ ℚ(i + √|𝐷|) then 𝑧 = 𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷 for 𝑞𝑖 ∈ ℚ and

𝑧 ⋅ 𝜎2(𝑧) = (𝑞1 + 𝑞2 √|𝐷| + 𝑞3 i + 𝑞4 √𝐷) ⋅ (𝑞1 − 𝑞2 √|𝐷| − 𝑞3 i + 𝑞4 √𝐷)

= ((𝑞1 + 𝑞4 √𝐷) + i (𝑞3 + 𝑞2 √𝐷)) ⋅ ((𝑞1 + 𝑞4 √𝐷) − i (𝑞3 + 𝑞2 √𝐷))

= (𝑞1 + 𝑞4 √𝐷)
2
+ (𝑞3 + 𝑞2 √𝐷)

2

and so 𝑧 ⋅ 𝜎2(𝑧) ∈ ℚ(√𝐷).

We wish to apply this mapping to the elements of the reconstructed candidate quadratic
relation, 𝑎 from our reduction procedure.

Proposition 3.3.1. Fix a complex quadratic extension field, ℚ(√𝐷), other than ℚ(i). Let
𝑥 ∈ ℂ𝑛 and suppose that 𝑎 ∈ 𝒪𝑛

ℚ(i+√|𝐷 |)
is the result of the the Reduction procedure applied

to 𝑥 and 𝐷. Then for each element 𝑎𝑘 of 𝑎 (where 1 ≤ 𝑘 ≤ 𝑛) we have 𝑎𝑘 𝜎2(𝑎𝑘) ∈ 𝒪ℚ(√|𝐷 |).

Proof. We know from Eqs. (3.5) and (3.6) that

𝑎𝑘 = 𝛼1,𝑘 − 𝛽2,𝑘√|𝐷| + 𝛼2,𝑘 i + 𝛽1,𝑘√|𝐷| = (𝛼1,𝑘 + 𝛽1,𝑘√𝐷) + (𝛼2,𝑘 + 𝛽2,𝑘√𝐷) i

55

3 Algebraic Integer Relations

and so

𝜎2(𝑎𝑘) = 𝛼1,𝑘 − 𝛽2,𝑘√|𝐷| − 𝛼2,𝑘 i − 𝛽1,𝑘√|𝐷| = (𝛼1,𝑘 + 𝛽1,𝑘√𝐷) − (𝛼2,𝑘 + 𝛽2,𝑘√𝐷) i

and that 𝛼𝑗,𝑘 +𝛽𝑗,𝑘√𝐷 is a quadratic integer in ℚ(√𝐷) for each 𝑗. Recall from Section 3.1.2
that if 𝐷 ≡ 2, 3 (mod 4) then 𝛼𝑗,𝑘 and 𝛽𝑗,𝑘 are rational integers, but that if 𝐷 ≡ 1 (mod 4)
then 𝛼𝑗,𝑘 and 𝛽𝑗,𝑘 may be rational half-integers.

In either case the quadratic integers form a ring (and so are closed under addition and
multiplication). We compute

𝑎𝑘 ⋅ 𝜎2(𝑎𝑘) = ((𝛼1,𝑘 + 𝛽1,𝑘 √𝐷) + i (𝛼2,𝑘 + 𝛽2,𝑘 √𝐷)) ⋅ ((𝛼1,𝑘 + 𝛽1,𝑘 √𝐷) − i (𝛼2,𝑘 + 𝛽2,𝑘 √𝐷))

= (𝛼1,𝑘 + 𝛽1,𝑘 √𝐷)
2
+ (𝛼2,𝑘 + 𝛽2,𝑘 √𝐷)

2

and conclude that 𝑎𝑘 ⋅ 𝜎2(𝑎𝑘) ∈ 𝒪ℚ(√𝐷).

We have established that the ℚ(i + √|𝐷|)-integers, 𝑎𝑘, that might be yielded from the
reduction procedure (in the complex case that 𝐷 < 0) can be mapped into ℚ(√𝐷) by
multiplication with 𝜎2(𝑎𝑘). Some consideration must be given to how we use this fact.
Simply performing thismultiplication independently on each such 𝑎𝑘 may verywell break
the algebraic integer relation property of the vector 𝑎. That is, even if ∑𝑎𝑘𝑥𝑘 = 0 it may
well be the case that ∑𝑎𝑘 𝜎2(𝑎𝑘) 𝑥𝑘 ≠ 0. It will be the case that 𝜎2(𝑎𝑗)∑ 𝑎𝑘𝑥𝑘 = 0 for any
𝑗, however, but we note that if 𝑎𝑗 = 0 then this equation is trivial.

So the approach we take is to find the smallest 𝑗 such that 𝑎𝑗 ≠ 0 and consider the vector
𝜎2(𝑎𝑗) 𝑎 as a possible candidate quadratic integer vector. There is no guarantee that the
elements of 𝜎2(𝑎𝑗) 𝑎 are all quadratic integers even though we know that the 𝑗 th one is, so
wemust check to make sure that all the elements are quadratic integers. Wemay perform
this procedure for each non-zero 𝑎𝑗 until we find a quadratic integer vector or we have
exhausted all possibilities.

Much like the previousmethod, we cannot guarantee that thismethodwill work. Nonethe-
less, in the absence of a guaranteed method, it is worth pursuing. We have found this
conjugate method to be remarkably reliable in our experimental exploration.

3.3.2 LLL and Complex Quadratic Relations

In Section 2.3.2 on page 12 we discussed computation of Gaussian integer relations using
lll to compute a reduced basis for a particular lattice. Wemay similarly compute complex
quadratic integer relations using lll to yield a reduced basis for a (different) particular
lattice. Both of these are reducing the problem of finding a quadratic integer relation
to an instance of the problem of finding a lll-reduced rational integer lattice. This is

56

3 Algebraic Integer Relations

distinct from the reduction we discussed in Section 3.3.1, above, only in to what we are
reducing the problem of quadratic integer relations.

Definition 3.3.2 (Complex Quadratic Λ𝑥(𝑁), Λ𝑥(𝑁 , 𝐷)). Fix a complex quadratic extension
field, ℚ(√𝐷). For a given vector 𝑥 ∈ ℂ𝑛 we denote by Λ𝑥(𝑁 , 𝐷) (or, when the quadratic
extension field is clear, simplyΛ𝑥(𝑁)) the lattice spanned by the (2𝑛+2)-dimensional vectors:

{(1, 0, … , 0, 𝑁ℜ𝑥1, 0, … , 0, 𝑁ℑ𝑥𝑛), … , (0, … , 0, 1, 𝑁ℜ𝑥𝑛, 0, ⋯ , 0, 𝑁ℑ𝑥𝑛)}

∪
{(0, … , 0, 𝑁𝔚1𝑥1, 1, 0, … , 0, 𝑁𝔚2𝑥1), … , (0, … , 0, 𝑁𝔚1𝑥𝑛, 0, ⋯ , 0, 1, 𝑁𝔚2𝑥𝑛)}

where 𝑁 ∈ ℝ and

𝔚1𝑥𝑘 = {
−√|𝐷| ℑ𝑥𝑘 if 𝐷 ≡ 2, 3 (mod 4)

(ℜ𝑥𝑘 − √|𝐷| ℑ𝑥𝑘)/2 if 𝐷 ≡ 1 (mod 4)

𝔚2𝑥𝑘 = {√
|𝐷|ℜ𝑥𝑘 if 𝐷 ≡ 2, 3 (mod 4)

(ℑ𝑥𝑘 + √|𝐷|ℜ𝑥𝑘)/2 if 𝐷 ≡ 1 (mod 4)

Observe that Λ𝑥(𝑁 , −1) coincides with Λ𝑥(𝑁) from Definition 2.3.6 on page 14. In fact,
the entire method discussed in Section 2.3.3 is a special case of the one presented here.

TheΛ𝑥(𝑁 , 𝐷) lattice is motivated by a general technique for using lll to compute reduced
bases of complex quadratic integer lattices as reported by Lyu, Porter, and Ling [57].
Given a matrix representation4, 𝑀, for a lattice we construct a new lattice with matrix
representation 𝑀′ by

𝑀′ = [
ℜ𝑀 ℑ𝑀
𝔚1𝑀 𝔚2𝑀

]

Unlike in the complex classical case, we have not obtained Λ𝑥(𝑁 , 𝐷) by applying this
construction to the matrix representation of the real classical Λ𝑥(𝑁) (Definition 2.3.3
on page 12). We have instead applied the operators 𝔚𝑗 only to the 𝑥𝑘 elements of the
basis vectors. The reason for this is to simplify the extraction of the embedded quadratic
integer relations at the end of the computation. We will see that this technique correctly
finds quadratic integer relations.

We note in passing that Lyu, Porter, and Ling also present a modified lll that directly
computes reduced lattice bases of complex quadratic lattices. Their method is only appro-
priate for the complex quadratic norm Euclidean fields (i.e., for𝐷 ∈ {−1, −2, −3, −7, −11}).
We will see a similar limitation in our direct modification of pslq in Section 3.3.3.

4Recall that we are using the unusual convention whereby the row vectors of the matrix are the lattice
basis vectors.

57

3 Algebraic Integer Relations

As was the case with the Gaussian integer lll discussed in Section 2.3.3, we note that
Maple’s implementation of the lll algorithm does not support this modification. Fur-
thermore, the author discovered this modification sufficiently late as to lack the time to
implement it.

Returning to the matter of using Λ𝑥(𝑁 , 𝐷) to find complex quadratic integer relations,
we note that a vector in the lattice will have the form (𝑙1, … , 𝑙𝑛, 𝑑1, 𝑚1, … , 𝑚𝑛, 𝑑2), and the
elements 𝑑1 and 𝑑2 are discriminants. These discriminants, as we show in Lemma 3.3.3,
are the real and imaginary parts, respectively, of 𝑁 ∑𝑛

𝑘=1(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘). Consequently if
both of discriminants are 0 then the lattice vector encodes a quadratic integer relation, 𝑎
say, of 𝑥 where 𝑎 = (𝑚1 + 𝑙1 𝜔,… , 𝑚𝑛 + 𝑙𝑛 𝜔).

We establish a similar bijective correspondence to the one established for the complex
classical case in Lemma 2.3.7 on page 15 by stating and proving the analogous lemma.

Lemma 3.3.3. Fix a complex quadratic extension field, ℚ(√𝐷). Let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛,
and consider the latticeΛ𝑥(𝑁 , 𝐷). For every quadratic integer relation, 𝑎 = (𝑙1+𝑚1 𝜔,… , 𝑙𝑛+
𝑚𝑛 𝜔) ∈ 𝒪𝑛

ℚ(√𝐷), of 𝑥 there is a vector

(𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ∈ Λ𝑥(𝑁)

Moreover, for every lattice element of that form there is a corresponding quadratic integer
relation of 𝑥.

Proof. To simplify the cases we let

𝜆𝑘 ≔ {
𝑙𝑘 if 𝐷 ≡ 2, 3 (mod 4)

𝑙𝑘 +
𝑚𝑘
2 if 𝐷 ≡ 1 (mod 4)

𝜇𝑘 ≔ {
𝑚𝑘 if 𝐷 ≡ 2, 3 (mod 4)
𝑚𝑘
2 if 𝐷 ≡ 1 (mod 4)

and observe that

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘 = (𝑙𝑘 + 𝑚𝑘 𝜔) (ℜ𝑥𝑘 + ℑ𝑥𝑘 i)

= {
(𝑙𝑘 + 𝑚𝑘 i√|𝐷|) (ℜ𝑥𝑘 + ℑ𝑥𝑘 i) if 𝐷 ≡ 2, 3 (mod 4)

(𝑙𝑘 + 𝑚𝑘
1+i√|𝐷 |

2) (ℜ𝑥𝑘 + ℑ𝑥𝑘 i) if 𝐷 ≡ 1 (mod 4)

= (𝜆𝑘 + 𝜇𝑘 i√|𝐷|) (ℜ𝑥𝑘 + ℑ𝑥𝑘 i)

= (𝜆𝑘ℜ𝑥𝑘 − 𝜇𝑘 √|𝐷| ℑ𝑥𝑘) + i (𝜆𝑘 ℑ𝑥𝑘 + 𝜇𝑘 √|𝐷|ℜ𝑥𝑘)

58

3 Algebraic Integer Relations

An arbitrary element of Λ𝑥(𝑁 , 𝐷) is of the form (𝑙1, … , 𝑙𝑛, 𝑑1, 𝑚1, … , 𝑚𝑛, 𝑑2) where

𝑑1 =
𝑛
∑
𝑘=1

𝑙𝑘 𝑁ℜ𝑥𝑘 +
𝑛
∑
𝑘=1

𝑚𝑘𝑁𝔚1𝑥𝑘

= 𝑁
𝑛
∑
𝑘=1

(𝑙𝑘ℜ𝑥𝑘 + 𝑚𝑘𝔚1𝑥𝑘)

= {
𝑁 ∑𝑛

𝑘=1(𝑙𝑘ℜ𝑥𝑘 − 𝑚𝑘√|𝐷| ℑ𝑥𝑘) if 𝐷 ≡ 2, 3 (mod 4)

𝑁 ∑𝑛
𝑘=1(𝑙𝑘ℜ𝑥𝑘 + 𝑚𝑘(ℜ𝑥𝑘 − √|𝐷| ℑ𝑥𝑘)/2) if 𝐷 ≡ 1 (mod 4)

= 𝑁
𝑛
∑
𝑘=1

(𝜆𝑘ℜ𝑥𝑘 − 𝜇𝑘 √|𝐷| ℑ𝑥𝑘)

= 𝑁
𝑛
∑
𝑘=1

ℜ((𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘) = 𝑁ℜ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)

and

𝑑2 =
𝑛
∑
𝑘=1

𝑙𝑘 𝑁ℜ𝑥𝑘 +
𝑛
∑
𝑘=1

𝑚𝑘𝑁𝔚2𝑥𝑘

= 𝑁
𝑛
∑
𝑘=1

(𝑙𝑘ℜ𝑥𝑘 + 𝑚𝑘𝔚2𝑥𝑘)

= {
𝑁 ∑𝑛

𝑘=1(𝑙𝑘ℜ𝑥𝑘 + 𝑚𝑘√|𝐷| ℑ𝑥𝑘) if 𝐷 ≡ 2, 3 (mod 4)

𝑁 ∑𝑛
𝑘=1(𝑙𝑘ℜ𝑥𝑘 + 𝑚𝑘(ℑ𝑥𝑘 + √|𝐷|ℜ𝑥𝑘)/2) if 𝐷 ≡ 1 (mod 4)

= 𝑁
𝑛
∑
𝑘=1

(𝜆𝑘 ℑ𝑥𝑘 + 𝜇𝑘 √|𝐷|ℜ𝑥𝑘)

= 𝑁
𝑛
∑
𝑘=1

ℑ((𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘) = 𝑁ℑ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)

If 𝑎 is a ℚ(√𝐷)-integer relation for 𝑥, then 𝑎 = (𝑙1 + 𝑚1 𝜔 + ⋯ + 𝑙𝑛 + 𝑚𝑛 𝜔) and ∑𝑛
𝑘=1 𝑎𝑘 𝑥𝑘

= 0. So 𝑑1 = 𝑑2 = 0 which implies (𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ∈ Λ𝑥(𝑁 , 𝐷). Conversely, if
(𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ∈ Λ𝑥(𝑁 , 𝐷), then

𝑁ℜ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘) = 𝑁ℑ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘) = 0

and ∑𝑛
𝑘=1(𝑙𝑘 + 𝑚𝑘 𝜔) = 𝑑1 + 𝑑2 i = 0, hence 𝑎 = (𝑙1 + 𝑚1 𝜔 + ⋯ + 𝑙𝑛 + 𝑚𝑛 𝜔) is a ℚ(√𝐷)-

integer relation for 𝑥

Armed with this lemma, we can state and prove the analogous proposition to Proposi-
tions 2.3.4 and 2.3.8 on page 12 and on page 16) to conclude that performing lll on the
lattice abovewill find a quadratic integer relation so long as one exists and𝑁 is sufficiently
large.

59

3 Algebraic Integer Relations

Proposition 3.3.4. Let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛, 𝐷 < 0 be an integer, and suppose that aℚ(√𝐷)-
integer relation of 𝑥 exists. Suppose {𝑏1, … , 𝑏2𝑛} is an LLL reduced basis forΛ𝑥(𝑁 , 𝐷). Then so
long as 𝑁 was sufficiently large, 𝑏1 must be of the form (𝑏11, … , 𝑏1𝑛, 0, 𝑏1(𝑛+2), … , 𝑏1(2𝑛+1), 0)
and (𝑏11 + 𝑏1(𝑛+2) 𝜔,… , 𝑏1𝑛 + 𝑏1(2𝑛+1) 𝜔) is a Gaussian integer relation of 𝑥.

Proof. Let 𝑎 = (𝑙1+𝑚1 𝜔,… , 𝑙𝑛+𝑚𝑛 𝜔) be a smallestℚ(√𝐷)-integer relation for 𝑥. Consider
the set of vectors {𝑦 ∈ 𝒪𝑛

ℚ(√𝐷)
∶ ‖𝑦‖ < 2𝑛/2‖𝑎‖ and ∑𝑛

𝑘=1 𝑦𝑘 𝑥𝑘 ≠ 0}, and observe that the

set is finite and non-empty. We choose from this set a vector 𝑦 such that |∑𝑛
𝑖=1 𝑦𝑖𝑥𝑖 | is

minimal, and choose 𝑁 such that 𝑁 |∑𝑛
𝑖=1 𝑦𝑖𝑥𝑖 | > 2𝑛/2‖𝑎‖.

Let 𝜆 ∈ Λ𝑥(𝑁 , 𝐷); it must have the form

(𝑙1, … , 𝑙𝑛, 𝑁ℜ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘), 𝑚1, … , 𝑚𝑛, 𝑁ℑ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)) where 𝑙𝑘, 𝑚𝑘 ∈ ℤ

Now suppose that ∑𝑛
𝑘=1(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘 ≠ 0 (i.e., (𝑙1 + 𝑚1 𝜔,… , 𝑙𝑛 + 𝑚𝑛 𝜔) is not a ℚ(√𝐷)-

integer relation for 𝑥). Then

‖𝜆‖ =
√
𝑙21 + ⋯ + 𝑙2𝑛 + (𝑁ℜ

𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)
2

+ 𝑚2
1 + ⋯ + 𝑚2

𝑛 + (𝑁ℑ
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)
2

>
√
𝑁 2ℜ(

𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)
2

+ 𝑁 2 ℑ(
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘)
2

= 𝑁 |
𝑛
∑
𝑘=1

(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘 | ≥ 𝑁 |
𝑛
∑
𝑘=1

𝑦𝑘 𝑥𝑘 | > 2𝑛/2‖𝑎‖ > 2(𝑛−1)/2‖𝑎‖

We know that 𝑎 is a ℚ(√𝐷)-integer relation for 𝑥, so ∑𝑛
𝑘=1(𝑙𝑘 + 𝑚𝑘 𝜔) 𝑥𝑘 = 0, and hence

from Lemma 3.3.3 we know that 𝜆𝑎 ∶= (𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ∈ Λ𝑥(𝑁 , 𝐷). Furthermore
observe that

‖𝑎‖ = √| 𝑙1 + 𝑚1 𝜔|2 + ⋯ + | 𝑙𝑛 + 𝑚𝑛 𝜔|2

=
⎧

⎨
⎩

√𝑙
2
1 + ⋯ + 𝑙2𝑛 + |𝐷| (𝑚2

1 + ⋯ + 𝑚2
𝑛) if 𝐷 ≡ 2, 3 (mod 4)

√
(𝑙21 + ⋯ + 𝑙2𝑛) +

|𝐷 |+1
4 (𝑚2

1 + ⋯ + 𝑚2
𝑛) + 𝑚1 𝑙1 + ⋯ + 𝑙𝑛 𝑚𝑛 if 𝐷 ≡ 1 (mod 4)

≥ √𝑙
2
1 + ⋯ + 𝑙2𝑛 + 0 + 𝑚2

1 + ⋯ + 𝑚2
𝑛 + 0

= ‖(𝑙1, … , 𝑙𝑛, 0, 𝑚1, … , 𝑚𝑛, 0) ‖ = ‖𝜆𝑎 ‖

So it must be the case that ‖𝜆‖ is greater than that 2(𝑛−1)/2 times the norm of a vector in
Λ𝑥(𝑁) (specifically, the vector 𝜆𝑎). Consequently, 𝜆 cannot be the reduced basis vector 𝑏1
by Theorem 2.3.2 on page 12. The result follows.

60

3 Algebraic Integer Relations

Note that, as suggested above, Proposition 2.3.8 on page 16 is a special case of the above
proposition, corresponding to 𝐷 = −1.

As was the case for the real classical case, we note that the 𝑎 from the beginning of
the proof is not necessarily the integer relation embedded in the reduced basis vector 𝑏1.
Additionally, theremaywell bemultiple vectors in the reduced basis with 0 discriminants,
all of which embed integer relations (or, in the case of numeric computation, all of which
may be considered candidate integer relations).

3.3.3 Algebraic PSLQ

A more direct approach to computing algebraic integer relations is desirable. To this end
we modify the pslq algorithm to compute them directly. We call this modified algorithm
Algebraic pslq, or apslq.

We observe that the reducing matrix is the source of integers in the algorithm. The re-
ducing matrix, in turn, relies on the nearest integer function. The theorems bounding the
number of iterations needed to find an integer relation rely only on the 𝜏 , 𝜌, and 𝛾 param-
eters, the latter of which is arbitrarily chosen and the others of which are determined by
the properties of the integer lattice.

In order to utilise as much of the existing theory as possible we replace the nearest integer
function in the computation of the reducing matrix with a nearest algebraic integer func-
tion. Additionally, we require the specification of the intermediate quadratic extension
field as input to the algorithm. The algorithm remains otherwise unmodified.

This immediately causes a problem. In the case of a real quadratic extension field (when
𝐷 > 0) the algebraic integers are dense in ℝ. This leaves us without a well defined nearest
integer and hence no integer lattice. We put this case aside pending further algorithmic
modifications and restrict our attention to complex quadratic extension fields 𝐷 < 0.

In order to calculate the nearest integer for an arbitrary 𝑧 ∈ ℂ, and in in order to verify
that conditions (2.1) to (2.3) on page 8 hold, we appeal to the geometric properties of the
integer lattices. Figure 3.1 depicts the geometry of these lattices.

We start with the nearest integer question. For 𝑧 ∈ ℂ we write 𝑧 = 𝜇1 + 𝜇2 𝜔 (noting that
the coefficients 𝜇1, 𝜇2 are real numbers) and calculate the nearest integer in the 𝑚1+𝑚2 𝜔
form. When 𝐷 ≡ 2, 3 (mod 4) we have

⌈𝑧⌋𝒪ℚ(√𝐷)
= ⌈𝜇1 ⌋ℤ + ⌈𝜇2 ⌋ℤ 𝜔

and when 𝐷 ≡ 1 (mod 4) we have two candidates

⌈𝑧⌋𝒪ℚ(√𝐷)
= ⌈ℜ𝑧 − ⌊𝜇2 ⌋

2 ⌋ℤ + ⌊𝜇2 ⌋ 𝜔 or ⌈𝑧⌋𝒪ℚ(√𝐷)
= ⌈ℜ𝑧 − ⌈𝜇2 ⌉

2 ⌋ℤ + ⌈𝜇2 ⌉ 𝜔

61

3 Algebraic Integer Relations

0 1 2 3

0

√|𝐷|

2 √|𝐷|

(a) 𝐷 ≡ 2, 3 (mod 4)

0 1/2 1 3/2 2 5/2 3

0

1
2√|𝐷|

√|𝐷|

3
2√|𝐷|

2 √|𝐷|

(b) 𝐷 ≡ 1 (mod 4)

Figure 3.1: Geometric Depiction of Quadratic Integer Lattices

fromwhich we choose the one closest to 𝑧. Note the ceiling and floor functions applied to
𝜇2 in the different candidates. We also note that the above corrects a mistake in Skerritt
and Vrbik [67] for the 𝐷 ≡ 1 (mod 4) case. We prove the correctness of these expression
in Proposition 3.3.5, below.

Proposition 3.3.5. Fix a complex quadratic extension field ℚ(√𝐷). Let 𝑧 ∈ ℂ and write
𝑧 = 𝜇1 + 𝜇2 𝜔. The nearest quadratic integer to 𝑧 is given by ⌈𝑧⌋𝒪ℚ(√𝐷)

= argmin𝜉∈Ξ | 𝑧 − 𝜉 |
where

Ξ = {
{ ⌈𝜇1 ⌋ℤ + ⌈𝜇2 ⌋ℤ 𝜔 } if 𝐷 ≡ 2, 3 (mod 4)

{ ⌈ℜ𝑧 − 𝑓 (𝜇2)
2 ⌋ℤ + 𝑓 (𝜇2) 𝜔 | 𝑓 = ⌊ ⋅⌋ or 𝑓 = ⌈ ⋅⌉ } if 𝐷 ≡ 1 (mod 4)

Proof. We consider each case separately.

Case 1 (𝐷 ≡ 2, 3 (mod 4)) Write 𝑧 = ℜ𝑧 + iℑ𝑧 = 𝜇1 + 𝜇2 𝜔, and calculate that 𝜇1 = ℜ𝑧
and 𝜇2 = ℑ𝑧/√|𝐷|. Observe that 𝜇1 depends only on ℜ𝑧 and 𝜇2 depends only on ℑ𝑧; this
corresponds to the square lattice we see in Fig. 3.1. Consequently the coefficient of 𝜔 for
the nearest integer must be ⌈𝜇2 ⌋ℤ and the constant term must be ⌈𝜇1 ⌋ℤ.In other words
⌈𝑧⌋𝒪ℚ(√𝐷)

= ⌈𝜇1 ⌋ℤ + ⌈𝜇2 ⌋ℤ 𝜔.5

Case 2 (𝐷 ≡ 1 (mod 4)) Write 𝑧 = ℜ𝑧 + iℑ𝑧 = 𝜇1 + 𝜇2 𝜔, yielding the simultaneous
equations ℜ𝑧 = (2 𝜇1 + 𝜇2)/2 and ℑ𝑧 = (𝜇2 √|𝐷|)/2 from which we calculate that

𝜇1 = ℜ𝑧 − 𝜇2
2 𝜇2 =

2ℑ𝑧

√|𝐷 |

Let 𝛼 = ⌊2ℜ𝑧⌋/2 and observe that 𝛼 ≤ ℜ𝑧 < 𝛼+1/2 and that exactly one of 𝛼 or 𝛼+1/2 is
a rational integer. Let 𝛽 = ⌊𝜇2 ⌋/2 and observe that 𝛽√|𝐷| ≤ ℑ𝑧 < (𝛽+1/2) √|𝐷| and that

5In the case that there are multiple nearest rational integers to either 𝜇1 or 𝜇2 then any of themwill produce
a nearest quadratic integer to 𝑧.

62

3 Algebraic Integer Relations

exactly one of 𝛽 and 𝛽+1/2 is a rational integer. Note that (𝛽+1/2) √|𝐷| = (⌈𝜇2 ⌉/2) √|𝐷|
so long as 𝜇2 ∉ ℤ.

By the geometry of the integer lattice, exactly one of 𝛼 + i 𝛽√|𝐷| and (𝛼 + 1/2) + i 𝛽√|𝐷|
is a quadratic integer. Similarly, exactly one of and 𝛼 + i (𝛽 + 1/2) √|𝐷| and (𝛼 + 1/2) +
i (𝛽 +1/2) √|𝐷| is a quadratic integer. Call these quadratic integers 𝜉1 and 𝜉2 respectively.
There are no other quadratic integers within these bounds.

Consider complex numbers with imaginary part 𝛽√|𝐷|. All such numbers must be able
to be written in the form 𝜇′1 + ⌊𝜇2 ⌋ 𝜔 for some 𝜇′1 ∈ ℝ. In particular it must be that
𝜇′1 = ℜ − ⌊𝜇2 ⌋/2 (where ℜ is used to denote the real part of the complex number in
question). Similarly complex numbers of with imaginary part (𝛽 + 1/2) √|𝐷| but be able
to be written as (ℜ − ⌈𝜇2 ⌉/2) + ⌈𝜇2 ⌉ 𝜔 so long as 𝜇2 ∉ ℤ.

Project 𝑧 onto the line 𝑡 + i 𝛽√|𝐷| (𝑡 ∈ ℝ) to get

𝑧′1 = ℜ𝑧 + i 𝑏 √|𝐷| = (ℜ𝑧 − ⌊𝜇2 ⌋
2) + ⌊𝜇2 ⌋ 𝜔

and note that its real part remains bounded by 𝛼 ≤ ℜ𝑧′ < 𝛼 + 1/2. We know that
ℑ𝑧′ = ℑ𝜉1 so | 𝑧′ − 𝜉1 | = |ℜ𝑧′ −ℜ𝜉1 | < 1/2. We also know that 𝜉1 = 𝑚1 + ⌊𝜇2 ⌋ 𝜔 for some
𝑚1 ∈ ℤ. So

1/2 > |𝑧′ − 𝜉1 | = |(ℜ𝑧 − ⌊𝜇2 ⌋
2) + ⌊𝜇2 ⌋ 𝜔 − (𝑚1 + ⌊𝜇2 ⌋ 𝜔) |

= |(ℜ𝑧 − ⌊𝜇2 ⌋
2) − 𝑚1 |

and because 𝑚1 ∈ ℤ it must be the case that 𝑚1 = ⌈ℜ𝑧 − ⌊𝜇2 ⌋/2⌋ℤ. So we have that
𝜉1 = ⌈ℜ𝑧 − ⌊𝜇2 ⌋/2⌋ℤ + ⌊𝜇2 ⌋ 𝜔.

Project 𝑧 onto the line 𝑡 + i (𝛽 + 1/2) √|𝐷| (𝑡 ∈ ℝ) to get.

𝑧′2 = ℜ𝑧 + i (𝛽 + 1
2) √|𝐷| = (ℜ𝑧 − ⌊𝜇2 ⌋+1

2) + ⌊𝜇2 ⌋ 𝜔

Apply the same argument applied to 𝑧′1 to see that 𝜉2 = (ℜ𝑧 − (⌊𝜇2 ⌋ + 1)/2)+(⌊𝜇2 ⌋+1) 𝜔.

If 𝜇2 ∉ ℤ then ⌊𝜇2 ⌋ + 1 = ⌈𝜇2 ⌉. In this case 𝜉2 = ⌈ℜ𝑧 − ⌈𝜇2 ⌉/2⌋ℤ + ⌈𝜇2 ⌉ 𝜔.

If 𝜇2 ∈ ℤ then ⌊𝜇2 ⌋ = ⌈𝜇2 ⌉ = 𝜇2 and so 𝑧′1 = 𝑧. In this case it must be the case that 𝜉1 is
the nearest quadratic integer to 𝑧. An appeal to Pythagoras theorem combined with the
fact that |𝐷 | ≥ 3 shows that 𝜉2 must be further away.6

The result follows

We now turn our attention to bounding | 𝑧 − ⌈𝑧⌋ |. That is, finding 𝜖 such that | 𝑧 − ⌈𝑧⌋ | ≤ 𝜖
for all 𝑧 ∈ ℂ.

6We note that in this case, by symmetry, there is a 3rd candidate with imaginary part (𝑏 − 1/2) √|𝐷| that
lies 1 unit directly below 𝜉2 but it is equidistant with 𝜉2 from 𝑧.

63

3 Algebraic Integer Relations

1
2

ℎ

1
2

ℎ

Figure 3.2: Details for calculating furthest distance from a quadratic integer when 𝐷 ≡ 1 (mod 4).

In the case that 𝐷 ≡ 2, 3 (mod 4) we observe from the square lattice in Fig. 3.1a that the
furthest any complex number can be from a quadratic integer is in the centre of one of
the squares. Using Pythagoras’ theorem we calculate that | 𝑧 − ⌈𝑧⌋ | = √1 + |𝐷|/2.

In the case that 𝐷 ≡ 1 (mod 4) we observe from Fig. 3.1b that any complex number
is bounded by triangle defined by three quadratic integers. The perpendicular bisector
of the line segment joining any two of them contains the complex numbers equidistant
from both. Consequently the complex number that is equidistant from all three quadratic
integers lies on the intersection of the three perpendicular bisectors. The distance from
this complex number to any of the three quadratic integers is the bound, 𝜖 that we seek.

The geometric details needed to calculate this distance are shown inmore detail in Fig. 3.2.
We know that the quadratic integers defining the triangle have imaginary part (𝑚/2) √|𝐷|
or ((𝑚 + 1)/2) √|𝐷| for some 𝑚 ∈ ℤ. So the height of the triangle is (1/2) √|𝐷| and it
must be that 𝜖 = √|𝐷|/2 − ℎ. We also know that 𝜖 = √(1/4) + ℎ2. We calculate

√|𝐷 |
2 − ℎ = √(1/4) + ℎ2 ⟹ |𝐷 |

4 − ℎ√|𝐷| + ℎ2 = 1
4 + ℎ2

⟹ |𝐷 |
4 − 1

4 = ℎ√|𝐷|

⟹ ℎ =
|𝐷| − 1

4√|𝐷|
which allows us to get

𝜖 = √|𝐷|
2

−
|𝐷| − 1

4√|𝐷|
=

|𝐷| + 1

4√|𝐷|

Combining the cases we have that

𝜖 = {

1
2√|𝐷| + 1 if 𝐷 ≡ 2, 3 (mod 4)
1
4
|𝐷 |+1

√|𝐷 |
if 𝐷 ≡ 1 (mod 4)

64

3 Algebraic Integer Relations

from which we can compute the corresponding value of 𝜌

𝜌 =
⎧

⎨
⎩

2

√|𝐷 |+1
if 𝐷 ≡ 2, 3 (mod 4)

4√|𝐷 |
|𝐷 |+1 if 𝐷 ≡ 1 (mod 4)

In order to calculate 𝛾1 we use Definition 2.2.1 on page 8 to get that

1
𝛾 21

= 1 − 𝜖2 = {
1 − 1

4(|𝐷| + 1) if 𝐷 ≡ 2, 3 (mod 4)

1 − 1
16

(|𝐷 |+1)2

|𝐷 | if 𝐷 ≡ 1 (mod 4)

= {
3−|𝐷 |
4 if 𝐷 ≡ 2, 3 (mod 4)

− 1
16

|𝐷 |2−14 |𝐷 |+1
|𝐷 | if 𝐷 ≡ 1 (mod 4)

and so

𝛾1 =
⎧

⎨
⎩

2

√3−|𝐷 |
if 𝐷 ≡ 2, 3 (mod 4)

4
√
− |𝐷 |
|𝐷 |2−14 |𝐷 |+1 if 𝐷 ≡ 1 (mod 4)

(3.8)

However, we can see that as |𝐷 | increases, the value of 𝜌 decreases, and eventually 𝜌 <
1 making it impossible to satisfy condition (2.2) on page 8, and causing 𝛾1 to become
complex. This leaves us with 𝐷 = −2, 𝐷 = −3, 𝐷 = −7, and 𝐷 = −11 as the only values
of 𝐷 (other than those representing the classical cases) for which the existing theory
holds. Observe that these (along with the classical case which corresponds to 𝐷 = −1)
are precisely the complex quadratic norm Euclidean fields.

We note in passing that an attempt to circumvent this problem by simply scaling the
integer lattice down failed, perhaps unsurprisingly. We were motivated by the fact that if
𝑎 is an integer relation for 𝑥, then ∑𝑛

𝑘=1 𝑎𝑘𝑥𝑘 = 0, but also 𝜆∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 = ∑𝑛

𝑘=1(𝜆𝑎𝑘)𝑥𝑘 = 0
for any 𝜆 ∈ ℝ. So we simply shrunk our integer lattice by a factor which brought the value
of 𝜖 below 1 in the hopes of being able to scale the resulting “integers” up by the inverse
factor after completing the computation. The technique failed because the elements of
the new lattice no longer formed a ring, and so the arithmetic calculations performed on
the integers in the pslq algorithm were no longer guaranteed to stay within the shrunk
lattice.

We will see that even for the cases where the existing theory does not hold (i.e., when
conditions (2.1) to (2.3) do not hold) the algorithm can still be effective (see Section 3.5.3,
Table 3.7).

The Algebraic pslq algorithm itself is simply Algorithm 2.4.2 on page 19 using the above
values for 𝜌 and 𝛾1, and the above nearest integer function. In order to know which
quadratic integers we wish to find a relation with, we must also specify as input to the

65

3 Algebraic Integer Relations

algorithm the quadratic extension field, 𝕂, in which the integers reside. In practice for
the results we report below, this was achieved by giving the algorithm the value of 𝐷
(from ℚ(√𝐷)), but any means of uniquely identifying the field in question would suffice.
Algorithm A.1.1 on page 142 presented in Appendix A includes these modifications.

3.4 Experimental Methodology

We experimentally tested the efficacy of the methods described in the previous section.
We note that, as stated in Section 2.5 on page 24, that the testing reported in both this and
the previous chapter were performed as part of a single suite of tests. In fact, the testing
reported in Sections 2.5 and 2.6 is simply a particular case of the testing reported herein.
Recall, also, that the testing reported in this entire thesis extends the testing reported in
Skerritt and Vrbik [67].

The code and results are available through GitHub [66].

We reiterate the main points of the testing methodology here, but omit detail and discus-
sion found in Section 2.5. We make sure to point out, and discuss in necessary detail any
changes or generalisations from those reported in the previous chapter.

We created collections of instances of quadratic integer relation problems, noting that
this includes the classical cases. Each collection, referred to as a test set, consisted of
1000 quadratic integer relation problems each of which has a known quadratic integer
relation.

We tested apslq, pslq, and lll to see how many of the problems in each test set could be
solved (i.e., the known relation recovered) by the algorithm in question. For those prob-
lems that were able to be solved we found and recorded the smallest numeric precision
that was able to solve the problem, as well as the time taken to solve the problem at that
minimal precision. We also measured the time taken to compute the entire test set.

In the case of lll we additionally recorded parameters from the LLL Integer Relation
procedure. We recorded the starting value of 10𝑘 and the number of lll computations
attempted. In addition, for the problems which could be solved, we recorded the value
of 10𝑘 with which a relation was found, and the number of attempted lll computations
needed.

For pslq and apslq testing we used Maple’s native pslq implementation, as well as our
own implementation of apslq (written in Maple). For the classical cases we used both
implementations directly. For the non-classical quadratic cases we used our own apslq
directly, and Maple’s pslq for the reduction technique as described in Section 3.3.1.

66

3 Algebraic Integer Relations

For lll testing we used Maple’s implementation of lll for all cases, using the appro-
priate Λ𝑥(𝑁) or Λ𝑥(𝑁 , 𝐷) depending on the case being tested. Recall that the techniques
described in Section 2.3.3 on page 14 are a special case of those described in Section 3.3.2

Recall thatMaple’s pslq implementation does not allow for any choice of the parameters
for that algorithm. All algorithmic parameters have been decided by the developers; one
simply calls the function and passes to it the list of constants (𝑥 in Algorithm 2.2.7). As
such we are unable to report on the effects of changing them.

Our implementation of apslq is the one presented in Appendix A (Algorithm A.1.1 on
page 142). We have not implemented any of the advanced (and faster) variants. We note
that although we discussed norm lower bound in some depth in Section 2.4.3 and used
it in Algorithm 2.4.2 on page 19, our implementation uses neither a norm lower bound
threshold for a termination condition, nor reports the norm lower bound at the end of
the algorithm. This keeps it in line with Maple’s pslq implementation (although we do
allow for more parameter choices then than Maple).

3.4.1 Test Set Generation

The test sets are classified by three parameters: a quadratic extension field (𝕂), a set of
constants (𝐶 ⊂ 𝔽), and a size (𝜄 ∈ ℕ) of the integers generated as part of the individual
integer relation problems within the test set. We created a single test set for each valid
combination of these parameters.

The extension field, 𝕂 = ℚ(√𝐷), indicates the intermediate extension field from Defini-
tion 3.2.1 on page 51 for the quadratic integer relations we wish to generate for the test
set (and consequently that we will search for when testing). This also indicates that the
quadratic integers will be 𝒪𝕂.

The field 𝕂 also dictates the type of the test set. A test set is either real if 𝕂 is a real
quadratic extension field (i.e., 𝐷 ≥ 0) or it is complex if𝕂 is a complex quadratic extension
field (i.e., 𝐷 < 0).

Note that this is an extension of the classical testing as described in Section 2.5.1 wherein
we had a field, 𝔽 which was either ℝ or ℂ. These classical cases are subsumed here by
𝕂 = ℚ and 𝕂 = ℚ(√−1) for the classical real and complex cases respectively.

The set of constants, 𝐶, contains the constants we will draw from when generating
quadratic integer relation problems. Exactly two sets of constants were used: one con-

67

3 Algebraic Integer Relations

taining real constants, the other complex. The real and complex test sets, respectively,
were

𝐶ℝ = {𝜋𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {𝑒𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {𝛾 𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9}

∪ {sin 𝑘 ∶ 𝑘 ∈ ℕ, 𝑘 ≤ 9} ∪ {ln 2, ln 3, ln 5, ln 7}

𝐶ℂ = {5 𝑒−9 𝑖, 4 𝑒−8 𝑖, 9 𝑒−7 𝑖, 5 𝑒−6 𝑖, 2 𝑒−5 𝑖, 9 𝑒−4 𝑖, 8 𝑒−3 𝑖, 3 𝑒−2 𝑖, 2 𝑒−𝑖,

4, 4 𝑒𝑖, 5 𝑒2 𝑖, 2 𝑒3 𝑖, 7 𝑒4 𝑖, 6 𝑒5 𝑖, 3 𝑒6 𝑖, 3 𝑒7 𝑖, 5 𝑒8 𝑖, 5 𝑒9 𝑖}

Integer size, 𝜄 is the size (in number of decimal digits) of the integers. We used two
integer sizes in our testing: 𝜄 = 1 and 𝜄 = 6 referred to as small and large respectively.
For quadratic integers the coefficients, 𝑚1 and 𝑚2, of 𝑚1 + 𝑚2 𝜔 are each of the indicated
size (−10𝜄 < 𝑚𝑘 < 10𝜄).

A single test set was generated for each valid combination of the parameters used in our
testing. For a fixed 𝕂, 𝐶, and 𝜄, the test set corresponding to these parameters was cre-
ated by generating 1,000 integer relation problems with a known solution. The creation
procedure is detailed in the Generate Test Instance procedure.

Procedure Generate Test Instance(𝕂, 𝐶, 𝜄)
Input : 𝕂 (a quadratic extension field ℚ(√𝐷))

𝐶 (a set of constants)
𝜄 (number of decimal digits of the integers to be generated)

Output: 𝑥 (an integer relation input vector)
𝔞 (known integer relation of 𝑥)

1 𝑛 ← random integer(2… 10) /* Generate a uniform random integer 2 ≤ 𝑛 ≤ 10 */

2 𝐶′ ← randompermutation(𝐶) /* Randomise the order of the constants */

3 for 𝑘 from 1 to 𝑛 do /* Generate 𝑛 uniform random quadratic integers each with 𝜄 digits */

4 𝑎𝑘 ← random integer(−10𝜄 + 1…10𝜄 − 1)
5 if 𝕂 ≠ ℚ then
6 𝑎𝑘 ← 𝑎𝑘 + 𝜔 ⋅ random integer(−10𝜄 + 1…10𝜄 − 1) /* 𝜔=√𝐷 or (1+√𝐷)/2 */

7 𝑥 ← (∑𝑛
𝑘=1(𝑎𝑘 𝐶

′
𝑘), 𝐶

′
1, … , 𝐶′𝑛) /* Construct the integer relation problem */

8 𝔞 ← (−1, 𝑎1, … , 𝑎𝑛) /* Construct a known integer relation solution */

9 return 𝑥, 𝔞

3.4.2 Testing Procedure

For each test set, we attempted to solve the problems within it using pslq, apslq, and lll
inMaple. Our aim was to see if the algorithm could recover the known quadratic integer
relation, 𝔞, from the input vector 𝑥. Any quadratic integer multiple of the known relation
was considered to be an equivalent relation for this purpose.

68

3 Algebraic Integer Relations

Each test set was used twice. Once with so called short input wherein only the coefficients
in the known relation 𝔞 were used, and once with so called long input wherein twice as
many coefficients were used (or all the coefficients from the set if there were not enough).
The purpose of this was to verify the robustness of the algorithm in the presence of
unnecessary information, and to see the effect on the needed precision and time.

We compute at multiple precisions until we find the known integer relation, or until the
precision becomes too large. If the known relation can be found, we define the most
favourable computation as the one which finds the known relation using the smallest
precision. All recorded measurements are either for the most favourable computation (if
it exists), or for the computation performed with the largest precision otherwise.

We measure and record the precision used, and the time taken7 for all computations.
For lll computations we also measure and record the number of lll attempts before the
relation was recovered, and the number of candidate integer relations.

The result of a computation on an individual test instance are either good, unexpected,
bad, or fail as as outlined in Table 2.1 on page 28. We simply counted the number of
occurrences of each result. No unexpected results were found during our testing.

The procedure to diagnose a result is unchanged from the Diagnose procedure on page
29. For a candidate relation 𝑎 we diagnose a fail condition is immediately if no result is
produced (usually because the maximum number of iterations was exceeded). Otherwise,
we look to see if (−𝑎1)𝔞 = 𝑎, and if so we diagnose a good result. If that is not the case,
we then test the computed algebraic integer relation to 1000 decimal digits of precision,
and if the result is within 10−998 of 0 we diagnose an unexpected result. If none of the
above apply, then we diagnose a bad result. In the case that there are multiple candidate
relations (which currently only happens with lll) we diagnose each individually, and
take the best result using the order good > unexpected > bad > fail.

The problem with the reconstructed relation for the reduction method in the complex
case as described in Section 3.3.1 is not addressed at all by this diagnosis method. It
is entirely possible that (−𝑎1)𝔞 = 𝑎 even if 𝑎1 is not a valid algebraic integer for the
extension field in question. We accounted this by checking to see if the entries in the
recovered relation consisted only of valid algebraic integers from the appropriate field.
This checkwas performed after the usual diagnosis, so that we could compare the updated
results with the originally diagnosed result. If any entries were not appropriate algebraic
integers then we applied both techniques described in Section 3.3.1. When applying the
decomposition method we favour 𝜉1 but were careful to check for the case that it was the
zero vector. When applying the conjugate method we produced multiple transformed
candidates; one for each non-zero element of the original candidate. We then processed
the collection of new candidates as normal, using the Diagnose procedure. We were

7Measured in CPU seconds using Maple’s time() function

69

3 Algebraic Integer Relations

careful to recordwhich of themethods corresponded to the candidate with the best result,
and also to record the diagnosis of every candidate for comparative purposes.

We note that of the two methods presented the decomposition method is the simplest
to apply. We further note that the conjugate requires multiplication, and so increases
the size (both in terms of absolute value, and also in terms of the number of digits) of the
integers in the candidate relation, risking overflow or exhaustion of numeric precision.

When testingwith apslq on appropriate test sets (i.e., classical cases and complex quadratic
cases) each such test set is separately tested using different values of 𝛾. The values of 𝛾
used were 𝛾 = 𝛾1, 𝛾 = 2.0, and 𝛾 = 3.0. Note that although, strictly speaking, we require
𝛾 > 𝛾1 in order for conditions (2.1) to (2.3) on page 8 to be satisfied, the choice of 𝛾 = 𝛾1
seems to be common in practice, and the results do not seem to suffer.8 All apslq testing
used the threshold 𝜖 = 10−(𝑑−1) (see Algorithm 2.4.2 on page 19 on which apslq was
modified only in the manner described in Section 3.3.3).

3.5 Experimental Results

Herein we present the results from the testing methodology described above. The results
are extensive due to the large number of combinations of parameters. We present our
discussion and and select graphs to illustrate the main points. The complete collection
of graphs, of which there are many, can be found in Appendix B on page 145.

For each test set we present graphs for minimum required precision, and also for time
taken.9 We further sub-divide this information into graphs of the data for all three al-
gorithms (pslq, lll, and apslq), choosing only the 𝛾 = 𝛾1 case for apslq, and a separate
graph showing only apslq for all the tested 𝛾 values. This was done to prevent the totality
of the apslq data from dominating the graphs and obscuring the relationship between
the three algorithms. The reader may use the 𝛾 = 𝛾1 case a a reference to correlate the
two graphs.

When looking at the time taken, it is not meaningful to compare Maple’s inbuilt pslq
and lll times to those of our own implementation of apslq. This is because our imple-
mentation is written in Maple itself (an interpreted language sitting on top of Maple’s
computation engine) and have not implemented any of the efficient methods described
in the literate (some of which are also outlined in Appendix A on page 140). So we omit
the apslq timing data from the graphs containing the pslq and lll data. The relative per-
formance within apslq of the different 𝛾 values if of interest, however, and so we retain
the apslq-only graphs for this data.

8It is likely that much of the time the rounding inherent in floating point arithmetic results in a value
slightly higher than the exact value of 𝛾1, although we have taken no pains to ensure this.

9Measured in CPU seconds using Maple’s time() function, recall.

70

3 Algebraic Integer Relations

3.5.1 Classical Integer Relations

We tested our implementation of apslq when computing classical integer relations (i.e.,
for the cases 𝕂 = ℚ and 𝕂 = ℚ(√−1)). We compared the results against those reported
in Section 2.6. This testing acted as a “sanity check” that our implementation was correct
for the classical cases.

Table 3.1: APSLQ performance on test sets for classical integer relations

Test Set Parameters Short Input Long Input
𝕂 𝐶 𝜄 apslq (all 𝛾) apslq (all 𝛾)

ℚ 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f
ℚ 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f

ℚ(√−1) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f
ℚ(√−1) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f
ℚ(√−1) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f
ℚ(√−1) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f

The results are tabulated in Table 3.1 and should be compared against Table 2.2 on page 30.
Recall that it was impossible to create real test sets that use complex constants (𝕂 = ℚ
and 𝐶 = 𝐶ℂ), so we were only able to test a single field with complex constants.

Precision

The precisions required for the classical test sets are shown in Figs. 3.3 to 3.8. Observe
that Figs. 3.3, 3.5 and 3.7 in particular present the same information as Fig. 2.3 on page 35
and Figs. 2.10 and 2.11 on page 42 and on page 43, but with the addition of the apslq
precision data.

We note that the pslq and apslq, while not identical, are very strongly clustered to the
point of being difficult to tell apart; we consider this a strong sign that our implementation
is good. We also note that as the value of 𝛾 increases, so does the required precision of
the computation. The (rare) cases where the minimum precision is below the theoretical
minimum are discussed in Section 2.6.1 on page 31

Timing

The relative timing data for pslq and lll has already been presented in the previous
chapter (see Fig. 2.3 on page 35 and Figs. 2.10 and 2.11 on page 42 and on page 43). We
do not repeat this data here.

The timing data for apslq is presented in Figs. 3.9 to 3.11. We note that as 𝛾 increases,
that computation time tends to decrease. In the real case we see this difference can be
as much as half an order of magnitude, although in the complex cases the difference is

71

3 Algebraic Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.3: Precision required for 𝕂 = ℚ, 𝐶 = 𝐶ℝ.

72

3 Algebraic Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.4: Precision required for 𝕂 = ℚ, 𝐶 = 𝐶ℝ (apslq only).

73

3 Algebraic Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.5: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ.

74

3 Algebraic Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.6: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ (apslq only)).

75

3 Algebraic Integer Relations

10

20

30

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.7: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ.

76

3 Algebraic Integer Relations

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.8: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ (apslq only)).

77

3 Algebraic Integer Relations

less distinct. We note a stark exception to this tendency in the particular the case where
𝕂 = ℚ(√−1) using small coefficients and long input length. In combination with the
observation, above, that required precision increases with 𝛾 suggests a trade-off between
computation time and required precision.

We note that some care should be taken in interpreting these graphs, especially in regard
to evaluating the extent of the suggested trade-off, as the time reported by our testing
is for the most favourable computation, and (as we can see in the graphs, above, for
minimum precision) even for a fixed test problem, the integer relation calculations were
performed at potentially different precisions for the different 𝛾 parameter values. From a
practical standpoint, these graphs represent in a sense the best possible times (under the
assumption that calculation at greater precision will require more time).

3.5.2 Real Quadratic Extension Fields

For the real quadratic algebraic integer relations we tested the following real quadratic
extension fields:

𝕂 = ℚ(√𝐷) for 𝐷 ∈ {2, 3, 5, 6, 7, 10, 11}

Recall that apslq is not appropriate for these extension fields, so only the reduction
method was tested. We solved the reduced classical integer relation problem with both
pslq and lll.

Table 3.2: Reduction method for real quadratic fields

Test Set Parameters Short Input Long Input
𝕂 𝐶 𝜄 pslq lll pslq lll

ℚ(√2) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√2) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√3) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√3) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√5) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√5) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√6) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√6) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√7) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√7) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√10) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√10) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√11) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√11) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

The results are tabulated in Table 3.2; the reduction method has given all correct results
with both pslq and lll. We note that since we are testing real quadratic extension fields

78

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.9: Computation time for 𝕂 = ℚ, 𝐶 = 𝐶ℝ (apslq only).

79

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.10: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ (apslq only)).

80

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.11: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ (apslq only).

81

3 Algebraic Integer Relations

(i.e., where 𝕂 ⊂ ℝ) then, as discussed in Section 3.3.1, any candidate relation found must
definitely have been algebraic integer relations. Contrast this to the complex quadratic
extension field testing, below.

Precision

We present the graph for 𝕂 = ℚ(√2) in Fig. 3.12, and note that it is illustrative of all
cases, as presented in Figs. B.2 to B.8 on pages 147–153.

We see that the required precision for pslq typically sits just above the double theoretical
minimum precision mark. This should be unsurprising given that the reduction method
doubles the size of the input vector. We also see that lll typically requires about twice as
much precision as pslq, which is in keeping with the behaviour we saw in the classical
cases. Note that we are using the reduction method with both algorithms here so they
are computing integer relations for the same input vector (notwithstanding that the lll
procedure constructs an integer lattice basis from this input vector.)

Timing

We present the graph for 𝕂 = ℚ(√2) in Fig. 3.13, and note that it is illustrative of all
cases, as presented in Figs. B.10 to B.16 on pages 155–161.

We note simply that we see lll takes usually two orders of magnitude more time to
compute the same integer relation problem. This is in keeping with our observations
from the classical cases. Furthermore we see that in extreme cases lll takes longer than
100 seconds (corresponding to problem for which pslq takes close to 10 seconds).

3.5.3 Complex Quadratic Extension Fields

For complex quadratic algebraic integer relations we were able to test all of our tech-
niques: reduction (using pslq), lll using Λ𝑥(𝑁 , 𝐷), and apslq. We tested the fields:

𝕂 = ℚ(√𝐷) for 𝐷 ∈ {−2, −3, −5, −6, −7, −10, −11}

Euclidean Fields

The cases where 𝐷 ∈ {−2, −3, −7, −11} correspond to the norm Euclidean fields, and for
these fields conditions (2.1) to (2.3) on page 8 are satisfied. In particular, for these cases
there is a real value for 𝛾1 which is the lower bound for the 𝛾 parameter of pslq. The
results are summarised in Tables 3.3 to 3.5. All algorithms give flawless results.

82

3 Algebraic Integer Relations

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure 3.12: Precision required: 𝕂 = ℚ(√2), 𝐶 = 𝐶ℝ.

83

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure 3.13: Computation time: 𝕂 = ℚ(√2), 𝐶 = 𝐶ℝ.

84

3 Algebraic Integer Relations

Table 3.3: Complex quadratic norm Euclidean fields

Test Set Parameters Short Input
𝕂 𝐶 𝜄 pslq lll apslq†

ℚ(√−2) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−3) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−7) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−11) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
†All 𝛾 values except for the specific cases when 𝕂 = ℚ(√−11) and
𝛾 = 2. See Table 3.5 for those cases.

Table 3.4: Complex quadratic norm Euclidean fields

Test Set Parameters Long Input
𝕂 𝐶 𝜄 pslq lll apslq†

ℚ(√−2) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−2) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−3) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−3) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−7) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−7) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f

ℚ(√−11) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
ℚ(√−11) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 1000g 0b 0f
†All 𝛾 values except for the specific cases when 𝕂 = ℚ(√−11) and
𝛾 = 2. See Table 3.5 for those cases.

85

3 Algebraic Integer Relations

Table 3.5: APSLQ results for ℚ(√−11) with 𝛾 = 2
Test Set Parameters Short Input Long Input

𝕂 𝐶 𝜄 apslq (𝛾 = 2) apslq (𝛾 = 2)

ℚ(√−11) 𝐶ℝ 1 1000g 0b 0f 999g 0b 1f
ℚ(√−11) 𝐶ℝ 6 1000g 0b 0f 999g 0b 1f
ℚ(√−11) 𝐶ℂ 1 999g 0b 1f 990g 0b 10f
ℚ(√−11) 𝐶ℂ 6 995g 0b 5f 959g 0b 41f

Observe that when testing the field ℚ(√−11)with complex constants 𝐶 = 𝐶ℝ and 𝛾 = 2.0
the results were slightly worse than when 𝛾 = 𝛾1. This is likely because for this field
𝛾1 = √22/2 > 2, so 𝛾 = 2.0 is too small to satisfy conditions (2.1) to (2.3) from Section 2.2.
This supposition is strengthened by the observation that when 𝛾 = 3.0 > √22/2 the
results are all good again.

The pslq results from these tables hide some complexity. Recall from Section 3.3.1 on
page 52 that in complex cases, the reduction technique might yield integers from a larger
field than desired (ℚ(i + √|𝐷|) instead of ℚ(√𝐷)). We presented two techniques for
transforming a candidate relation of ℚ(i + √|𝐷|)-integers into a candidate relation of
ℚ(√𝐷)-integers. In our testing we have been careful to use a transformation method
only when it is needed. To our surprise, it turns out that in the vast majority of cases,
the reduction method was directly successful in recovering the relation (i.e., without the
need for any transformation at all). Table 3.6 shows the number of test cases requiring
transformation.

Table 3.6: No. of Problems Requiring Transformation after Reduction with pslq

Test Set Parameters Short Input Long Input
𝕂 𝐶 𝜄 = 1 𝜄 = 6 𝜄 = 1 𝜄 = 6

ℚ(√−2) 𝐶ℝ 85 83 142 112
ℚ(√−2) 𝐶ℂ 91 84 123 124

ℚ(√−3) 𝐶ℝ 83 92 124 122
ℚ(√−3) 𝐶ℂ 120 100 172 119

ℚ(√−7) 𝐶ℝ 57 75 95 107
ℚ(√−7) 𝐶ℂ 83 64 107 109

ℚ(√−11) 𝐶ℝ 32 61 51 61
ℚ(√−11) 𝐶ℂ 41 50 40 69

When transformationwas necessary, we used both transformationmethods, and recorded
the results of each. When applying the conjugate method we individually applied conju-
gate multiplication from each non-zero element of the candidate relation, yielding many
resulting candidate relations. We found, to some surprise, that for those tests problems
that required a transformation method every transformed candidate yielded a good re-
sult.

86

3 Algebraic Integer Relations

Non-Euclidean Fields

The cases where 𝐷 ∈ {−5, −6, −10} correspond to fields which are not norm Euclidean
and for these fields conditions (2.1) to (2.3) on page 8 are not satisfied. In particular, for
these cases there is no real value for 𝛾1 (it will be complex if computed using Eq. (3.8)) and
so we have no viable lower bound for the 𝛾 pslq parameter. Moreover the existing theory
does not hold in these cases. We nonetheless attempted calculations with 𝛾 ∈ {2, 3, 4}.

Table 3.7: Complex quadratic fields that are not norm Euclidean

Test Set Parameters Short Input
𝕂 𝐶 𝜄 pslq lll apslq (𝛾 = 2) apslq (𝛾 = 3) apslq (𝛾 = 4)

ℚ(√−5) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 997g 0b 3f 1000g 0b 0f 1000g 0b 0f
ℚ(√−5) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 983g 2b 15f 992g 2b 6f 995g 2b 3f
ℚ(√−5) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 158g 0b 842f 187g 0b 813f 221g 0b 779f
ℚ(√−5) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 164g 0b 836f 182g 0b 818f 192g 0b 808f

ℚ(√−6) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 997g 0b 3f 999g 0b 1f 1000g 0b 0f
ℚ(√−6) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 986g 1b 13f 996g 1b 3f 999g 1b 0f
ℚ(√−6) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 137g 0b 863f 144g 0b 856f 158g 0b 842f
ℚ(√−6) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 59g 0b 941f 60g 0b 940f 60g 0b 940f

ℚ(√−10) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 999g 0b 1f 999g 0b 1f 1000g 0b 0f
ℚ(√−10) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 993g 0b 7f 994g 0b 6f 997g 0b 3f
ℚ(√−10) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 40g 0b 960f 42g 0b 958f 43g 0b 957f
ℚ(√−10) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 0g 0b 1000f 0g 0b 1000f 0g 0b 1000f

Table 3.8: Complex quadratic fields that are not norm Euclidean

Test Set Parameters Long Input
𝕂 𝐶 𝜄 pslq lll apslq (𝛾 = 2) apslq (𝛾 = 3) apslq (𝛾 = 4)

ℚ(√−5) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 904g 0b 96f 994g 0b 6f 978g 0b 22f
ℚ(√−5) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 727g 0b 273f 793g 0b 207f 821g 0b 179f
ℚ(√−5) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 11g 0b 989f 23g 0b 977f 24g 0b 976f
ℚ(√−5) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 0g 0b 1000f 0g 0b 1000f 0g 0b 1000f

ℚ(√−6) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 909g 0b 91f 991g 0b 9f 967g 0b 33f
ℚ(√−6) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 766g 0b 234f 824g 0b 176f 872g 0b 128f
ℚ(√−6) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 2g 0b 998f 10g 0b 990f 7g 0b 993f
ℚ(√−6) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 0g 0b 1000f 0g 0b 1000f 0g 0b 1000f

ℚ(√−10) 𝐶ℝ 1 1000g 0b 0f 1000g 0b 0f 932g 0b 68f 989g 0b 11f 975g 0b 25f
ℚ(√−10) 𝐶ℝ 6 1000g 0b 0f 1000g 0b 0f 808g 0b 192f 861g 0b 139f 885g 0b 115f
ℚ(√−10) 𝐶ℂ 1 1000g 0b 0f 1000g 0b 0f 1g 0b 999f 0g 0b 1000f 0g 0b 1000f
ℚ(√−10) 𝐶ℂ 6 1000g 0b 0f 1000g 0b 0f 0g 0b 1000f 0g 0b 1000f 0g 0b 1000f

The results are summarised in Tables 3.7 and 3.8. For real constants (𝐶 = 𝐶ℝ) the results
are mostly good, despite the algorithm conditions not being satisfied. This is similar to
the results for ℚ(√−11), highlighted above, that also failed those conditions. Contrast
these to the cases where 𝐶 = 𝐶ℂ which perform exceptionally poorly with apslq. This
ought not be especially surprising since these fields do not satisfy the required conditions,
and it is more remarkable that the results for the cases using real constants are so good.

87

3 Algebraic Integer Relations

Both the reduction method (using pslq), and lll give flawless results, as we also saw for
the Euclidean fields. The number of test problems requiring a transformation is shown
in Table 3.9 and we see significantly fewer cases as compared to the Euclidean fields. We
note that, similar to the Euclidean cases, every transformed candidate yielded a good
result.

Table 3.9: No. of Problems Requiring Transformation after Reduction with pslq

Test Set Parameters Short Input Long Input
𝕂 𝐶 𝜄 = 1 𝜄 = 6 𝜄 = 1 𝜄 = 6

ℚ(√−5) 𝐶ℝ 8 12 23 13
ℚ(√−5) 𝐶ℂ 6 9 26 21

ℚ(√−6) 𝐶ℝ 4 8 15 14
ℚ(√−6) 𝐶ℂ 0 8 20 18

ℚ(√−10) 𝐶ℝ 0 2 8 2
ℚ(√−10) 𝐶ℂ 0 0 5 2

Precision

We present the graphs for 𝕂 = ℚ(√−2) in Figs. 3.14 to 3.17, and note that it is illustrative
of all cases, as presented in Figs. B.21 to B.48 on pages 166–193.

We continue to see that the required precision for pslq typically sits just above the double
theoretical minimum precision mark, like we was in the real quadratic cases. We also
continue to see the increase in required precision as the value of 𝛾 increases for apslq.

The required precision for apslq typically sits above the theoretical minimum precision
mark suggesting that, like Gaussian integers, the number of digits of a quadratic integer is
the larger of the 𝜔 coefficient or the constant coefficient. The height above the minimum
theoretical precision that apslq sits appears to grow as 𝐷 grows, although 𝐷 = −2 stands
as an exception. The discrepancy in the 𝐷 = −2 case might be that it is the only case
where 𝐷 ≡ 2, 3 (mod 4), and that these cases have a larger lattice than the triangular one
in the other case.

Of greater interest and surprise is that the lll precision (recalling that we are using the
more direct method of the Λ𝑥(𝑁 , 𝐷) lattice) lies between pslq and apslq. The lattice used
to compute these integer relations problems is twice as large, and the lattice vectors twice
as long as would be the case for a classical integer relation (which would also be the case
if we could compute lll directly with quadratic integers and complex numbers). We do
not know precisely why this is the case; we expect something about the structure of the
constructed lattice allows for the reduced precision requirement.

88

3 Algebraic Integer Relations

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.14: Precision required: 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ.

89

3 Algebraic Integer Relations

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.15: Precision required for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ (apslq only).

90

3 Algebraic Integer Relations

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.16: Precision required: 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ.

91

3 Algebraic Integer Relations

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.17: Precision required for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ (apslq only).

92

3 Algebraic Integer Relations

Timing

We present the graphs for 𝕂 = ℚ(√−2) in Figs. 3.18 to 3.21, and note that they are
illustrative of all cases, as presented in Figs. B.53 to B.80 on pages 198–225.

We see that lll continues to be the slowest of the techniques, although the difference
between it and pslq is less pronounced—closer to 1 order of magnitude. The smaller dif-
ference is likely related to the lower precision that the Λ𝑥(𝑁 , 𝐷) lattice seems to grant.

The difference in computation times for the different 𝛾 values for apslq is much less clear
in these cases. In no cases is there any indication of strata like we saw in the classical
cases.

Interestingly we note that despite not being efficiently implemented our apslq imple-
mentation is consistently faster than lll, and sometimes even faster than pslq. We ex-
pect that if properly implemented it should be the fastest (supported by the fact that it
consistently requires significantly lower precision for the computations).

93

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.18: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ.

94

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.19: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ (apslq only).

95

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure 3.20: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ.

96

3 Algebraic Integer Relations

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure 3.21: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ (apslq only).

97

Part II

Douglas–Rachford

98

4 Dynamics of the Douglas-Rachford Method

for Ellipses and 𝑝-Spheres

4.1 Preliminaries

Herein 𝐻 is a Hilbert space. We will denote the induced norm by ‖ ⋅ ‖. The projection onto
a proximal subset 𝐶 of 𝐻 is defined for all 𝑥 ∈ 𝐻 by

𝑃𝐶(𝑥) ∶= {𝑧 ∈ 𝐶 ∶ ‖𝑥 − 𝑧‖ = inf
𝑧′∈𝐶

‖𝑥 − 𝑧′‖}

When 𝐶 is closed and convex the projection operator 𝑃𝐶 is single valued and firmly non-
expansive. When 𝐶 is a closed subspace it is also linear and self-adjoint. For additional
information, see, for example, [13, Definition 3.7]. The reflection mapping through the
set 𝐶 is then defined by

𝑅𝐶 ∶= 2𝑃𝐶 − 𝐼 ,

where 𝐼 is the identity map on 𝐻.

Definition 4.1.1 (Douglas-Rachford Method). For two closed sets 𝐴 and 𝐵, and an initial
point 𝑥0 ∈ 𝐻, the Douglas-Rachford method generates a sequence (𝑥𝑛)∞𝑛=1 as follows:

𝑥𝑛+1 ∈ 𝑇𝐴,𝐵(𝑥𝑛) where 𝑇𝐴,𝐵 ∶= 1
2
(𝐼 + 𝑅𝐵𝑅𝐴). (4.1)

Figure 4.1 illustrates the construction of one iteration of the Douglas-Rachfordmethod.

Notation 4.1.2. Throughout, 𝑥𝑛, 𝑥0 are as in Definition 4.1.1, 𝐴, 𝐵 are closed. When the two
sets 𝐴 and 𝐵 are clear from the context we will simply write 𝑇 in place of 𝑇𝐴,𝐵.

Theorem 4.1.3 (Bauschke, Combettes, and Luke [14]). Suppose 𝐴, 𝐵 ⊆ 𝐻 are closed and
convex with non-empty intersection. Given 𝑥0 ∈ 𝐻 the sequence of iterates 𝑇𝐴,𝐵 converges
weakly to an 𝑥 ∈ Fix 𝑇𝐴,𝐵 with 𝑃𝐴(𝑥) ∈ 𝐴 ∩ 𝐵.

99

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

𝑥0

𝑅𝐴(𝑥0)

𝑅𝐵𝑅𝐴(𝑥0)

𝑥1

𝐵

𝐴

Figure 4.1: One iteration of the Douglas-Rachford method

In finite dimensions convergence in norm for convex sets is therefore assured. Notwith-
standing the absence of a satisfactory theoretical justification, the Douglas-Rachford it-
eration scheme has been used to successfully solve a wide variety of practical problems
in which one or both of the constraints are non-convex. Phase retrieval problems are
one important instance, and the case of a line 𝐿 and circle 𝐶 in 2-dimensional Euclidean
space—prototypical of such problems—was investigated by Borwein and Sims [25] as a
specific case of the higher dimensional problem of a line and a sphere in Hilbert space.

Despite the seeming simplicity of the situation, the Douglas-Rachford method applied to
𝐿 and 𝐶 proved surprisingly difficult to analyse. Among the partial results obtained in
the feasible case was local convergence to each of the two feasible points. Based on this
and extensive computer experimentation, Borwein and Sims were led to ask whether
this could be extended to convergence to one or other of the two intersection points
for all starting points except those lying on a “singular set” 𝑆0; the line of symmetry
perpendicular to 𝐿 and passing through the centre of 𝐶. Borwein and Aragón Artacho [2]
established sizeable domains of attraction for each of the feasible points, and the global
question was answered in the affirmative by Benoist [19] who obtained the result by
constructing a suitable Lyapunov function, see figure 4.2.

The singular set 𝑆0 is invariant under the Douglas-Rachford operator 𝑇𝐶,𝐿. It contains pe-
riod 2 points if and only if 𝐿 passes through the centre of 𝐶 in which case all the points of
𝐿 inside 𝐶 are period 2 points. When 𝐿 is tangential to 𝐶 all points on 𝑆0 are fixed by 𝑇𝐶,𝐿.
For other positions of 𝐿 the iterates exhibits periodic behaviours when rational commen-
surability is present, while in the absence of such commensurability the behaviours may
be quite chaotic. See [25] for more details.

In order to gain further insights into the behaviour of the Douglas-Rachford algorithm
in the case of non-convex constraint sets we consider two generalisations of a line and
sphere (circle) in 2 dimensional Euclidean space, namely: that of a line together with an
ellipse and that of a line together with a 𝑝-sphere.

100

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.2: Douglas-Rachford on the 2-sphere and line showing the level sets of the Lyapunov
function [19]

These seemingly innocuous generalisations, while open to exploration and local analysis
about the feasible points, may be impossible to analyse in full. The singular set is no
longer a simple curve but rather exhibits a complex (and fascinating) geometry involving
a rich array of periodic points and associated domains of attraction. In the case of an
ellipse and linewe observe the appearance of higher order periodic points as the ellipticity
is increased.

Definition 4.1.4 (Periodic points and domains). The following terms, already used infor-
mally, help inform our discussion.

1. A point 𝑥 is a periodic point of period 𝑚 (or a period 𝑚 point) if 𝑇𝑚𝐴,𝐵𝑥 = 𝑥 (A period
1 point is simply a fixed point of 𝑇𝐴,𝐵).

2. The domain of attraction (or attractive domain) for a period 𝑚 point 𝑥 is the set of all
𝑥0 satisfying

lim
𝑘→∞

𝑇 𝑘𝑚𝐴,𝐵(𝑥0) = 𝑥. (4.2)

3. A point 𝑥 is attractive if its domain of attraction contains a neighbourhood of 𝑥.

4. The singular set consists of all points not belonging to a domain of attraction for any
feasible point.

5. A period 𝑚 point is said to be repelling if there exists a neighbourhood 𝑁𝑥 of 𝑥 such
that for every 𝑥0 ∈ 𝑁𝑥\{𝑥} the sequence (𝑇 𝑘𝑚𝐴,𝐵(𝑥0))

∞
𝑘=1 eventually lies outside of 𝑁𝑥.

Of course if 𝑆 is a domain of attraction for a period 𝑚 point 𝑥 then for 𝑘 = 1, 2, ⋯𝑚 − 1 it
follows that 𝑇 𝑘(𝑆) is a domain of attraction for 𝑇 𝑘(𝑥). This is a notable feature in many
of our graphics, see for instance Figure 4.3.

101

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.3: Domain of attraction for period 3 points in the case of 𝐸6, 𝐿8

4.1.1 Notation

By a suitable rotation and scaling of axes we may without loss of generality take our
ellipse and 𝑝-sphere respectively to be

𝐸𝑏 ∶= {(𝑥, 𝑦) ∈ ℝ2| 𝜑𝑏(𝑥, 𝑦) ∶= 𝑥2 + (
𝑦
𝑏
)
2
= 1} and (4.3)

𝑆𝑝 ∶= {(𝑥, 𝑦) ∈ ℝ2| 𝜃𝑝(𝑥, 𝑦) ∶= (𝑥)𝑝 + (𝑦)𝑝 = 1},

and will write:

𝐿𝑚,𝛽 ∶= {(𝑥, 𝑦) ∈ ℝ2|𝑦 = 𝑚𝑥 + 𝛽} and 𝐿𝑚 ∶= 𝐿𝑚,0.

When it is clear from the context what the parameters are we will simply write 𝐸, 𝑆 or 𝐿
respectively. Similarly, when the context makes it clear we will write 𝑇 in place of 𝑇𝐸,𝐿 or
𝑇𝑆,𝐿.

4.1.2 Computation of Projections

For the case of the 2-sphere, the closest point projection has a simple closed form. For
𝑥 ≠ 0, 𝑃𝑆(𝑥) = 𝑥/‖𝑥‖. Such a simple closed form is immediately lost for any ellipse with
𝑏 ≠ 1 or any 𝑝-Sphere with 𝑝 ∉ {1, 2} because—where 𝜑𝑏, 𝜃𝑝 are as in (4.3)—the induced
Lagrangian problems

𝑃𝐸𝑏(𝑥) = {𝑥′ | 𝜆∇𝑑(𝑥, ⋅)2(𝑥′) = ∇𝜑𝑏(𝑥′), 𝜑𝑏(𝑥′) = 1}

𝑃𝑆𝑝(𝑥) = {𝑥′ | 𝜆∇𝑑(𝑥, ⋅)2(𝑥′) = ∇𝜃𝑝(𝑥′), 𝜃𝑝(𝑥′) = 1}

yield implicit relations that no longer admit explicit solutions. Computation of the re-
quired projections necessitates the use of numerical methods.

102

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.4: Partial domains of attraction of 𝑇𝐸8,𝐿6 for points of different periodicities

A description of the optimised function solvers used is available in the supplementary
material [27]. Many of our implementations of these function solvers—for example, that
used to generate Figure 4.3—employ the interactive geometry software Cinderella, avail-
able at https://cinderella.de/.

4.2 The Case of an Ellipse and a Line

In the case of an ellipse and a line, the singular set—in contrast to the case of a circle and
a line—is no longer a simple curve, and appears to contain periodic points in many cases.
For example, Figure 4.4 shows periodic points for 𝑇𝐸8,𝐿6 with attendant subsets of their
attractive domains. The singular set is larger than suggested here (see Figure 4.10 for a
more complete depiction).

For simplicity, we set the line intercept at 0 for our pictures and tables. It should be
noted that, in contra distinction to the case of a circle and line, similar behaviour can be
observed with nonzero intercepts (although symmetries are lost).

The number and periodicity of the points appear to be related to both the eccentricity of
the ellipse, and the angle of the line. As the eccentricity is increased, we observe growth
in both the number of periodic points and the maximum periodicity. Table 4.1, obtained
experimentally using Cinderella, summarises our findings. Note that the method used
required interactively moving a point in the geometry package, and visually observing
the attractive domains. As such it is regrettably possible that some periodic points were
missed, either because their domains of attraction were too small or they were not at-
tractive points.

103

https://cinderella.de/

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Table 4.1: Periods observed for attractive domains for various ellipse and line configurations
𝐸2 𝐸3 𝐸4 𝐸5 𝐸6

𝐿1 2 2 2 2 2
𝐿2 2,3 2,3 2,3 2,3
𝐿3 2,3 2,3,5 2,3,4,5,7 2,3,4,5,7
𝐿4 2,3,5,7 2,3,4,5,7,9 2,3,4,5(×2),7,9
𝐿5 2,3 2,3,4,5,7,9,11,13 2,3,4,5,7,9,11,13
𝐿6 2,3,5,7 2,4,5(×2),7,9,11,13,15
𝐿7 3 2,3,4,5,7,9,11,13
𝐿8 2,3,5
Note: some periodicity’s were observed in more than one domain.

Figure 4.5: Sensitivity of behaviours to small changes in line slope

We can describe the period 2 points of 𝑇𝐸𝑏,𝐿𝑚 with a closed form that, while complicated
to state, is quick to evaluate [27]. Determining period 2 points algebraically is useful
for corroborating some of the behaviours we observe in Cinderella. However, the degree
of complication associated with the analysis of even this simplest case of a non-fixed
periodic point suggests that fully describing all behaviour globally with explicit forms
would be an impractical undertaking. This, in part, led us to pursue the computer assisted
evidence-gathering approach we describe in subsections 4.2.1.

The nature of the periodic points is also sensitive to small perturbations of the line. We
can see above that for lines of small slope there are only a few attractive periodic points,
and as the slope increases additional points with higher periodicity emerge. As the slope
becomes large, some of the attractive domains appear to shrink in size until eventually
the associated periodic point ceases to be attractive. This appears to be the eventual fate
of all periodic points.

This sensitivity to perturbations can be seen in Figures 4.5 and 4.6. In the former we have
connected every second iterate, and see how a small change in slope can affect which fea-
sible point is converged to, aswell as the appearance/disappearance of attractive domains.
In the latter we plot every second iterate for 𝑇𝐸2,𝐿𝑚 with 300 iterates, starting at 𝑚 = 2
(top left) we slowly rotate the line until we have 𝑚 = 3/2 (bottom right). Part of the line
is visible in the bottom right corner of each frame. In the initial configuration, the sub-
sequence of iterates started near to the periodic point are repelled from it. As we rotate

104

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.6: Evolution in behaviours near two period 2 points as the line slope is changed

the line, we see that the “speed” at which they are repelled decreases until eventually the
periodic point becomes an attractive point instead of a repelling point.

4.2.1 Studying Convergence: Numerical Motivations

The complicated nature of the singular set precludes any possibility of constructing a
Lyapunov function in any sizeable region about the feasible point. Indeed, attempts to
even numerically construct the level curves such a function might have near a feasible
point proved unstable. Instead we refine our numerical-graphical method of discovery.
The method we used for Figure 4.4, though useful for discovery, is not, in itself, sufficient
for fully understanding the behaviours, even for one specific ellipse and line. There are
several reasons for this.

1. There may be other periodic points we cannot see because they are repelling or
their attractive domains are too small.

2. The potential for numerical error is accentuated by the fact that the projection onto
the ellipse is specified as the root function—induced by the Lagrangian system—
whose calculation is, in some configurations, complicated by the presence of nearby
incorrect roots.

3. This method of visualisation may be deceptive, as it precludes us from seeing ac-
curately the extent and shape of attractive domains.

105

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.7: Close up view of the spirals in seen in Figure 4.4

As an example of the latter, notice how the patterns of the iterates in Figure 4.4 form
orderly spirals. This lovely pattern seems to hold for all the cases we have looked at. If we
zoom in on the spirals we see what look like twisting galaxies (see Figure 4.7). Intuition
would suggest to us—incorrectly—that this is perhaps indicative of smooth boundaries
for the domains.

4.2.2 Visualisation Through Parallelisation

Seeking clearer pictures with finer resolution, we implemented a new version of our code.
In this new version we specify a resolution and for each pixel we compute the midpoint,
calling it 𝑥0. Once computed, the location of 𝑥1,000 is checked against a list containing
the feasible points and approximate periodic points, and the pixel is coloured according
to which list member 𝑥1,000 is nearest to.

The efficacy of this technique is demonstrated in Figures 4.8 and 4.9. The former clearly
depicts the complex structure of the domains of attraction for the two feasible points in
the case of 𝑇𝐿2,𝐸2 where two period 2 repelling points are present. Note the interweaving
of the attractive domains near the repelling points. The latter shows the domains of
attraction for 𝑇𝐸8,𝐿6 in the same region as shown in Figure 4.4.

This new implementation was written in such a way as to leverage the highly parallel
nature of gpu devices, although it may also be run on regular cpus. This allowed us
to compute the colourings for many pixels simultaneously, reducing the time needed to
produce the images and simultaneously affording us the ability to produce images with a

106

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.8: Domains of attraction for the two feasible points of 𝑇𝐸2,𝐿2

Figure 4.9: Domains of attraction for 𝑇𝐸8,𝐿6 . Compare with Figure 4.4

107

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.10: Domains of attraction for 𝑇𝐸8,𝐿6

much finer resolution. With this method we were able to see the behaviour of the system
over a larger area, as shown in Figure 4.10. Note that these images benefit greatly from
colour coding of the domains.

4.2.3 Correctness and Reproducibility

Wepause to discuss the reliability of the images produced. We do not know a priori where
the periodic points are, and so we are at the mercy of the correctness of our numerical
methods.

As an initial step we note that early pictures were produced by applying a continuous
colour map to the region in question (of ℝ2). After performing the Douglas–Rachford
iterations each pixel was coloured based on it’s final position, using this colour map.
We saw the same shapes we see in the pictures presented herein, although not with the
distinct, contrasting, and uniform colours. We note that these early pictures resulted, in
the case of 𝑇𝐸8,𝐿6 , in the discovery of a set of attractive points which had hitherto been
missed.

We have not yet detailed themeanswithwhichwe compute the projection onto an ellipse.
The supplementary material [27] (to the original paper [28] fromwhich the results in this
chapter were published) gives some details, but obscures the details of the actual ellipse
projection stating only “numerically solve the Lagrangian system […]”. We present this
information here to further our discussion.

108

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

To project onto the ellipse, we exploited symmetry in the ellipse, and considered only
projection from a point in the positive quadrant. Given a point (𝑥, 𝑦) ∈ ℝ2 with 𝑥 ≥ 0
and 𝑦 ≥ 0 we compute the projection, 𝑃, by solving 𝑓 (𝑧) = 0 where

𝑓 (𝑧) =

⎧
⎪

⎨
⎪
⎩

(𝑏4 − 2𝑏2 + 1) 𝑧4 + (2𝑏2𝑥 − 2𝑥) 𝑧3

+ (−𝑏4 + 𝑏2𝑦2 + 2𝑏2 + 𝑥2 − 1) 𝑧2 + (−2𝑏2𝑥 + 2𝑥) 𝑧 − 𝑥2
if 𝑏 > 1

(𝑏4 − 2𝑏2 + 1) 𝑧4 + (−2𝑏3𝑦 + 2𝑏𝑦) 𝑧3

+ (−𝑏4 + 𝑏2𝑦2 + 2𝑏2 + 𝑥2 − 1) 𝑧2 + (2𝑏3𝑦 − 2𝑏𝑦) 𝑧 − 𝑏2𝑦2
if 𝑏 < 1

and compute

𝑃 = {
(𝑧, 𝑏√1 − 𝑥2) if 𝑏 > 1

(1𝑏√𝑏
2 − 𝑦2, 𝑧) if 𝑏 < 1

Observe that the function depends on the value of 𝑏 (from the ellipse equation 𝑥2 +
(𝑦/𝑏)2 = 1). In particular when 𝑏 > 1 we solve for 𝑥 and when 𝑏 < 1 we solve for
𝑦.1 The reason for this is that (as noted in the supplementary material [27]) the induced
Lagrangian function for 𝑥 has multiple zeros in the desired range when 𝑏 < 1, but only
a single zero when 𝑏 > 1. Similarly the induced Lagrangian function for 𝑦 has multiple
zeros in the desired range when 𝑏 > 1, but only a single zero when 𝑏 < 1.

The function 𝑓 (𝑧) is quite poorly behaved, and so to find the correct zero we perform five
iterations of the bisectionmethod before utilisingNewton’smethod—starting at the lower
bisection bound—to find the zero. We note that, as a simple means of checking, some
pictures were produced using only the bisection method (iterating until the difference
between the bounds was less than machine epsilon), and the images produced agreed
with those produced using the hybrid method.

Motivated by concern regarding the complexity of both the computation method, and
the code to implement it, a simpler projection calculation was devised. This new method
exploited the parametric equation of the ellipse (𝑢, 𝑣) = (cos(𝜃), 𝑏 sin(𝜃)), and the fact that
the tangent line to a point on the ellipse is parallel to the vector (− sin(𝜃), 𝑏 cos(𝜃)).

For a given point (𝑥, 𝑦) ∈ ℝ2 with 𝑥 ≥ 0 and 𝑦 ≥ 0 we compute the projection, 𝑃, by
solving 𝑓 (𝜃) = 0 where

𝑓 (𝜃) = ⟨ (𝑥, 𝑦) − (cos(𝜃), 𝑏 sin(𝜃)), (− sin(𝜃), 𝑏 cos(𝜃)) ⟩

= 𝑏𝑦 cos(𝜃) − 𝑥 sin(𝜃) + (1 − 𝑏2) sin(𝜃) cos(𝜃)

1In the case that 𝑏 = 1 we simply have a circle, and the projection is given by (𝑥, 𝑦)/‖(𝑥, 𝑦)‖.

109

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

and ⟨⋅, ⋅⟩ denotes the usual dot product on ℝ2. In other words, we search for the value of
𝜃 for which the line segment from (𝑢, 𝑣) = (cos(𝜃), 𝑏 sin(𝜃)) to (𝑥, 𝑦) is perpendicular to
the tangent line at (𝑢, 𝑣).

The function is periodic with a period of 2𝜋. The range of 𝜃 we are interested in is 0 ≤
𝜃 ≤ 𝜋/2 and in this range there is exactly one zero. At 𝜃 = 0 we have 𝑓 (0) = 𝑏𝑦 and
𝑓 ′(0) = 1 − 𝑥 − 𝑏2 which is always negative. At 𝜃 = 𝜋/2 we have 𝑓 (𝜋/2) = −𝑥 and
𝑓 ′(𝜋/2) = 𝑏2 − 𝑏𝑦 − 1 which may be positive or negative, depending on the value of 𝑦.

In addition to being much simpler, we found experimentally that this approach is signifi-
cantly better behaved with regard to finding zeros. It needs no initial conditioning using
the bisection method; Newton’s method starting at 𝜃 = 0 performed superbly. Observ-
ing the shape of the function in Cinderella we see that the zeros, of the function outside
the range we are interested in never appear to be close to the zero we wish to find. We
also note, in passing, that the function may have 2 or 4 zeros inside the periodic cycle
depending on the value of 𝑦.

We did have one small issue, however. When producing images of the basins of 𝑇𝐸8,𝐿6 for
over regions of the plane larger than any shown in this document, we observed strange
discrepancies between the original function and the new function. After some explo-
ration, we found that Newton’s method was converging on a zero outside the desired
range for points with sufficiently large 𝑦-value. Much trial and error eventually yielded
the simple solution wherein we start our Newton iterations at either 𝜃 = 0 or 𝜃 = 𝜋/2
depending on which has the steeper negative tangent line to the function. Moreover, it is
easy to show that the steeper negative gradient will correspond to 𝜃 = 0 precisely when
2 − 𝑥 ≤ 2𝑏2 − 𝑦𝑏.

With the above modified method, the images agree with those produced by the original.
This greatly increases confidence in the correctness of the images, and of the numerical
stability of themore complicated function 𝑓 (𝑧). When consideredwith the original colour
maps, and the discussion in Section 5.4.2 on page 128 we are extremely confident the
images accurately portray the situation. Additionally, we note that the code to compute
using this modified method is both smaller, and simpler to understand.

4.3 Line and 𝑝-sphere

Projections onto the 1-sphere can be determined explicitly, so exact analysis is possible.
Consequently, much of the behaviour is readily determined in particular periodic points
with periods higher than 2 are observed. When 𝑝 = 2, we recover the circle for which
the convergence properties are known, (see Section 4.1). Our observations from the case
𝑝 > 2 suggest a conjecture: that when the line is not parallel to either of the axes there
is at most one pair of periodic points and they are repelling.

110

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Figure 4.11: Subsequential convergence to—and attractive domains for—period 2 points. Left:
𝑇𝑆1/2,𝐿1 , right: 𝑇𝑆1/3,𝐿1/2

For 1/𝑛-spheres where 𝑛 ≥ 2 is a natural number, we see the appearance of period 2
points with attendant local domains of attraction, examples are shown in Figure 4.11.
It can be seen—proven easily—that, for the sphere 𝑆1/𝑛 with line 𝐿1, any point (−𝑡, 𝑡) or
(𝑡, −𝑡) for 𝑡 ∈ (0, 1

2𝑛] is a period 2 point. This continuum of period 2 points is analogous to
what is observed in the case of a 2-sphere. More interesting is the apparent emergence
of attractive domains which have nonzero measure.

These observations already hint at the larger measure and greater complexity of the sin-
gular manifold in the case of a line and 𝑝-sphere, when 𝑝 ≠ 2, compared to that for a line
and 2-sphere. When we rotate the line to, say, 𝐿1/2 there appear to be only finitely many
period 2 points, but they are no longer constrained to lie in an affine submanifold.

4.4 A Theoretical Interlude: Local Convergence to a Feasible Point

Borwein and Sims [25] used the Perron theorem on the stability of almost linear difference
equations [51, Corollary 4.7.2] to establish local convergence of the Douglas-Rachford
algorithm, 𝑥𝑛+1 = 𝑇𝐾,𝐿(𝑥𝑛), to an isolated point 𝑓 ∈ 𝐿 ∩ 𝐾 when 𝐿 is a line and 𝐾 is the
(non convex) unit sphere in 𝑛-dimensional Euclidean space. We outline a strategy for
extending this to the case when 𝐿 is still a line, but 𝐾 is a smooth hypersurface ((𝑛 − 1)-
manifold). We consider its application when 𝐿 and 𝐾 lie in ℝ2; 𝐿 is the line 𝛼𝑥 + 𝛽𝑦 = 𝛾,
𝐾 is the ellipse 𝐸𝑏 as in (4.3).

The strategy is to show that, in a neighbourhood of the feasible point 𝑓, the reflection in
the supporting hyper-plane 𝐻𝑓 to 𝐾 at 𝑓—as in Figure 4.12—provides an 𝑜-order approxi-
mation to the reflection in 𝐾 so that the Perron theorem can be applied to the system of
difference equations corresponding to the Douglas-Rachford algorithm. Succinctly, we
want

𝑅𝐾(𝑝) = 𝑅𝐻𝑓(𝑝) + Δ, where ‖Δ‖ = 𝑜(‖𝑝 − 𝑓 ‖) for 𝑝 sufficiently near 𝑓 .

111

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

𝑓

𝐾

𝐻𝑓𝑝1

𝑃𝐾(𝑝1)

𝑃𝐻𝑓(𝑝1)
𝑝2

𝑃𝐾(𝑝2)

𝑃𝐻𝑓(𝑝2)

Figure 4.12: Approximation of 𝑃𝐾 by 𝑃𝐻𝑓
near 𝑓

For the Euclidean reflection this follows if ‖𝑃𝐾(𝑝) − 𝑃𝐻𝑓(𝑝)‖ = 𝑜(‖𝑝 − 𝑓 ‖). When this
happens we have, for 𝑝 in a neighbourhood of 𝑓,

𝑇𝐾,𝐿(𝑝) = 1
2
[𝑝 + 𝑅𝐿(𝑅𝐾(𝑝))]

= 1
2
[𝑝 + 𝑅𝐿(𝑅𝐻𝑓(𝑝) + Δ)]

= 1
2
[𝑝 + 𝑅𝐿−𝑓(𝑅𝐻𝑓(𝑝) + Δ − 𝑓) + 𝑓]

= 1
2
[𝑝 + 𝑅𝐿−𝑓((𝑅𝐻𝑓−𝑓(𝑝 − 𝑓) + 𝑓) + Δ − 𝑓) + 𝑓]

= 1
2
[𝑝 + 𝑅𝐿−𝑓(𝑅𝐻𝑓−𝑓(𝑝 − 𝑓)) + 𝑅𝐿−𝑓(Δ) + 𝑓], since 𝑅𝐿−𝑓 is linear

= 1
2
[(𝑝 − 𝑓) + 𝑅𝐿−𝑓(𝑅𝐻𝑓−𝑓(𝑝 − 𝑓))] + 1

2
𝑅𝐿−𝑓(Δ) + 𝑓

Thus we have that
𝑇𝐾,𝐿(𝑝) = 𝑓 + 𝑇(𝐻𝑓−𝑓),(𝐿−𝑓)(𝑝 − 𝑓) + Δ′

where Δ′ = 1
2𝑅𝐿−𝑓(Δ) has ‖Δ

′‖ = 𝑜‖𝑝 − 𝑓 ‖ since 𝑅𝐿−𝑓 is a bounded linear operator.

Thus, by the theorem of Perron (see, [25] theorem 6.1 or [51] Corollary 4.7.2), the system
of difference equations corresponding to the Douglas-Rachford algorithm for 𝐾 and 𝐿,

𝑥𝑛+1 = 𝑇𝐾𝐿(𝑥𝑛)

is exponentially asymptotically stable at 𝑓 (in particular ‖𝑥𝑛 − 𝑓 ‖ → 0 for 𝑥0 sufficiently
near 𝑓) provided all the eigenvalues of the linear operator 𝑇(𝐻𝑓−𝑓),(𝐿−𝑓) have moduli less
than one.

112

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

When 𝑀 is a subspace, the projection 𝑃𝑀 is linear (as is the case when 𝑀 = 𝐿 − 𝑓) and
the Douglas-Rachford operator for 𝑁 and 𝑀 becomes

𝑇𝑁 ,𝑀 = 1
2
[𝐼 + (2𝑃𝑀 − 𝐼)(2𝑃𝑁 − 𝐼)] (4.4)

= 2𝑃𝑀𝑃𝑁 − 𝑃𝑀 − 𝑃𝑁 + 𝐼 (4.5)

= 𝑃𝑀𝑃𝑁 + (𝐼 − 𝑃𝑀)(𝐼 − 𝑃𝑁). (4.6)

When 𝑁 is also a subspace (for instance when 𝑁 = 𝐻𝑓 − 𝑓) this may be written as

𝑇𝑁𝑀 = 𝑃𝑀𝑃𝑁 + 𝑃𝑀⟂𝑃𝑁 ⟂

where ⟂ denotes the orthogonal complement.

As a curiosity, we observe that if in the case of two subspaces we define a twisted Douglas-
Rachford operator by 𝑉𝑁𝑀 ∶= 𝑃𝑀𝑃𝑁 + 𝑃𝑁 ⟂𝑃𝑀⟂ , then, since 𝑃𝑀𝑃𝑀⟂ = 𝑃𝑁𝑃𝑁 ⟂ = 0, the
iterates are 𝑥𝑛 = 𝑉 𝑛

𝑁𝑀(𝑥0) = 𝑢𝑛 + 𝑣𝑛, where 𝑢𝑛+1 = 𝑃𝑀𝑃𝑁(𝑢𝑛) and 𝑣𝑛+1 = 𝑃𝑁 ⟂𝑃𝑀⟂(𝑣𝑛). The
sequence of twisted Douglas-Rachford approximants is thus the sum of two sequences
(𝑢𝑛) and (𝑣𝑛) resulting from the application of von Neumann’s alternating projection
algorithm to the pairs of subspaces 𝑀 and 𝑁, and 𝑁⟂ and 𝑀⟂ respectively. Since the
Friedrichs angle 𝜃 between 𝑀 and 𝑁 is the same as the angle between 𝑀⟂ and 𝑁⟂, the
twisted Douglas-Rachford algorithm converges with the same rate as the von Neumann
algorithm; namely at a linear rate proportional to cos2 𝜃 [34], the same as the rate exhib-
ited by the standard Douglas-Rachford algorithm [18].

Now we consider the special case of an ellipse and a line. Without loss of generality we
consider the ellipse 𝐸𝑏 as in (4.3), and the line 𝐿 ∶ 𝛼𝑥 + 𝛽𝑦 = 𝛾, where 𝑏 ≥ 1, 𝛽 ≥ 0 and,
to ensure the existence of 𝑓 = (𝑥0, 𝑦0) ∈ 𝐿 ∩ 𝐸 ∩ |ℝ|2, either 𝛼 ≤ 𝛾 ≤ 𝛽𝑏 or 𝛽𝑏 < 𝛾 and
𝛼 ≥ √𝛾 2 − 𝛽2𝑏2.

Following the strategy outlined above leads us to consider the eigenvalues of 𝑇 for two
lines through the origin

𝐿1 ∶ 𝛼𝑥 + 𝛽𝑦 = 0 and 𝐿2 ∶ 𝐴𝑥 + 𝐵𝑦 = 0

where, in our context, the latter line, being parallel to the tangent to 𝐸 at 𝑓, has𝐴 = 𝑥0 and
𝐵 = 𝑦0/𝑏2. It is readily verified that the orthogonal projection onto 𝐿1 has the matrix

[𝑃𝐿1] =
1

𝛼2 + 𝛽2
(

𝛽2 −𝛼𝛽
−𝛼𝛽 𝛼2

) (4.7)

113

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

with amatching expression for [𝑃𝐿2]. Substituting these expressions into 𝑇𝐿2,𝐿1 = 2𝑃𝐿1𝑃𝐿2−
𝑃𝐿1 − 𝑃𝐿2 + 𝐼 yields

[𝑇𝐿1,𝐿2] =
𝜓
Δ
(

𝜓 𝜔
−𝜔 𝜓

)

where 𝜓 = 𝛼𝐴 + 𝛽𝐵, 𝜔 = 𝛼𝐵 − 𝛽𝐴 and Δ = (𝛼2 + 𝛽2)(𝐴2 + 𝐵2), which has eigenvalues
𝜓
Δ(𝜓 ± 𝑖𝜔) with modulus squared equal to

𝜓 2

Δ2 (𝜓
2 + 𝜔2) =

(𝛼𝐴 + 𝛽𝐵)2((𝛼𝐴 + 𝛽𝐵)2 + (𝛼𝐵 − 𝛽𝐴)2)

(𝛼2 + 𝛽2)2(𝐴2 + 𝐵2)2

=
(𝛼𝐴 + 𝛽𝐵)2

(𝛼2 + 𝛽2)(𝐴2 + 𝐵2)
< 1

Thus, as expected, for any two lines intersecting in a single point the Douglas-Rachford
algorithm with any starting point spirals exponentially to their common point.

Therefore the Douglas-Rachford algorithm for a line and an ellipse 𝐸 is locally convergent
at each of the feasible points 𝑓 provided

‖𝑃𝐸(𝑝) − 𝑃𝐻𝑓(𝑝)‖ = 𝑜(‖𝑝 − 𝑓 ‖),

for all 𝑝 in some neighbourhood of 𝑓.

To see this we follow an argument suggested by Asen Dontchev [35]. While we present
the argument in the particular case of 𝐸𝑏 = {𝑥|𝜑𝑏(𝑥)−1 = 0}, the astute reader will observe
that it applies to any smooth hypersurface 𝐾 ∶= {𝑔(𝑥) = 0} at any point 𝑓 = (𝑥0, 𝑦0) ∈ 𝐾
at which the gradient ∇𝑔 is non-singular (true for the ellipse as ∇𝑔(𝑥) = (2𝑥, 2𝑦/𝑏2)) and
so applies to 𝑝-spheres except near the extreme points of the sphere when 0 < 𝑝 ≤ 1.

We begin by noting that for the supporting hyperplane (tangent) to 𝐸 at 𝑓

𝑃𝐻𝑓(𝑝) = 𝑓 + 𝑃𝐻𝑓−𝑓(𝑝 − 𝑓)

where

[𝑃𝐻𝑓−𝑓] =
𝑏4

𝑏4𝑥20 + 𝑦20
(

𝑦20/𝑏4 −𝑥0𝑦0/𝑏2

−𝑥0𝑦0/𝑏2 𝑥20
).

Next we observe that the nearest point projection (𝑢(𝑝), 𝑣(𝑝)) = 𝑃𝐸(𝑝) at 𝑝 = (𝜁 , 𝜂) is the
solution of

minimise: 1
2
‖𝑃𝐸(𝑝) − 𝑝‖2 = 1

2
((𝑢 − 𝜁)2 + (𝑣 − 𝜂)2)

subject to: 𝑔(𝑃𝐸(𝑝)) = 𝑢2 + (𝑣
𝑏
)
2
− 1 = 0,

114

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

which, since ∇𝑔(𝑃𝐸(𝑝)) is non-singular, is characterised via the method of Lagrange mul-
tipliers by ∇1

2((𝑢 − 𝜁)2 + (𝑣 − 𝜂)2) + 𝜆∇𝑔(𝑃𝐸(𝑝)) = 0 together with 𝑔(𝑃𝐸(𝑝)) = 0, that
is,

𝑓1 ∶ 𝑢 − 𝜁 + 2𝜆𝑢 = 0

𝑓2 ∶ 𝑣 − 𝜂 + 2𝜆 𝑣
𝑏2

= 0

𝑔 ∶ 𝑢2 + (𝑣
𝑏
)
2
− 1 = 0.

As an aside, this yields the implicit specification

𝑃𝐸(𝜁 , 𝜂) = (
𝜁

1 + 2𝜆
,

𝑏2𝜂
𝑏2 + 2𝜆

), where
𝜁 2

(1 + 2𝜆)2
+

𝑏2𝜂2

(𝑏2 + 2𝜆)2
= 1.

In order to apply the implicit function theorem to ensure that 𝑢, 𝑣 and 𝜆 are differentiable
functions of 𝜁 and 𝜂 in a neighborhood of 𝑓 we require the Jacobian of the above system
of equations with respect to the dependent variables, 𝑢, 𝑣 and 𝜆 at 𝑓, 𝐽 (𝑓), to be non-
singular. Since 𝑃𝐸(𝑓) = 𝑓 we see from the first (and second) equation that for 𝑝 = 𝑓 the
corresponding Lagrange multiplier is necessarily 0. Thus,

𝐽 (𝑓) =
𝜕(𝑓1, 𝑓2, 𝑔)
𝜕(𝑢, 𝑣 , 𝜆)

|
(𝑥0,𝑦0,0)

=
⎛
⎜⎜
⎝

1 0 2𝑥0
0 1 2𝑦0/𝑏2

2𝑥0 2𝑦0/𝑏2 0

⎞
⎟⎟
⎠

,

more generally 𝐽 (𝑓) = (
𝐼 ∇𝑔(𝑓)𝑇

∇𝑔(𝑓) 0
), which is indeed non-singular, and in our

case

𝐽 (𝑓)−1 = 𝑏4

𝑏4𝑥20 + 𝑦20

⎛
⎜⎜
⎝

𝑦20/𝑏4 −𝑥0𝑦0/𝑏2 𝑥0/2
−𝑥0𝑦0/𝑏2 𝑥20 𝑦0/2𝑏2

𝑥0/2 𝑦0/2𝑏2 −1/4

⎞
⎟⎟
⎠

.

Thus the implicit function theorem applies, yielding

(
[𝑃 ′𝐸(𝑓)]
[𝜆′(𝑓)]

) =
𝜕(𝑢, 𝑣 , 𝜆)
𝜕(𝜁 , 𝜂)

|
(𝑥0,𝑦0))

= 𝐽(𝑓)−1
𝜕(𝑓1, 𝑓2, 𝑔)
𝜕(𝜁 , 𝜂)

= 𝐽 (𝑓)−1(
𝐼
0
),

whence [𝑃 ′𝐸(𝑓)] = 𝑏4

𝑏4𝑥20 + 𝑦20
(

𝑦20/𝑏4 −𝑥0𝑦0/𝑏2

−𝑥0𝑦0/𝑏2 𝑥20
) which we recognise as [𝑃 ′𝐻𝑓

(𝑓)]

and we are able to conclude that near 𝑓

‖𝑃𝐸(𝑝) − 𝑃𝐻𝑓(𝑝)‖ = ‖𝑓 + 𝑃 ′𝐸(𝑓)(𝑝 − 𝑓) + Δ − (𝑓 + 𝑃𝐻𝑓−𝑓(𝑝 − 𝑓))‖ = ‖Δ‖

where ‖Δ‖ = 𝑜(‖𝑝 − 𝑓 ‖) as required.

Summarizing the above, we have the following local convergence result.

115

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

0 200 400 600 800 1000 1200 1400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

is
ta

nc
e

fro
m

 S
ol

ut
io

n

AI escargot

Figure 4.13: Distance from iterates to solution. Left: for a sudoku puzzle [4]. Right: for 𝑇𝐸2,𝐿2

Theorem 4.4.1. Let 𝐾 be a hypersurface in ℝ𝑛 and 𝑓 ∈ 𝐾 such that 𝐾 is smooth in a neigh-
bourhood of 𝑓 and let 𝐻𝑓 be the unique supporting hyperplane to 𝐾 at 𝑓. If 𝐿 is a line such
that 𝐿 ∩ 𝐻𝑓 = {𝑓 }, then the Douglas-Rachford algorithm 𝑇𝐾,𝐿 is locally convergent to 𝑓.

4.5 Important Lessons About Global Behaviour

What we have observed in our computer-assisted study of these two simple cases of a
line together with an ellipse or a 𝑝-sphere is remarkably informative: it suggests likely
explanations for the behaviour of the algorithm both for feasible and infeasible cases. We
consider feasible cases first.

4.5.1 The Feasible Case

AragónArtacho, Borwein, and Tam experimentedwith using theDouglas-Rachfordmethod
to solve Sudoku puzzles [4]. The left hand images of Figures 4.13 and 4.14, illustrate the
distance to the solution by iterations of Douglas-Rachford for two different sudoku puz-
zles. First consider Figure 4.13. On the left, we see the algorithm struggle for a long
period of time before finally converging. Compare this to the image on the right: for
𝑇𝐸2,𝐿2 with 210 iterates, distance of each iterate—to the particular feasible point the se-
quence converges to—is plotted. The subsequences 𝑥2𝑘 and 𝑥2𝑘−1 are coloured light and
dark grey respectively. They correspond respectively to iterates landing in the domain
of attraction for the left and right feasible points; see Figure 4.8. Without the geometric
intuition gleaned from Figure 4.8, we would not know to colour these two subsequences
distinctly, and the error plot would not reflect the behaviour as clearly. Once the iterates
have finally climbed free of the influence of the repelling period 2 points, we see a sudden
rapid convergence to the relevant feasible point.

Now consider Figure 4.14. At left, we see distance from the solution of the iterates for
a different sudoku puzzle. This time the error stabilises after a time without any indi-
cation of impending convergence. At right, we see the iterates for 𝑇𝐸14,𝐿9 . The iterates

116

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

0 500 1000 1500 2000 2500
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 D

is
ta

nc
e

fro
m

 S
ol

ut
io

n

'Nasty' Sudoku

Figure 4.14: Distance from iterates to a solution. Left: a sudoku puzzle [26]. Right: 𝑇𝐸14,𝐿9

Figure 4.15: Distance of iterates from solution (scale logarithmic). Left: for five proteins [26],
Right: for the iterates of 𝑇𝐸8,𝐿6 pictured in Figure 4.16

approach the ellipse before being pulled into the attractive domain for some period 11
points, preventing convergence.

Experiments have also been conducted using the Douglas-Rachford method to solve ma-
trix completion problems associatedwith incomplete Euclidean distancematrices for pro-
tein mapping [3, 6, 26]. Consider Figure 4.15. The left image shows the relative error of
iterates when solving the Euclidean distance matrices for various proteins. The right
image shows the relative error for the iterates of 𝑇𝐸8,𝐿6 when the sequence of iterates is
started near to domains of attraction.

The exact iterates used to generate this data are shown in Figure 4.16; they appear to
trace out the shapes of the attractive domains for periodic points, narrowly avoiding

Figure 4.16: A convergent sequence of iterates of 𝑇𝐸8,𝐿6 traces the outline of the domains

117

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

them on their way to eventual convergence. Points started relatively close to domains
of attraction for periodic points (as in the right hand side of Figure 4.13) appear to take
longer to converge than those started elsewhere.

While we cannot say with any real certainty that the behaviour when solving these Eu-
clidean distance matrices is analogous to iterates climbing away from repelling points or
dodging and weaving between a nest of attractive domains, it is surprising that a system
as simple as that of a line and ellipse can create behaviour so similar to that observed in
far more complicated scenarios.

4.5.2 Infeasible Cases

For the infeasible cases of line and the p-sphere or ellipse, we observed that the iterates
of the Douglas-Rachford algorithm appear to walk to infinity with a roughly linear step
size. In both infeasible cases, it is possible to strictly separate the two sets in question.
This led to the following theorem.

Theorem 4.5.1. Let 𝑥0 be a point in, and 𝐴 and 𝐵 be closed subsets of a Hilbert space 𝐻 and
let 𝑥𝑛 ∶= 𝑇 𝑛𝐴,𝐵(𝑥0). Suppose one of the following hold:

1. 𝐴 is compact and co(𝐴) and cl(co(𝐵)) are disjoint.

2. 𝐵 is compact and cl(co(𝐴)) and co(𝐵) are disjoint.

Then ‖𝑥𝑛‖ tends linearly to ∞ with a step size of at least 𝑑(𝐴, 𝐵).

Proof. Suppose that condition 1. applies. We can strictly separate co(𝐴) and cl(co(𝐵))
with a hyperplane ℍ = 𝑓 −1(𝛼) for some linear functional 𝑓. See [30, Theorem 1.7] for
details. By translation invariance, let 𝛼 = 0. Then ℍ is a subspace, so we can uniquely
describe any 𝑥 ∈ 𝑋 as 𝑥 = ℎ𝑥 + 𝑦𝑥 where ℎ𝑥 ∈ ℍ and 𝑦𝑥 ∈ ℍ⟂. If, instead, condition 2.
applies then we determine an 𝑓 to separate co(𝐵) and cl(co(𝐴)) in the same manner.

In either case we are free to impose the following additional properties on 𝑓:

|𝑓 (𝑥)| = |𝑓 (ℎ𝑥 + 𝑦𝑥)| = ‖𝑦𝑥‖𝑋 for all 𝑥 ∈ 𝑋 (4.8)

𝑓 (𝑥) < 0 for all 𝑥 ∈ 𝐴 (4.9)

𝑓 (𝑥) > 0 for all 𝑥 ∈ 𝐵. (4.10)

118

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

Equations (4.8), (4.9), and (4.10) imply that 𝑓 (𝑥) ≥ 𝑑(𝐴, 𝐵) for all 𝑥 ∈ 𝐵 − 𝐴. Now

𝑥𝑛+1 − 𝑥𝑛 =
𝑅𝐵(𝑅𝐴(𝑥𝑛)) + 𝑥𝑛

2
− 𝑥𝑛 =

𝑅𝐵(𝑅𝐴(𝑥𝑛)) − 𝑥𝑛
2

=
2𝑃𝐵(𝑅𝐴(𝑥𝑛)) − 𝑅𝐴(𝑥𝑛) − 𝑥𝑛

2

=
2𝑃𝐵(𝑅𝐴(𝑥𝑛)) − (2𝑃𝐴(𝑥𝑛) − 𝑥𝑛) − 𝑥𝑛

2
= 𝑃𝐵(𝑅𝐴(𝑥𝑛)) − 𝑃𝐴(𝑥𝑛) ∈ 𝐵 − 𝐴.

Now 𝑥𝑛+1 − 𝑥𝑛 ∈ 𝐵 − 𝐴 implies that 𝑓 (𝑥𝑛+1 − 𝑥𝑛) ≥ 𝑑(𝐴, 𝐵). Thus we have that, for all 𝑛,
𝑓 (𝑥𝑛+1) ≥ 𝑑(𝐴, 𝐵) + 𝑓 (𝑥𝑛). This shows that ‖𝑥𝑛‖𝑛 → ∞ with a linear step size of at least
𝑑(𝐴, 𝐵).

From this result we obtain the following corollary, the computer-assisted discovery of
which motivated the pursuit of the more general Theorem.

Corollary 4.5.2. In the infeasible case of a line 𝐿 with an ellipse 𝐸 or a p-sphere 𝑆, we have
that ‖𝑥𝑛‖ → ∞ with a linear step size greater than or equal to 𝑑(𝐸, 𝐿) or 𝑑(𝑆, 𝐿) respectively.

Using these results and the following remark, we can naturally extend some of the convex
theory to the non-convex case.

Remark 4.5.3. As a consequence of [17, Theorem 4.5] we have, for convex subsets 𝑈 , 𝑉
of a Hilbert space 𝐻, with 𝑈 ∩ (𝑣 + 𝑉) ≠ ∅, where 𝑣 = 𝑃cl(ran(Id−𝑇𝑈 ,𝑉))(0) is the minimal
displacement vector, and for 𝑥 ∈ 𝑋, that (𝑃𝑈𝑇 𝑛𝑈 ,𝑉𝑥)𝑛 converges weakly to a point in 𝑈 ∩(𝑣 +
𝑉).

We extend this result in our context using Theorem 4.5.1.

Theorem 4.5.4. Let 𝐴, 𝐵 be the respective boundaries of two disjoint, compact, convex sets
𝑈 , 𝑉 in a Hilbert space 𝐻 (in ℝ𝑛 it suffices to have only one compact set but the other must
be closed) so that 𝐴, 𝐵 satisfy the requirements of Theorem 4.5.1. Let 𝑥𝑛+1 = 𝑇𝐴,𝐵(𝑥𝑛) and
𝑣 ∶= 𝑃cl(ran(Id−𝑇𝑈 ,𝑉))(0), the uniquely defined element in cl(ran(Id − 𝑇𝑈 ,𝑉)) such that ‖𝑣‖ =
inf
𝑥∈𝑋

‖𝑥 − 𝑇𝑈 ,𝑉𝑥‖, and let 𝑣 ′ = 𝑃cl(ran(Id−𝑇𝐴,𝐵))(0), the uniquely defined element in cl(ran(Id −
𝑇𝐴,𝐵)) such that ‖𝑣 ′‖ = inf

𝑥∈𝑋
‖𝑥 − 𝑇𝐴,𝐵𝑥‖. Then, for 𝑥 ∈ 𝑋, we have that (𝑃𝐴𝑇 𝑛𝐴,𝐵𝑥)𝑛 converges

weakly to a point in 𝐴 ∩ (𝑣 ′ + 𝐵).

Proof. By the closure and compactness we have attainment of elements which minimise
the distance. Thus 𝐴 ∩ (𝑣 ′ + 𝐵) = 𝑈 ∩ (𝑣 + 𝑉) ≠ ∅ where 𝑣 is defined as in Remark 4.5.3.

Let 𝑓 be defined as in Theorem 4.5.1 so that 𝑓 (𝑢) < 0 for all 𝑢 ∈ 𝑈. Then the sequence
𝑓 (𝑥𝑛) is monotone increasing and so there exists some 𝑛′ ∈ ℕ such that 𝑓 (𝑥𝑛) ≥ 0 for

119

4 Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres

all 𝑛 ≥ 𝑛′. Suppose 𝑛 ≥ 𝑛′. Then we have that 𝑥𝑛 ∉ 𝑈. Thus 𝑃𝐴(𝑥𝑛) = 𝑃𝑈(𝑥𝑛), and so
𝑅𝐴(𝑥𝑛) = 𝑅𝑈(𝑥𝑛). We also have that 𝑅𝐴(𝑥𝑛) ∉ 𝑉. Thus 𝑃𝐵(𝑅𝐴(𝑥𝑛)) = 𝑃𝑉(𝑅𝐴(𝑥𝑛)), and so
𝑅𝐵(𝑅𝐴(𝑥𝑛)) = 𝑅𝑉(𝑅𝐴(𝑥𝑛)). Thus we have that 𝑇𝐴,𝐵(𝑥𝑛) = 𝑇𝑈 ,𝑉(𝑥𝑛), and so

(𝑃𝐴𝑇 𝑛
′+𝑛

𝐴,𝐵 𝑥)𝑛 = (𝑃𝐴𝑇 𝑛𝐴,𝐵𝑥𝑛′)𝑛 = (𝑃𝐴𝑇 𝑛𝑈 ,𝑉𝑥𝑛′)𝑛 (4.11)

for all 𝑛 ∈ ℕ. We have from Remark 4.5.3 that the sequence on the right converges to a
point 𝑦 in 𝑈 ∩ (𝑣 + 𝑉).

120

5 Computing Intersections of Implicitly

Specified Plane Curves

5.1 Preliminaries

We investigate the problem of computing a point in the intersection of two analytic
plane curves specified implicitly by 𝑓 ((𝑥, 𝑦)) = 0 and 𝑔((𝑥, 𝑦)) = 0 for (𝑥, 𝑦) ∈ ℝ2

which we often identify with the complex plane ℂ. We will also identify the curves
themselves with their respective graphs 𝒢𝑓 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑓 ((𝑥, 𝑦)) = 0} and
𝒢𝑔 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑔((𝑥, 𝑦)) = 0}. Regarding the graphs as constraint sets our problem
becomes the non convex feasibility problem of finding a point (𝑥, 𝑦) in 𝒢𝑓 ∩ 𝒢𝑔. To avoid
degeneracies we assume that (𝑥, 𝑦) is an isolated point of 𝒢𝑓 ∩ 𝒢𝑔 at which the curves
have contact of order zero (that is: ∇𝑓 ((𝑥, 𝑦)) and ∇𝑔((𝑥, 𝑦)) are both non-zero and not
parallel).

In order to better exploit the analytic nature of the curves, we propose to solve the fea-
sibility problem using an adaptation of the Douglas-Rachford algorithm (also known as
reflect-reflect-average) [36] in which Euclidean reflections are replaced by Schwarzian
reflections.

The Schwarzian reflection of a point 𝑧 ∈ ℂ in an analytic curve 𝐾 [[61] pages 254 to 257]
is ℛ𝐾 = 𝑆𝐾(𝑧), where 𝑆𝐾 is the Schwarz function for 𝐾; an analytic function such that
𝑆𝐾(𝑧) = 𝑧 for all 𝑧 ∈ 𝐾.

The Schwarz function for 𝐾 ∶ 𝑘(𝑥, 𝑦) = 0 can often by found by substituting 𝑧+𝑧
2 for 𝑥

and 𝑧−𝑧
2𝑖 for 𝑦 in the specification of 𝐾 and solving for 𝑧.

Example 5.1.1. The Schwarz function for the ellipse 𝐸 ∶ 𝑥2 + (
𝑦
𝑏
)
2
= 1 can be found by

solving

(𝑧 + 𝑧
2

)
2
+ (𝑧 − 𝑧

2𝑖𝑏
)
2
= 1

for 𝑧, yielding
𝑆𝐸(𝑧) = 1

1 − 𝑏2
[(1 + 𝑏2)𝑧 − 2𝑏√𝑧2 − 1 + 𝑏2].

121

5 Computing Intersections of Implicitly Specified Plane Curves

So, the Schwarzian reflection in 𝐸 is given by

ℛ𝐸(𝑧) = 𝑆𝐸(𝑧) = 1
1 − 𝑏2

[(1 + 𝑏2)𝑧 − 2𝑏√𝑧2 − 1 + 𝑏2].

Similarly, it is readily verified that the Schwarzian reflection in the unit circle |𝑧| = 1 is the
same as the inversion 𝑧 → 𝑧/|𝑧|2. A comparison of Euclidean and Schwarzian reflection in
the case of the circle can be seen in figure 5.1. For the line Ł ∶ 𝛼𝑥 + 𝛽𝑦 = 0 Schwarzian
reflection coincides with Euclidean reflection in Ł; that is the linear transformation with
matrix

[ℛŁ] =
1

𝛼2 + 𝛽2
(
𝛽2 − 𝛼2 −2𝛼𝛽
−2𝛼𝛽 𝛼2 − 𝛽2

). (5.1)

Figure 5.1: Euclidean (left) and Schwarzian (right) reflection.

For more details on Schwarz functions the interested reader is referred to Davis [33]

The Douglas-Rachford algorithm using Schwarzian reflections for finding a point in 𝒢𝑓 ∩
𝒢𝑔 from a given initial point 𝑥0 is the iterative scheme

𝑥𝑛+1 = 𝑇(𝑥𝑛), (5.2)

where 𝑇 = 𝑇𝒢𝑓𝒢𝑔 is the Douglas-Rachford operator

𝑇𝒢𝑓𝒢𝑔 = 1
2
(𝐼 + ℛ𝒢𝑔ℛ𝒢𝑓). (5.3)

122

5 Computing Intersections of Implicitly Specified Plane Curves

5.2 Local Convergence of the Modified Douglas-Rachford Algorithm

For starting points 𝑥0 sufficiently near to 𝑝 ∈ 𝒢𝑓∩𝒢𝑔 we apply the theorem of Perron [see,
[25] theorem 6.1 or [51] Corollary 4.7.2] to the system of difference equations in (5.2) to
show the sequence of Douglas-Rachford iterates converges at a linear rate to 𝑝 (that is,
the iteration scheme (5.2) is exponentially asymptotically stable at 𝑝).

To ensure the conditions of Perron’s theorem are satisfied we need to show:

(i) the Douglas-Rachford operator (5.3) is almost linear about 𝑝. That is, for 𝑥 near 𝑝

𝑇𝒢𝑓𝒢𝑔(𝑥) = 𝑝 + 𝐿𝒢𝑓𝒢𝑔(𝑥 − 𝑝) + Δ, (5.4)

where 𝐿𝒢𝑓𝒢𝑔 ∶ ℝ2 → ℝ2 is a linear operator and ‖Δ‖ = 𝑜(‖𝑥 − 𝑝‖).

and

(ii) both eigenvalues of 𝐿𝒢𝑓𝒢𝑔 have modulus less than 1.

Proof of (i)
To prove (i) it suffices to show for an analytic curve 𝐾 that near a point 𝑝 in K the Schwarz
function

𝑆𝐾(𝑥) = 𝑆𝐻𝐾(𝑝)(𝑥) + Δ, (5.5)

where 𝐻𝐾(𝑝) is the tangent (supporting hyperplane) to 𝐾 at 𝑝 and Δ = Δ(𝐾, 𝑝, 𝑥) has
‖Δ‖ = 𝑜(‖𝑥 − 𝑝‖). As then, for 𝑥 in a neighbourhood of 𝑝 we have

𝑇𝒢𝑓𝒢𝑔(𝑥) = 1
2
[𝑥 + 𝑅𝒢𝑔(𝑅𝒢𝑓(𝑥))]

= 1
2
[𝑥 + 𝑅𝒢𝑔(𝑅𝐻𝒢𝑓(𝑝)

(𝑥) + Δ′)]

= 1
2
[𝑥 + 𝑅𝐻𝒢𝑔(𝑝)(𝑅𝐻𝒢𝑓(𝑝)

(𝑥) + Δ′) + Δ″]

= 1
2
[𝑥 + 𝑝 + 𝑅𝐻𝒢𝑔(𝑝)−𝑝((𝑝 + 𝑅𝐻𝒢𝑓(𝑝)−𝑝

(𝑥 − 𝑝) + Δ′) − 𝑝) + Δ″]

= 1
2
[𝑥 + 𝑝 + 𝑅𝐻𝐺𝑔(𝑝)−𝑝(𝑅𝐻𝐺𝑓(𝑝)−𝑝

(𝑥 − 𝑝)) + 𝑅𝐻𝒢𝑔(𝑝)−𝑝(Δ
′) + Δ″],

since 𝑅𝐻𝒢𝑔(𝑝)−𝑝
is linear

= 1
2
[𝑥 + 𝑝 + 𝑅𝐻𝒢𝑔(𝑝)−𝑝(𝑅𝐻𝒢𝑓(𝑝)−𝑝

(𝑥 − 𝑝))] + 1
2
(𝑅𝐻𝒢𝑔(𝑝)−𝑝

(Δ′) + Δ″)

So, as required
𝑇𝒢𝑓𝒢𝑔(𝑝) = 𝑝 + 𝐿𝒢𝑓𝒢𝑔(𝑥 − 𝑝) + Δ∗

123

5 Computing Intersections of Implicitly Specified Plane Curves

Figure 5.2: Construction of a Schwarz function and Schwarzian reflection

where 𝐿𝒢𝑓𝒢𝑔 ∶= 𝑇(𝐻𝒢𝑔(𝑝)−𝑝)(𝐻𝒢𝑓(𝑝)−𝑝)
and, since 𝑅𝐻𝒢𝑔(𝑝)−𝑝

is a bounded linear operator,

Δ∗ = 1
2(𝑅𝐻𝒢𝑔(𝑝)−𝑝

(Δ′) + Δ″) has ‖Δ∗‖ = 𝑜(‖𝑥 − 𝑝‖).

To establish (5.5) we argue as follows.

Since 𝑆𝐾(𝑧) is analytic it may be expressed as a Taylor series about 𝑝 ∈ 𝐾, so

𝑆𝐾(𝑧) = 𝑆𝐾(𝑝) + 𝑆′𝐾(𝑝)(𝑧 − 𝑝) + Δ = 𝑝 + 𝑒−2𝜙𝑖(𝑧 − 𝑝) + Δ,

where |Δ| = 𝑂(|𝑧 − 𝑝|2) and 𝜙 is the angle between 𝐻𝐾(𝑝), the tangent to 𝐾 at 𝑝, and the
real axis, refer to figure 5.2, from which we infer |𝑆′𝐾(𝑝)| = 1 and arg(𝑆′𝐾(𝑝)) = −2𝜑, also
see [61], page 255.

Thus
ℛ𝐾(𝑧) = 𝑝 + 𝑒2𝜙𝑖(𝑧 − 𝑝) + Δ = (𝑧 − 𝑝)𝑒−𝜙𝑖𝑒𝜙𝑖 + 𝑝 + Δ

which we recognise as

ℛ𝐾(𝑧) = 𝑅𝐻𝐾(𝑝)(𝑧) + Δ (see [61], exercise 30(i), page 265).

We now turn to the Proof of (ii)
𝐿𝒢𝑓𝒢𝑔 is the Douglas-Rachford operator for two non parallel lines; the translated tangents

124

5 Computing Intersections of Implicitly Specified Plane Curves

𝐻𝒢𝑓(𝑝)−𝑝 and𝐻𝒢𝑔(𝑝)−𝑝, meeting at the origin. Wewill take these to be Ł1 ∶ 𝛼𝑥+𝛽𝑦 = 0
and Ł2 ∶ 𝐴𝑥 + 𝐵𝑦 = 0 so by (5.3)

𝑇Ł1Ł2 = 1
2
(𝐼 + ℛŁ2ℛŁ1)

which, via (5.1), has matrix

[𝑇Ł1Ł2] =
𝜓
Δ
(

𝜓 𝜔
−𝜔 𝜓

),

where 𝜓 = 𝛼𝐴+𝛽𝐵, 𝜔 = 𝛼𝐵−𝛽𝐴 and Δ = (𝛼2 +𝛽2)(𝐴2 +𝐵2). The eigenvalues of [𝑇Ł1Ł2]
are 𝜓

Δ(𝜓 ± 𝑖𝜔) both of which have modulus squared equal to

𝜓 2

Δ2 (𝜓
2 + 𝜔2) =

(𝛼𝐴 + 𝛽𝐵)2((𝛼𝐴 + 𝛽𝐵)2 + (𝛼𝐵 − 𝛽𝐴)2)

(𝛼2 + 𝛽2)2(𝐴2 + 𝐵2)2

=
(𝛼𝐴 + 𝛽𝐵)2

(𝛼2 + 𝛽2)(𝐴2 + 𝐵2)

< 1

as required.

Thus, the Douglas-Rachford algorithm using Schwarzian reflections applied near a simple
intersection of two plane analytic curves yields a sequence of iterates that exponentially
spirals to the intersection point.

The astute readerwill see that if we employ Euclidean reflections in theDouglas-Rachford
algorithm our techniques and results still apply and, provided wemove to a multi-set ver-
sion of the Douglas-Rachford algorithm (see for example [23]), readily extend to a family
of curves in higher dimensional space, where each curve is specified as an intersection of
hyper-surfaces. In this case local convergence is assured by arguments similar to those
found in [28]. The reversion to Euclidean reflections is necessary as Schwarzian reflection
for curves in a space of dimension greater than two is no longer defined.

5.3 Alternative Approaches to the Problem

One “classical” approach to finding an intersection of two implicitly specified plane ana-
lytic curves; 𝑓 (𝑥, 𝑦) = 0 and 𝑔(𝑥, 𝑦) = 0 would be to compute a zero of

𝐹 ∶ ℝ2 → ℝ2 ∶ (𝑥, 𝑦) ↦ (𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦)), (5.6)

using, for instance, Newton’s method.

125

5 Computing Intersections of Implicitly Specified Plane Curves

Method Name Description
DR Euclidean Douglas-Rachford with Euclidean: 𝑇𝒢𝑓𝒢𝑔

=
1
2(𝐼 + 𝑅𝐺𝑔𝑅𝒢𝑓) where 𝑅𝒢𝑓 = 2𝑃𝒢𝑓 − 𝐼 with 𝑃𝒢𝑓 the
Euclidean projection onto 𝒢𝑓 and similarly for 𝒢𝑔

DR Schwarzian Douglas-Rachford using Schwarzian reflection:
𝑇𝒢𝑓𝒢𝑔

= 1
2(𝐼 + 𝑅𝐺𝑔𝑅𝒢𝑓) where 𝑅𝒢𝑓 is the Schwarzian

reflection in 𝒢𝑓 and similarly for 𝒢𝑔
Newton on 𝐹 Newton’s Method applied to find a zero of 𝐹 ∶=

(𝑥, 𝑦) → (𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦))
Newton on ∇𝐺 Newton’sMethod applied to find a zero of ∇𝐺, 𝐺(𝑥, 𝑦) =

𝑓 (𝑥, 𝑦)2 + 𝑔(𝑥, 𝑦)2.
Gradient Descent Gradient Descent with step size determined by a line

search, applied tominimize𝐺(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)2+𝑔(𝑥, 𝑦)2

Figure 5.3: Iterative Methods used on test scenarios.

An alternative approach is to seek solutions of

𝐺(𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦)) = 0,

where 𝐺 ∶ ℝ2 → ℝ is any function vanishing only at (0, 0). We will use 𝐺(𝑢, 𝑣) ∶= 𝑢2+𝑣2.
Then the problem becomes to locate the global minimum of 𝐺(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)2 + 𝑔(𝑥, 𝑦)2

(where the function is 0 in the feasible case) For this formulation the method of gradient
descent is available, with a line search being implemented at each iteration. Alternatively
one could use Newton’s method to find where ∇𝐺(𝑥, 𝑦) = 0.

5.4 Experimental Results

In this section we compare computational results for three test scenarios: two intersect-
ing circles, an ellipse and line, and finding a zero of a function 𝑦 = 𝜙(𝑥) which we think
of as finding an intersection of the curves 𝑓 (𝑥, 𝑦) ∶= 𝑦 − 𝜙(𝑥) = 0 and 𝑔(𝑥, 𝑦) ∶= 𝑦 = 0.
In each case we seek to solve the problem using the methods listed in figure 5.3 for a
selection of initial points 𝑃 = (𝑝, 𝑞) chosen to best illustrate different behaviours.

Colour versions of the diagrams appearing below plus additional details concerning the
calculationsmay be accessed at: https://carma.newcastle.edu.au/DRmethods/Schwarzian/.

5.4.1 Two Circles

We consider the circles specified by 𝑓 (𝑥, 𝑦) ∶= 𝑥2 + 𝑦2 − 1 = 0 and 𝑔(𝑥, 𝑦) ∶= (𝑥 − 2)2 +
𝑦2 − 9/4 = 0. The intersection points are (11/16, ±3√15/16).

126

https://carma.newcastle.edu.au/DRmethods/Schwarzian/

5 Computing Intersections of Implicitly Specified Plane Curves

In order to see the relative performance of each Douglas-Rachford scheme (Schwarzian
versus Euclidean reflections) we plot a fine grid of starting points, each coloured accord-
ing to the ratio of the number of iterates required by the two schemes to fall within a
specified threshold distance from a feasible point. The result is seen in figure 5.4 where
a threshold distance of 1/400 (half a pixel width) was used and computations were per-
formed to double precision (64 bits, or approximately 15 decimal digits).

Figure 5.4: Relative performance of the Euclidean and Schwarzian Douglas-Rachford for two cir-
cles.

Relative performance of the two schemes are represented on a grey scale with white indi-
cating points where the ratio of “Schwarzian” iterations to “Euclidean” iterations needed
is close to 0 and black where the reciprocal ratio is close to 0. We see that for many
points (mid-grey) there is little difference between the performance of the two schemes,
nevertheless a rich and interesting pattern is revealed.

Motivated by Figure 5.4we chose as starting points: 𝑃1 = (0.31, 0.725), 𝑃2 = (0.41565, 0.62135),
𝑃3 = (−1.81, 0.066) and 𝑃4 = (−4.0556, 0.4471). Each pair (𝑃1, 𝑃2), (𝑃3, 𝑃4) includes a point
for which the Euclidean scheme performs better, and a point for which the Schwarzian
scheme performs better.

Note that the first iteration of Newtons method applied to 𝐹 ∶ (𝑥, 𝑦) ↦ (𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦))
moves any initial point 𝑃 onto the line 𝑥 = 11/16, and each subsequent iteration remains
on the line.

The results for the starting points 𝑃1 and 𝑃2 are shown in figure 5.5 and figure 5.6 respec-
tively. These points are both close to one of the feasible points, and also close to each
other.

Starting from 𝑃1 we see that for thresholds up to 10−6 the Schwarzian Douglas-Rachford
scheme is roughtly twice as fast as the Euclidean Douglas Rachford scheme, although for
smaller thresholds the distinction is less stark. In contrast, starting from 𝑃2 the Euclidean
Douglas Rachford is at least twice as fast as the Schwarzian Doughlas-Rachford scheme

127

5 Computing Intersections of Implicitly Specified Plane Curves

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9
DR Euclidean 3 4 6 8 9 11 13 14
DR Schwarzian 1 1 3 5 6 8 10 11
Newton on F 2 3 3 4 4 4 4 4
Newton on ∇𝐺 2 3 3 4 4 4 4 5
Gradient Descent 2 3 4 5 6 6 7 8

Figure 5.5: Performance starting from 𝑃1.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9
DR Euclidean 1 1 1 1 3 5 6 8
DR Schwarzian 2 4 6 7 9 11 12 14
Newton on F 2 3 3 3 4 4 4 4
Newton on ∇𝐺 2 3 3 4 4 4 4 4
Gradient Descent 3 4 6 8 9 10 12 14

Figure 5.6: Performance starting from 𝑃2.

for thresholds up to 10−8, and often faster. We also note that in both these cases New-
ton’s method is superior to both Douglas-Rachford schemes, while gradient descent is
comparable.

With 𝑃3 as starting point Schwarzian Douglas Rachford drastically outperforms the Eu-
clidean scheme, see figure 5.7.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9
DR Euclidean Fails to converge in 10000 iterations
DR Schwarzian 9 10 12 14 15 17 19 20
Newton on F 9 10 10 10 10 11 11 11
Newton on ∇𝐺 Fails to converge in 10000 iterations
Gradient Descent 4 6 8 10 12 14 16 17

Figure 5.7: Performance for starting point 𝑃3.

The failure of the Euclidean Douglas Rachford scheme can be seen in figure 5.8 where
the iterates appear to converge to a period 4 point. Observe that a simple calculation for
the Euclidean Douglas Rachford operator 𝑇 = 𝑇𝒢𝑓𝒢𝑔

and 𝑃 = (𝑝, 0), where 0 < 𝑝 < 3/2,
shows that 𝑇 4(𝑃) = 𝑃.

Figure 5.9 shows the results starting from 𝑃4. Here Euclidean Douglas-Rachford signifi-
cantly outperforms the Schwarzian version at all thresholds. We also note that the two
schemes converge to different feasible points, see figure 5.10.

5.4.2 Ellipse and Line

We consider the ellipse 𝑓 (𝑥, 𝑦) ∶= 𝑥2 + (𝑦/8)2 − 1 = 0 and line 𝑔(𝑥, 𝑦) ∶= 𝑦 − 6𝑥 = 0.
Starting from anywhere near the ellipse the behaviour of the Schwarzian formulation

128

5 Computing Intersections of Implicitly Specified Plane Curves

Figure 5.8: Starting point 𝑃3. Solid black line shows Euclidean Douglas Rachford iterates, Dashed
black line shows Schwarzian Douglas Rachford iterates.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9
DR Euclidean 3 3 3 4 6 7 9 11
DR Schwarzian 8 9 11 13 14 16 18 19
Newton on F 8 9 9 9 9 10 10 10
Newton on ∇𝐺 8 8 9 9 9 10 10 10
Gradient Descent 4 5 7 8 10 12 13 15

Figure 5.9: Performance for starting point 𝑃4.

of Douglas-Rachford appears quite similar to that of the Euclidean formulation. As dis-
cussed in [28], for Douglas-Rachford using Euclidean reflection, periodic points appear
surrounded by basins of attraction or repulsion. This prevents convergence to the fea-
sible points for many starting points and slows the convergence for many others. We
observe the same phenomenon when Schwarzian reflection is employed, where, at least
for this particular ellipse and line, the exact same periodic points are observed. This is
shown in figure 5.11. Note that the subsequences have been started from different points
in order to illustrate the different sizes of the local basins.

Behaviour of the different methods is solution is tabulated in figure 5.12.

Locally the behaviour of the two formulations of Douglas-Rachford are nearly identi-
cal, however, for more remote starting points, while continuing to converge, the two
Douglas-Rachford schemes behave differently and like the two circle case may converge
to different feasible points.

To better assess the effect of compounding numerical error on Douglas-Rachford using
Euclidean reflection, where each iteration involves the numerical solution of a Lagrange
multiplier problem to find the Euclidean (nearest point) projection 𝑃𝐺𝑓 , we experimented
with a further variant. For 𝑧 ∈ ℂwe computed 𝑄𝐺𝑓(𝑧), the nearest intersection of 𝐺𝑓 with
the line segment from 𝑧 to its Schwarzian reflection 𝑅𝐺𝑓(𝑧) and used this as a substitute
for 𝑃𝐺𝑓(𝑧). Thereby avoiding the need for a computationally expensive numerical min-
imisation. Douglas-Rachford was then implemented using 2𝑄𝐺𝑓 − 𝐼 as a replacement for
reflection in 𝐺𝑓. Started sufficiently near a feasible or periodic point this yielded nearly

129

5 Computing Intersections of Implicitly Specified Plane Curves

Figure 5.10: Starting point 𝑃4. Solid black line shows Euclidean Douglas Rachford iterates, Dashed
black line shows Schwarzian Douglas Rachford iterates.

identical results to the Euclidean version even after hundreds of iterations. This lack of
deviation speaks to the low numerical sensitivity of the Douglas-Rachford method.

5.4.3 Finding a Zero of a Function

Thinking of this as finding an intersection of the curve 𝑓 (𝑥, 𝑦) ∶= 𝑦 − 𝜙(𝑥) = 0 with
𝑔(𝑥, 𝑦) ∶= 𝑦 = 0 leads, via (5.6), to finding a zero of

𝐹 ∶ ℝ2 → ℝ2 ∶ (𝑥, 𝑦) ↦ (𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦)) ∶= (𝑦 − 𝜙(𝑥), 𝑦).

The Jacobian is

𝐽 (𝐹) =
𝜕(𝑓 , 𝑔)
𝜕(𝑥, 𝑦)

= (
−𝜙′(𝑥) 1

0 1
).

So, applyingNewton’smethodwith any initial point (𝑥0, 𝑦0) leads to the iterative scheme,

𝑥𝑛+1 = 𝑥𝑛 − 𝜙(𝑥𝑛)/𝜙′(𝑥𝑛). 𝑦𝑛+1 = 0,

which, not surprisingly, we recognise as Newton-Raphson applied directly to 𝑦 = 𝜙(𝑥).

Thus, for 𝜙(𝑥) = 𝑥/√|𝑥| with any starting point other than (0, 0) this approach leads to
cyclic iterates of period 2, and so fails to converge to the zero. By contrast, Douglas-
Rachford applied to the two curve reformulation (see discussion below) is seen to rapidly
spiral to (0, 0) and to drastically outperform the method of gradient descent applied to the

function 𝐺(𝑥, 𝑦) = (𝑦 − 𝑥/√|𝑥|)
2
+ 𝑦2 . The results with initial point (1,0) are tabulated

in figure5.13.

Starting from (1, 0) gradient descent does not converge to within 10−3 after 20,000 iter-
ations. This may be understood from the shape of the surface 𝑧 = 𝐺(𝑥, 𝑦), illustrated
in figure 5.14. Convergence down the sides of the trough is quite rapid, but, once near

130

5 Computing Intersections of Implicitly Specified Plane Curves

Figure 5.11: Douglas-Rachford iterates for ellipse - line, showing periodic points and their attrac-
tive basins. Top: with Euclidean Reflection. Bottom: with Schwarzian Reflection.
(Images have been rotated.)

131

5 Computing Intersections of Implicitly Specified Plane Curves

10−1 10−2 10−3 10−4 10−5 10−6 10−8
DR Euclidean 61 129 197 265 334 402 538
DR Schwarzian 61 129 197 265 334 401 537
Newton on 𝐹 2 3 3 4 4 4 4
Newton on ∇𝐺 3 4 4 5 5 5 5
Gradient Descent 2 4 4 6 8 10 12

Figure 5.12: Performance with 𝑓 (𝑥, 𝑦) = 𝑥2 + (𝑦/8)2 − 1, 𝑔(𝑥, 𝑦) = 𝑦 − 6𝑥, and starting point
(1.5, 4.5).

10−1 10−2 10−3 10−4 10−5 10−6 10−8
DR Euclidean 4 4 5 5 6 6 6
DR Schwarzian 4 5 5 6 6 7 7
Newton on 𝐹 cycles
Newton on ∇𝐺 fails
Gradient Descent 4 415

Figure 5.13: Locating the zero of 𝑦 = 𝑥/√|𝑥| by the methods discussed starting from (1, 0).

the sharply creased bottom iterates bounce from side to side making only slow progress
toward the minimum.

Amore large scale view, starting from the point (250, 500), is provided in figure 5.15. Here
the Schwarzian formulation of Douglas-Rachford requires 293 iterations to come within
10−1 of the feasible point while the Euclidean formulation needs 715 iterations.

Note: To compute Schwarzian reflection in the curve 𝒞 ∶= {(𝑥, 𝑦) ∶ 𝑦 = 𝑥/√|𝑥|} we
write 𝒞 = 𝒞+ ∪ 𝒞−, where

𝒞+ = {(𝑥, 𝑦) ∶ 𝑥 ≥ 0, 𝑦 = √𝑥} and 𝒞− = {(𝑥, 𝑦) ∶ 𝑥 ≤ 0, 𝑦 = −√−𝑥}..

Then, if 𝑑(𝑧, 𝒞+) ≥ 𝑑(𝑧, 𝒞−)we take 𝑅𝒞(𝑧) = 𝑅𝒞+(𝑧) = 1−𝑧 +√1 − 4𝑧, otherwise we take
𝑅𝒞(𝑧) = 𝑅𝒞−(𝑧) = 1 + 𝑧 − √1 + 4𝑧.

132

5 Computing Intersections of Implicitly Specified Plane Curves

Figure 5.14: The surface 𝑧 = 𝐺(𝑥, 𝑦) = (𝑦 − 𝑥/√|𝑥|)
2
+ 𝑦2.

Figure 5.15: Douglas-Rachford applied to the curve 𝑦 − 𝑥/√|𝑥| = 0 and line 𝑦 = 0. Left: using
Schwarzian reflection. Right: using Euclidean reflections.

133

Part III

Summary

134

6 Final Remarks and Further Work

6.1 Integer Relations

We have looked at classical integer relations, and have generalised the notion of an inte-
ger relation to algebraic integer relations. As an initial step in understanding algebraic
integer relations we looked specifically at quadratic integer relations. We have explored
the computation of classical integer relations with both pslq and lll, and quadratic inte-
ger relations with pslq through reduction (to the classical case), lll, and apslq (our direct
modification of the pslq algorithm capable of handling the complex quadratic case).

We have seen that, for the most part, pslq out-performs lll for integer relation compu-
tations in terms of time taken, as well as needing lower precision for computations. This
seems unsurprising when we consider that pslq is an algorithm dedicated to computing
integer relations whereas lll is an algorithm for lattice basis reduction—a different prob-
lem to which we happen to be able to reduce integer computations. The low performance
of lll is amplified by the need to find a parameter essentially by trial and error thus re-
quiring, in practice, multiple executions of lll for a single integer relation problem.

Bailey et al. [7] comment in their conclusion that “[…] research is needed in how to effi-
ciently perform PSLQ-type integer relation computations on a highly parallel platform.”
It was this comment that originally motivated the author to begin to understand the pslq
algorithm, although we note that we see no way to improve upon the methods of Bailey
and Broadhurst [9]. There is, however, a parallel implementation of lll given by Luo and
Qiao [56]. We have not yet looked at this except to note its existence, and it would need
to be significantly faster in order to overcome the limitations of lll for integer relation
computations, yet nonetheless it would be interesting to see the difference parallelisation
has on performance.

Despite the limitations of lll, the nature of the reduction from integer relation problem
to lattice basis reduction allowed us to more reliably compute some quadratic algebraic
integer relation problems that apslq did not handle well. Specifically, these cases are for
complexℚ(√𝐷)-integers in caseswhereℚ(√𝐷) is not a Euclidean field and so the existing
theory behind pslq (and also apslq) does not hold. It is remarkable that even in these
cases apslq yields surprisingly many correct results, but lll performed flawlessly.

135

6 Final Remarks and Further Work

We present, in Table 6.1, our summary of the best choice for integer relation finding
algorithm at the time of writing.

Table 6.1: Best choice of integer relation finding algorithm

Case Algorithm

Classical pslq
Real Quadratic pslq using reduction
Complex Euclidean Quadratic apslq
Complex Non-Euclidean Quadratic lll1

The particular case of complex non-Euclidean quadratic fields requires some more com-
ment. In our testing we found that—in addition to lll—pslq using reduction gave flaw-
lessly correct results although needing higher precision, but taking (often significantly)
less computation time. Recall from Section 3.3.1 on page 52 that the result of the re-
duction method in complex cases might not be from the correct integer ring, and that
the techniques we provide for detecting and correcting this are not proven to work in
all cases. Consequently the use of pslq through reduction, while quicker and requiring
lower precision than lll, is potentially less reliable, the positive results reported herein
notwithstanding, so our recommendation is to use lll for these cases. A sensible strategy
might be to first try pslq with reduction, and to fall back on lll if the reduction method
does not yield a suitable candidate relation. A provable method to extract the correct
integers from the reduction method output, or a proof of correctness of the techniques
presented herein (even if in some restricted cases) would be welcome.

It seems clear that a dedicated algorithm is preferable when it can be achieved, and to
that end further work should look at extending the theory to allow for the cases where
no lattice exists (including the entirety of the non-trivial real quadratic fields) and the
non-Euclidean complex cases. For the former case the Minkowski embedding (see Baake
and Grimm [5]) has been suggested as an avenue of exploration. For the latter case we
currently have no clear path forward.

Of a tangential nature to the exploration of integer relations in this thesis, the author has
begun to explore the possibility of using the pslq algorithm to find algebraic approxima-
tions of transcendental numbers (i.e., real or complex numbers which are not algebraic)
within desired bounds, or to establish that no such approximations exist. The aim is to
achieve this in a similar manner to that used to determine if a number 𝛼 is algebraic by
attempting to find an integer relation for (𝛼0, 𝛼1, … , 𝛼𝑛) for some 𝑛 ∈ ℕ. Interval arith-
metic is employed and the increasing lower bound of the norm of any integer relation
that pslq computes each iteration is exploited. Preliminary experimentation in Maple
has shown promise, although the initial technique used the interval arithmetic in a naïve

1Or pslq using reduction for increased speed at the risk of failing to find a relation if the correction trans-
formation fails.

136

6 Final Remarks and Further Work

manner which turned out to not be very effective at finding the desired bounds. Several
refinements have been devised and are marked for exploration.

Finally, on a more practical note, the author would like to properly implement apslq
in a higher-performing language (probably C++ or Rust) and utilising the optimisations
of Bailey and Broadhurst. Additionally, termination conditions based on the norm lower
bound could be incorporated (whether exclusively, or as a user selectable choice) in agree-
ment with the discussion about the threshold in Section 2.4.3. Such an implementation,
if created as a library, could be used with Maple and other such systems.

6.2 Douglas-Rachford

We have looked at the Douglas–Rachford algorithm in two contexts. The first was a di-
rect constraint satisfaction problem for geometric sets, generalising the prototypical case
explored by Borwein and Sims. The second was as a means to find intersections of plane
curves, and to explore the use of a different reflection-like operation in theDouglas–Rach-
ford operator. We have seen in both cases that the algorithm performs remarkably well
in the non-convex setting, and yields rich and unexpected complexity.

In the first case, given that we were investigating the Douglas–Rachford method applied
to some of the simplest possible instances of a non-convex set, the emergence of such
complexity as we saw is extraordinary. More interesting from a technical standpoint is
the similarity with which the behaviour in such simple situations appears to resemble
some of what is observed for much larger and more complicated ones.

We chose 𝑝-spheres and ellipses as simple generalisations of a circle as studied by Bor-
wein and Sims [25]. An interesting alternate generalisation to look at in future would be
curves of constant width such as those described by Resnikoff [64], for example.

We note that many of the points of attraction and repulsionwere found through painstak-
ing trial and error, or by the use of colour maps. A method of automatically finding the
(probable) points of attraction would be preferable, and allow for exploration of more
cases. The author has some thoughts regarding the use of cluster analysis which may
yield such a method.

Additionally, we suggest that the parallel techniques employed could be used to try to
overcome the seeming unpredictability of which points converge to a feasible point and
which do not. In low dimensional spaces a simple “blanketing” of a region of space, as we
used herein, ought to be satisfactory (provided we test each resulting point). In higher
dimensional spaces such a technique is less feasible due to the “curse of dimensional-
ity”, and we suggest instead that a Monte Carlo approach of starting at many randomly
generated points.

137

6 Final Remarks and Further Work

In the second case, while the local similarity of Douglas–Rachford using a Schwarzian
reflection and a Euclidean reflection near a feasible point is to be expected, the extent
of the similarity is fascinating to observe. Equally fascinating are the large scale differ-
ences. Clearly the intersection of complex analysis with iterative methods is a fruitful
one. Douglas–Rachford based on Schwarzian reflections often equals or outperforms the
same method using Euclidean reflections for the class of problems considered here, and
both methods sometimes outperform gradient descent algorithms. In well conditioned
problems the quadratic rate of convergence exhibited by Newton’s method easily out-
strips the linear rate anticipated for projection methods [34]. However, in situations
where Newton cycles or diverges Douglas–Rachford often continues to work well; this
demonstrates the robustness of the algorithms, and Douglas–Rachford using Schwarzian
reflection is seemingly the more robust.

Future work could look at generalising these ideas to higher dimensions. Shapiro [65]
would provide a good starting point.

We hope that we have succeeded in making a case for computer-assisted discovery, vi-
sualisation, and verification. We close with the following quote from Littlewood’s Mis-
cellany (p. 35 in the original 1953 edition)

A heavy warning used to be given [by lecturers] that pictures are not rig-
orous; this has never had its bluff called and has permanently frightened its
victims into playing for safety. Some pictures, of course, are not rigorous, but
I should say most are (and I use them whenever possible myself).

— Littlewood [55, p. 54]

said long before the current powerful array of graphic, visualisation and geometric tools
were available.

138

Part IV

Appendices

139

A Numeric Integer Relation Algorithm

Implementations

In the main body of this thesis we have deliberately avoided presenting the numeric
implementation details of the integer relation finding algorithms presented. This was
done in order to better explain the mathematics behind the algorithms and techniques.
The author has found that too many implementation details obscure the mathematical
understanding. Moreover, in the case of lll, the details of the algorithm were deemed
beyond the scope of the discussion at hand.

In this appendix we present the algorithms in greater detail, more suitable for potential
implementation by the reader. We note that this is far from a complete treatment of
the topic, and the interested reader should still consult the literature. Nonetheless, the
material presented herein should serve as a useful supplementary reference to the more
mathematical treatment of the algorithm presented earlier in the thesis.

A.1 (A)PSLQ

The algorithm implemented for the experimental explorations of PSLQ is presented in
Algorithm A.1.1. It is the algorithm that was used when we were not using Maple’s
inbuilt implementation, primarily for algebraic pslq. It was based on, and serves as a
good reference for, classical pslq, and demonstrates a typical implementation.

In particular, thematrixmultiplications of the algorithms as presented in Algorithms 2.2.7
and 2.4.2 on page 10 and on page 19 are very inefficient if directly translated into code.
The updates to 𝐻 ′, 𝐵, and 𝑦 are more efficiently implemented as shown in the hermite
reduce procedure. Therein we use embedded loops so that all the updates are handled
together (instead of with three separate matrix multiplications), and moreover only the
rows and columns that need to be updated are actually updated. Additionally, we omit
the use and reporting of the norm lower bound.

A similar optimisation can be achieved for the step where the matrix 𝑄[𝐻 ′,𝑟] is used to
ensure that 𝐻 ′ is once again lower trapezoidal. Recalling that the matrix 𝑄[𝐻 ′,𝑟] only
modifies at most two columns of the matrix 𝐻 ′, we realise that we need only update

140

A Numeric Integer Relation Algorithm Implementations

Procedure hermite reduce(𝐻 ′, 𝐵, 𝑦, 𝑟)
Input : 𝐻 ′, 𝐵, 𝑦 , 𝑟 from Algorithm A.1.1
Output: 𝐻 ′, 𝐵, 𝑦, Hermite reduced

/* Computes the Hermite reduction from Algorithm 2.4.2 (𝐻 ′ ← 𝐷𝐻 ′ 𝐻 ′) and the associated updates

of 𝐵 and 𝑦 (𝐵 ← 𝐵𝐷−1
𝐻 ′ and 𝑦 ← 𝑦𝐷−1

𝐻 ′ respectively) */

1 for 𝑖 from 𝑟 + 1 to 𝑛 do
2 for 𝑗 from 𝑖 − 1 to 1 by −1 do
3 𝑡 ← ⌈𝐻 ′

𝑖,𝑗/𝐻 ′
𝑗,𝑗 ⌋

4 𝑦𝑗 ← 𝑦𝑗 + 𝑡 𝑦𝑖
5 for 𝑘 from 1 to 𝑗 do 𝐻 ′

𝑖,𝑘 ← 𝐻 ′
𝑖,𝑘 − 𝑡𝐻 ′

𝑗,𝑘 end /* row𝑖(𝐻 ′) ← row𝑖(𝐻 ′) − 𝑡 row𝑗(𝐻 ′) */

6 for 𝑘 from 1 to 𝑛 do 𝐵𝑘,𝑗 ← 𝐵𝑘,𝑗 − 𝑡 𝐵𝑘,𝑖 end /* col𝑗(𝐵) ← col𝑗(𝐵) − 𝑡 col𝑖(𝐵) */

those columns (again, instead of with a whole matrix multiplication). Furthermore, in
the case the 𝑄[𝐻 ′,𝑟] is the identity matrix, no update needs to be performed at all.

Procedure remove corner(𝐻 ′,𝑟)
Input : 𝐻 ′, 𝑟 from Algorithm A.1.1
Output: 𝐻 ′ modified to be lower trapezoidal

/* Computes the result of 𝐻 ′ 𝑄[𝐻 ′,𝑟] from Algorithm 2.4.2, ensuring that 𝐻 ′ is lower trapezoidal

after the row swap step */

1 if 𝑟 < 𝑛 − 1 then
2 𝛽 ← 𝐻 ′

𝑟 ,𝑟
3 𝜆 ← 𝐻 ′

𝑟 ,𝑟+1

4 𝛿 ← √𝛽 𝛽 + 𝜆 𝜆

5 for 𝑖 from 𝑟 to 𝑛 do /* Update columns 𝑟 and 𝑟 + 1 of 𝐻 ′ */

6 𝑡𝑟 ← 𝐻 ′
𝑖,𝑟

7 𝑡𝑟+1 ← 𝐻 ′
𝑖,𝑟+1

8 𝐻 ′
𝑖,𝑟 ← (𝑡𝑟 𝛽 + 𝑡𝑟+1 𝜆)/𝛿

9 𝐻 ′
𝑖,𝑟+1 ← (−𝑡𝑟 𝜆 + 𝑡𝑟+1 𝛽)/𝛿

With these optimisationswe implement apslq (and, by extension, pslq) inAlgorithmA.1.1
on the next page. We have endeavoured to annotate the code so as to explain what the
various code blocks are doing, and to provide reference back to the earlier, more high
level, presentations (Algorithms 2.2.7 and 2.4.2 on pages 10 and 19 respectively).

There are further optimisations which can be performed, but which we have not em-
ployed. These optimisations are due to Bailey and Broadhurst [9] and were subsequently
reported in Borwein [29]. We discuss them in very broad terms.

The first such optimisation, called multipair, allows for a small amount of parallelisation
in the algorithm. Instead of choosing a single value of 𝑟 and swapping the rows 𝑟 and
𝑟 + 1 of 𝐻 ′ (and the analogous columns of 𝐵 and the elements of 𝑦), multiple value are

141

A Numeric Integer Relation Algorithm Implementations

Algorithm A.1.1: apslq
Input : 𝑥 ∈ 𝔽𝑛, 𝐷 ∈ ℤ, 𝛾 ≥ 0, 𝜖 > 0, 𝑚𝑎𝑥𝑖 > 0
Output: A vector in 𝒪𝑛

𝕂 (where 𝕂 = ℚ(√𝐷)) or FAIL

/* Initialisation */

1 𝑦 ← 𝑥/‖𝑥‖ /* Normalise input vector */

2 𝑠𝑛 ← 𝑦𝑛 𝑦𝑛 /* Initialise 𝑠𝑘 = √∑
𝑛
𝑗=𝑘 𝑦𝑗𝑦𝑗 for 1 ≤ 𝑘 ≤ 𝑛 */

3 for 𝑖 from 𝑛 − 1 to 1 by −1 do 𝑠𝑖 ← 𝑠𝑖+1 + 𝑦𝑖 𝑦𝑖 end
4 for 𝑖 from 1 to 𝑛 do 𝑠𝑖 ← √𝑠𝑖 end
5 for 𝑗 from 1 to 𝑛 − 1 do /* Initialise 𝐻𝑦 and 𝐵 */

6 for 𝑖 from 1 to 𝑗 − 1 do 𝐻 ′
𝑖,𝑗 ← 0, 𝐵𝑖,𝑗 ← 0 end

7 𝐻 ′
𝑗,𝑗 ← 𝑠𝑗+1/𝑠𝑗, 𝐵𝑗,𝑗 ← 1

8 for 𝑖 from 𝑗 + 1 to 𝑛 do
9 𝐻 ′

𝑖,𝑗 ← −(𝑦𝑖 𝑦𝑗)/(𝑠𝑗 𝑠𝑗+1)
10 𝐵𝑖,𝑗 ← 0

11 hermite reduce(𝐻 ′, 𝐵, 𝑟 , 1) /* Initial Hermite reduction */

12 𝑖 ← 0 /* Initialise Loop counter */

/* Main Calculation */

13 repeat
14 𝑖 ← (𝑖 + 1) /* Increment loop counter */

15 𝑟 ← 1 /* Find 𝑟 such that 𝛾 𝑟|𝐻 ′
𝑟 ,𝑟 | is maximal */

16 val ← 𝛾𝐻 ′
1,1

17 for 𝑖 from 2 to 𝑛 − 1 do
18 if 𝛾 𝑖 𝐻𝑖,𝑖 > val then
19 𝑟 ← 𝑖
20 val ← 𝛾 𝑖 𝐻𝑖,𝑖

21 row𝑟(𝐻 ′) ↔ row𝑟+1(𝐻 ′) /* Swap rows 𝑟 and 𝑟 + 1 in 𝐻 ′ */

22 col𝑟(𝐵) ↔ col𝑟+1(𝐵) /* Swap columns 𝑟 and 𝑟 + 1 in 𝐵 */

23 𝑦𝑟 ↔ 𝑦𝑟+1 /* Swap elements 𝑟 and 𝑟 + 1 in 𝑦 */

24 remove corner(𝐻 ′, 𝑟) /* Make sure 𝐻 ′ is lower trapezoidal */

25 hermite reduce(𝐻 ′, 𝐵, 𝑦 , 𝑟) /* Hermite reduce 𝐻 ′ and update 𝐵 and 𝑦 */

26 𝑘 ← 1 /* Find 𝑘 such that |𝑦𝑘 | is minimal */

27 val ← |𝑦1 |
28 for 𝑖 from 2 to 𝑛 do
29 if | 𝑦𝑖 | < val then
30 𝑘 ← 𝑖
31 val ← |𝑦𝑖 |

32 until | 𝑦𝑘 |/‖col𝑘(𝐵)‖ < 𝜖 or 𝑖 > 𝑚𝑎𝑥𝑖
33 if | 𝑦𝑘 |/‖col𝑘(𝐵)‖ < 𝜖 then return col𝑘(𝐵) else return FAIL

142

A Numeric Integer Relation Algorithm Implementations

chosen. For each such value, a row (and column and element) swap is performed as it is
in the algorithm presented here. Careful criteria are given to make sure that the swaps
will not interfere with each other, and so the swaps may be performed in parallel. We
do not discuss these criteria here (the interested reader should consult the literature), but
we will note that Borwein gives an improved criteria which avoids a cycling problem
reported (and worked around) by Bailey and Broadhurst

Another optimisation, referred to asmulti level, is to perform the computation at different
precisions to balance the computational speed and required precision. The algorithm is
run in two, or sometimes three “levels”. One level is full precision, another is machine
precision (or otherwise some lower precision than the full precision), and if a third is
used it is at an intermediate precision. The algorithm is performed at the lowest precision
until it is detected that precision is exhausted, at which point the algorithm state is used
to update next higher precision level, and computations are performed at that precision
until precision can safely be resumed at lower precision, or until precision is exhausted at
that precision level. The mechanisms for detecting exhausted precision and for updating
the higher precision levels are not discussed here, but are given in the literature.

A.2 LLL

The lll algorithm is described in Algorithm A.2.1. It is presented for reference, and in
the interests of completeness.

We have based the algorithm as presented on the version as presented in Borwein [29].
We note, however, that Borwein keeps the values of 𝑏∗𝑖 updated throughout the algorithm,
but that such updating is entirely unnecessary. By inspection we can see that the values
of ‖𝑏∗𝑖 ‖ (which we have denoted as 𝜂∗𝑖 instead) are all updated without reference to the
underlying 𝑏∗𝑖 . Indeed, the algorithm as given originally by Lenstra, Lenstra Jr, and Lovász
[52, fig. 1] does not keep the 𝑏∗𝑖 values updated and also updates the norms (which they
denote as 𝐵𝑖) directly. Consequently we have removed the 𝑏∗𝑖 updating from Borwein
[29]’s algorithm. We have also re-ordered the operations slightly and renamed some
variables to make the algorithm a little easier to follow. Care has been taken to ensure
that the underlying algorithm is unchanged, and agrees with the original by Lenstra,
Lenstra Jr, and Lovász.

143

A Numeric Integer Relation Algorithm Implementations

Algorithm A.2.1: lll
Input : 𝑏1, … , 𝑏𝑛 (a lattice basis to be reduced)
Output: 𝑏1, … , 𝑏𝑛 (a LLL reduced basis)

/* Initialisation */

1 for 𝑖 from 1 to 𝑛 do
2 𝑏∗𝑖 ← 𝑏𝑖 −∑𝑖−1

𝑗=1 𝜇𝑖,𝑗𝑏
∗
𝑗

3 𝜂∗𝑖 = ‖𝑏∗𝑖 ‖2
4 for 𝑗 from 𝑖 + 1 to 𝑛 do
5 𝜇𝑖,𝑗 ← 𝑏𝑗 ⋅ 𝑏∗𝑖 /𝜂∗𝑖

6 𝑘 ← 2
/* Main Calculation */

7 repeat
8 for 𝑗 from 𝑘 − 1 to 1 by −1 do
9 𝑞 ← ⌈𝜇𝑘,𝑗 ⌋

10 𝑏𝑘 ← 𝑏𝑘 − 𝑞 𝑏𝑗
11 for 𝑖 from 1 to 𝑗 do
12 𝜇𝑘,1 ← 𝜇𝑘,𝑖 − 𝑞 𝑏𝑗

13 if 𝜂∗𝑘 ≥ (34 − 𝜇2𝑘,𝑘−1) 𝜂
∗
𝑘−1 then

14 𝑘 ← 𝑘 + 1
15 else
16 𝑏𝑘 ↔ 𝑏𝑘−1 /* Swap basis vectors 𝑏𝑘 and 𝑏𝑘−1 */

17 𝑡 ← 𝜂∗𝑘 + 𝜇2𝑘,𝑘−1 𝜂
∗
𝑘−1 /* Set temporary values to be re-used below */

18 𝑚 ← 𝜇𝑘,𝑘−1 𝜂∗𝑘−1/𝑡
19 𝜂∗𝑘 ← 𝜂∗𝑘 𝜂

∗
𝑘−1/𝑡 /* Update 𝜂∗𝑘 and 𝜂∗𝑘−1. The order here is important */

20 𝜂∗𝑘−1 ← 𝑡
21 for 𝑖 from 1 to 𝑘 − 2 do /* Update the relevant 𝜇𝑖,𝑗 values */

22 𝜇𝑘,𝑖 ↔ 𝜇𝑘−1,𝑖
23 for 𝑖 from 𝑘 + 1 to 𝑛 do
24 𝑡 ← 𝜇𝑖,𝑘
25 𝜇𝑖,𝑘 ← 𝜇𝑖,𝑘−1 − 𝜇𝑘,𝑘−1 𝜇𝑖,𝑘
26 𝜇𝑖,𝑘−1 ← 𝑡 + 𝑚𝜇𝑖,𝑘
27 𝜇𝑘,𝑘−1 ← 𝑚
28 𝑘 ← max(2, 𝑘 − 1)

29 until 𝑘 = 𝑛 + 1
30 return 𝑏1, … , 𝑏𝑛

144

B Complete Collection of Numeric Result

Graphs

Contained in this appendix is the complete collection, of which there are many, of graphs
of precision and time taken for all testing performed. Each graph take a page, and con-
sequently the collection begins on the next page.

145

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.1: Precision required for 𝕂 = ℚ, 𝐶 = 𝐶ℝ.

146

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.2: Precision required for 𝕂 = ℚ(√2), 𝐶 = 𝐶ℝ.

147

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.3: Precision required for 𝕂 = ℚ(√3), 𝐶 = 𝐶ℝ.

148

B Complete Collection of Numeric Result Graphs

20

40

60

80

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.4: Precision required for 𝕂 = ℚ(√5), 𝐶 = 𝐶ℝ.

149

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.5: Precision required for 𝕂 = ℚ(√6), 𝐶 = 𝐶ℝ.

150

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.6: Precision required for 𝕂 = ℚ(√7), 𝐶 = 𝐶ℝ.

151

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.7: Precision required for 𝕂 = ℚ(√10), 𝐶 = 𝐶ℝ.

152

B Complete Collection of Numeric Result Graphs

50

100

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and short input length

200

400

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.8: Precision required for 𝕂 = ℚ(√11), 𝐶 = 𝐶ℝ.

153

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.9: Computation time for 𝕂 = ℚ, 𝐶 = 𝐶ℝ.

154

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.10: Computation time for 𝕂 = ℚ(√2), 𝐶 = 𝐶ℝ.

155

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.11: Computation time for 𝕂 = ℚ(√3), 𝐶 = 𝐶ℝ.

156

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.12: Computation time for 𝕂 = ℚ(√5), 𝐶 = 𝐶ℝ.

157

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.13: Computation time for 𝕂 = ℚ(√6), 𝐶 = 𝐶ℝ.

158

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.14: Computation time for 𝕂 = ℚ(√7), 𝐶 = 𝐶ℝ.

159

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.15: Computation time for 𝕂 = ℚ(√10), 𝐶 = 𝐶ℝ.

160

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.16: Computation time for 𝕂 = ℚ(√11), 𝐶 = 𝐶ℝ.

161

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.17: Precision required for (𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ).

162

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.18: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ (apslq only).

163

B Complete Collection of Numeric Result Graphs

10

20

30

D
ec
im

al
di
gi
ts

small coefficients, and short input length

20

40

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.19: Precision required for (𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ).

164

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.20: Precision required for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ (apslq only).

165

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.21: Precision required for (𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ).

166

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.22: Precision required for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ (apslq only).

167

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.23: Precision required for (𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ).

168

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.24: Precision required for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ (apslq only).

169

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.25: Precision required for (𝕂 = ℚ(√−3), 𝐶 = 𝐶ℝ).

170

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.26: Precision required for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℝ (apslq only).

171

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.27: Precision required for (𝕂 = ℚ(√−3), 𝐶 = 𝐶ℂ).

172

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.28: Precision required for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℂ (apslq only).

173

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 2.0)

Figure B.29: Precision required for (𝕂 = ℚ(√−5), 𝐶 = 𝐶ℝ).

174

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.30: Precision required for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℝ (apslq only).

175

B Complete Collection of Numeric Result Graphs

20

40

60

80

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.31: Precision required for (𝕂 = ℚ(√−5), 𝐶 = 𝐶ℂ).

176

B Complete Collection of Numeric Result Graphs

20

40

60

80

D
ec
im

al
di
gi
ts

small coefficients, and short input length

7

8

9

10

11

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

120

D
ec
im

al
di
gi
ts

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Figure B.32: Precision required for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℂ (apslq only).

177

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 2.0)

Figure B.33: Precision required for (𝕂 = ℚ(√−6), 𝐶 = 𝐶ℝ).

178

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.34: Precision required for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℝ (apslq only).

179

B Complete Collection of Numeric Result Graphs

100

200

300

400

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.35: Precision required for (𝕂 = ℚ(√−6), 𝐶 = 𝐶ℂ).

180

B Complete Collection of Numeric Result Graphs

100

200

300

400

D
ec
im

al
di
gi
ts

small coefficients, and short input length

7

8

9

10

11

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

25

30

35

40

D
ec
im

al
di
gi
ts

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Figure B.36: Precision required for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℂ (apslq only).

181

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.37: Precision required for (𝕂 = ℚ(√−7), 𝐶 = 𝐶ℝ).

182

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.38: Precision required for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℝ (apslq only).

183

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.39: Precision required for (𝕂 = ℚ(√−7), 𝐶 = 𝐶ℂ).

184

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.40: Precision required for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℂ (apslq only).

185

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 2.0)

Figure B.41: Precision required for (𝕂 = ℚ(√−10), 𝐶 = 𝐶ℝ).

186

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.42: Precision required for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℝ (apslq only).

187

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL

Figure B.43: Precision required for (𝕂 = ℚ(√−10), 𝐶 = 𝐶ℂ).

188

B Complete Collection of Numeric Result Graphs

10

20

D
ec
im

al
di
gi
ts

small coefficients, and short input length

5

6

7

D
ec
im

al
di
gi
ts

small coefficients, and long input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
ec
im

al
di
gi
ts

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Figure B.44: Precision required for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℂ (apslq only).

189

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.45: Precision required for (𝕂 = ℚ(√−11), 𝐶 = 𝐶ℝ).

190

B Complete Collection of Numeric Result Graphs

20

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.46: Precision required for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℝ (apslq only).

191

B Complete Collection of Numeric Result Graphs

20

40

60

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

150

D
ec
im

al
di
gi
ts

small coefficients, and long input length

50

100

150

D
ec
im

al
di
gi
ts

large coefficients, and short input length

100

200

300

D
ec
im

al
di
gi
ts

large coefficients, and long input length

Theoretical Minimum PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.47: Precision required for (𝕂 = ℚ(√−11), 𝐶 = 𝐶ℂ).

192

B Complete Collection of Numeric Result Graphs

10

20

30

40

D
ec
im

al
di
gi
ts

small coefficients, and short input length

50

100

D
ec
im

al
di
gi
ts

small coefficients, and long input length

20

40

60

80

100

D
ec
im

al
di
gi
ts

large coefficients, and short input length

50

100

150

200

D
ec
im

al
di
gi
ts

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.48: Precision required for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℂ (apslq only).

193

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.49: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ.

194

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.50: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℝ (apslq only).

195

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.51: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ.

196

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.52: Computation time for 𝕂 = ℚ(√−1), 𝐶 = 𝐶ℂ (apslq only).

197

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.53: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ.

198

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.54: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℝ (apslq only).

199

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.55: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ.

200

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.56: Computation time for 𝕂 = ℚ(√−2), 𝐶 = 𝐶ℂ (apslq only).

201

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.57: Computation time for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℝ.

202

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.58: Computation time for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℝ (apslq only).

203

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.59: Computation time for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℂ.

204

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.60: Computation time for 𝕂 = ℚ(√−3), 𝐶 = 𝐶ℂ (apslq only).

205

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ

Figure B.61: Computation time for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℝ.

206

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3

Figure B.62: Computation time for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℝ (apslq only).

207

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.63: Computation time for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℂ.

208

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

100.2

100.4

T
im

e
(s
)

large coefficients, and long input length

Figure B.64: Computation time for 𝕂 = ℚ(√−5), 𝐶 = 𝐶ℂ (apslq only).

209

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ

Figure B.65: Computation time for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℝ.

210

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3

Figure B.66: Computation time for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℝ (apslq only).

211

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.67: Computation time for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℂ.

212

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

100.2

100.4

T
im

e
(s
)

large coefficients, and long input length

Figure B.68: Computation time for 𝕂 = ℚ(√−6), 𝐶 = 𝐶ℂ (apslq only).

213

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.69: Computation time for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℝ.

214

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.70: Computation time for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℝ (apslq only).

215

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.71: Computation time for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℂ.

216

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.72: Computation time for 𝕂 = ℚ(√−7), 𝐶 = 𝐶ℂ (apslq only).

217

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ

Figure B.73: Computation time for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℝ.

218

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3

Figure B.74: Computation time for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℝ (apslq only).

219

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL

Figure B.75: Computation time for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℂ.

220

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

100.2

100.4

T
im

e
(s
)

large coefficients, and short input length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

100.2

100.4

T
im

e
(s
)

large coefficients, and long input length

Figure B.76: Computation time for 𝕂 = ℚ(√−10), 𝐶 = 𝐶ℂ (apslq only).

221

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.77: Computation time for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℝ.

222

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.78: Computation time for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℝ (apslq only).

223

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102
T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

PSLQ LLL APSLQ (𝛾 = 𝛾1)

Figure B.79: Computation time for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℂ.

224

B Complete Collection of Numeric Result Graphs

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

small coefficients, and long input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and short input length

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

large coefficients, and long input length

𝛾 = 𝛾1 𝛾 = 2 𝛾 = 3 𝛾 = 4

Figure B.80: Computation time for 𝕂 = ℚ(√−11), 𝐶 = 𝐶ℂ (apslq only).

225

Bibliography

[1] A. G. Ağargün and R. Fletcher C. “Euclidean Rings”. In: Turkish Journal of Mathe-
matics 19.3 (1995), pp. 291–299.

[2] F. J. Aragón Artacho and J. M. Borwein. “Global convergence of a non-convex
Douglas-Rachford iteration”. In: Journal of Global Optimization 57.3 (Nov. 2013),
pp. 753–769. doi: 10.1007/s10898-012-9958-4.

[3] F. J. Aragón Artacho, J. M. Borwein, and M. K. Tam. “Douglas-Rachford feasibil-
ity methods for matrix completion Problems”. In: The ANZIAM Journal 55.4 (Apr.
2014), pp. 299–326. doi: 10.1017/S1446181114000145.

[4] F. J. Aragón Artacho, J. M. Borwein, and M. K. Tam. “Recent results on Douglas-
Rachford methods for combinatorial optimization problems”. In: Journal of Opti-
mization Theory and Applications 163.1 (Oct. 2014), pp. 1–30. doi: 10.1007/s10957-
013-0488-0.

[5] M. Baake and U. Grimm. Aperiodic Order. Vol. 1: A Mathematical Invitation. En-
cyclopedia of Mathematics and Its Applications 149. Cambridge University Press.
doi: 10.1017/CBO9781139025256.

[6] D. H. Bailey and J. M. Borwein. “Experimental computation as an ontological game
changer. The impact of modernmathematical computation tools on the ontology of
mathematics”. In: Mathematics, Substance and Surmise. Views on the Meaning and
Ontology of Mathematics. Ed. by E. Davis and P. J. Davis. Springer International
Publishing, 2015, pp. 25–67. doi: 10.1007/978-3-319-21473-3_3.

[7] D. H. Bailey, J. M. Borwein, J. S. Kimberley, andW. Ladd. “Computer Discovery and
Analysis of Large Poisson Polynomials”. In: Experimental Mathematics 26.3 (2017),
pp. 349–363. doi: 10.1080/10586458.2016.1180565.

[8] D. H. Bailey, P. Borwein, and S. Plouffe. “On the Rapid Computation of Various
Polylogarithmic Constants”. In: Mathematics of Computation 66.218 (Apr. 1997),
pp. 903–913. doi: 10.1090/S0025-5718-97-00856-9.

[9] D. H. Bailey and D. J. Broadhurst. “Parallel Integer Relation Detection: Techniques
and Applications”. In: Mathematics of Computation 70.236 (2001), pp. 1719–1736.
issn: 0025-5718. doi: 10.1090/S0025-5718-00-01278-3.

226

https://doi.org/10.1007/s10898-012-9958-4
https://doi.org/10.1017/S1446181114000145
https://doi.org/10.1007/s10957-013-0488-0
https://doi.org/10.1007/s10957-013-0488-0
https://doi.org/10.1017/CBO9781139025256
https://doi.org/10.1007/978-3-319-21473-3_3
https://doi.org/10.1080/10586458.2016.1180565
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-00-01278-3

Bibliography

[10] D. H. Bailey and H. R. P. Ferguson. “Numerical Results on Relations Between Fun-
damental Constants Using aNewAlgorithm”. In:Mathematics of Computation 53.188
(1989), pp. 649–656.

[11] D. H. Bailey and S. Plouffe. “Recognizing Numerical Constants”. In: Organic Mathe-
matics: Proceedings of the Organic Mathematics Workshop. Canadian Mathematical
Society, 1997, pp. 73–88. url: http://www.cecm.sfu.ca/organics.

[12] H. H. Bauschke and J. M. Borwein. “On Projection Algorithms for Solving Convex
Feasibility Problems”. In: SIAM Review 38.3 (1996), pp. 367–426. doi: 10 . 1137 /
S0036144593251710.

[13] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator The-
ory in Hilbert Spaces. 1st ed. New York, NY: Springer, 2011. doi: 10.1007/978-1-
4419-9467-7.

[14] H. H. Bauschke, P. L. Combettes, and D. R. Luke. “Phase retrieval, error reduction
algorithm, and Fienup variants: a view from convex optimization”. In: Journal of
the Optical Society of America 19.7 (July 2002), pp. 1334–1345. doi: 10.1364/JOSAA.
19.001334.

[15] H. H. Bauschke, P. L. Combettes, and D. R. Luke. “Finding best approximation pairs
relative to two closed convex sets in Hilbert spaces”. In: Journal of Approximation
Theory 127.2 (2004), pp. 178–192. doi: 10.1016/j.jat.2004.02.006.

[16] H. H. Bauschke, P. L. Combettes, and D. R. Luke. “A strongly convergent reflection
method for finding the projection onto the intersection of two closed convex sets
in a Hilbert space”. In: Journal of Approximation Theory 141.1 (2006), pp. 63–69.
doi: 10.1016/j.jat.2006.01.003.

[17] H. H. Bauschke andW.M. Moursi. “On the Douglas-Rachford algorithm”. In:Math-
ematical Programming 164.1 (July 2017), pp. 263–284. doi: 10.1007/s10107-016-
1086-3.

[18] H. H. Bauschke et al. “The rate of linear convergence of the Douglas-Rachford
algorithm for subspaces is the cosine of the Friedrichs angle”. In: Journal of Ap-
proximation Theory 185 (Sept. 2014), pp. 63–79. doi: 10.1016/j.jat.2014.06.002.

[19] J. Benoist. “The Douglas-Rachford Algorithm for the Case of the Sphere and the
Line”. In: Journal of Global Optimization 63.2 (Oct. 2015), pp. 363–380. doi: 10.
1007/s10898-015-0296-1.

[20] G. M. Bergman. “Notes on Ferguson and Forcade’s Generalized Euclidean Algo-
rithm”. Unpublished notes. 1980.

[21] J. Borwein and K. Devlin. The Computer as Crucible. An Introduction to Experimental
Mathematics. A K Peters, 2009. doi: 10.1201/b10684.

227

http://www.cecm.sfu.ca/organics
https://doi.org/10.1137/S0036144593251710
https://doi.org/10.1137/S0036144593251710
https://doi.org/10.1007/978-1-4419-9467-7
https://doi.org/10.1007/978-1-4419-9467-7
https://doi.org/10.1364/JOSAA.19.001334
https://doi.org/10.1364/JOSAA.19.001334
https://doi.org/10.1016/j.jat.2004.02.006
https://doi.org/10.1016/j.jat.2006.01.003
https://doi.org/10.1007/s10107-016-1086-3
https://doi.org/10.1007/s10107-016-1086-3
https://doi.org/10.1016/j.jat.2014.06.002
https://doi.org/10.1007/s10898-015-0296-1
https://doi.org/10.1007/s10898-015-0296-1
https://doi.org/10.1201/b10684

Bibliography

[22] J. M. Borwein and P. Lisoněk. “Applications of Integer Relation Algorithms”. In:
Discrete Mathematics 217.1-3 (Apr. 2000), pp. 65–82. doi: 10.1016/S0012-365X(99)
00256-3.

[23] J. M. Borwein and M. K. Tam. “A cyclic Douglas–Rachford iteration scheme”. In:
Journal of Optimization Theory and Applications 160.1 (Jan. 2014), pp. 1–29. doi:
10.1007/s10957-013-0381-x.

[24] J. M. Borwein. “The Life of Modern Homo Habilis Mathematicus. Experimental
Computation and Visual Theorems”. In: Tools and Mathematics. Mathematics Edu-
cation Library 110. Cham: Springer International Publishing, 2016, pp. 23–90. doi:
10.1007/978-3-319-02396-0_3.

[25] J. M. Borwein and B. Sims. “The Douglas-Rachford algorithm in the absence of con-
vexity”. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
Ed. by H. H. Bauschke et al. Springer Optimization and Its Applications 49. New
York, NY: Springer, 2011, pp. 93–109. doi: 10.1007/978-1-4419-9569-8_6.

[26] J. M. Borwein and M. K. Tam. “Reflection Methods for Inverse Problems with Ap-
plications to Protein Conformation Determination”. In: Generalized Nash Equilib-
rium Problems, Bilevel Programming and MPEC. Ed. by D. Aussel and C. Lalitha.
Forum for Interdisciplinary Mathematics. Singapore: Springer, 2017, pp. 83–100.
doi: 10.1007/978-981-10-4774-9_5.

[27] J. M. Borwein et al.Appendix to dynamics of the Douglas-Rachfordmethod for ellipses
and p-spheres. 2017. url: http://hdl.handle.net/1959.13/1330341.

[28] J. M. Borwein et al. “Dynamics of the Douglas Rachford Method for Ellipses and
p-Spheres”. In: Set-Valued and Variational Analysis 26.2 (June 2018), pp. 385–403.
doi: 10.1007/s11228-017-0457-0.

[29] P. Borwein. Computational Excursions in Analysis and Number Theory. CMS Books
in Mathematics. New York: Springer-Verlag, 2002. isbn: 978-0-387-95444-8. doi:
10.1007/978-0-387-21652-2.

[30] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Uni-
versitext. New York, NY: Springer, 2011. doi: 10.1007/978-0-387-70914-7.

[31] M. Chamberland. “Using Integer Relations Algorithms for Finding Relationships
Among Functions”. In: Tapas in Experimental Mathematics. AMS Special Session
on Experimental Mathematics. Ed. by T. Amdeberhan and V. Moll. Vol. 457. Con-
temporaryMathematics. NewOrleans, Louisiana: AmericanMathematical Society,
2008, pp. 127–133.

[32] D. A. Clark. “A quadratic field which is Euclidean but not norm-Euclidean”. In:
manuscripta mathematica 83.1 (Dec. 1994), pp. 327–330. doi: 10.1007/BF02567617.

228

https://doi.org/10.1016/S0012-365X(99)00256-3
https://doi.org/10.1016/S0012-365X(99)00256-3
https://doi.org/10.1007/s10957-013-0381-x
https://doi.org/10.1007/978-3-319-02396-0_3
https://doi.org/10.1007/978-1-4419-9569-8_6
https://doi.org/10.1007/978-981-10-4774-9_5
http://hdl.handle.net/1959.13/1330341
https://doi.org/10.1007/s11228-017-0457-0
https://doi.org/10.1007/978-0-387-21652-2
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/BF02567617

Bibliography

[33] P. J. Davis. The Schwarz function and its applications. 1st ed. Carus Mathematical
Monographs 17. Mathematical Association of America, 1974. url: https://www.
jstor.org/stable/10.4169/j.ctt5hh99x.

[34] F. Deutsch. “Rate of Convergence of the Method of Alternating Projections”. In:
Parametric Optimization and Approximation (Mathematisches Forschungsinstitut,
Oberwolfach, Oct. 16, 1983–Oct. 22, 1983). Ed. by B. Brosowski and F. Deutsch. In-
ternational Series of Numerical Mathematics / Internationale Schriftenreihe zur
Numerischen Mathematik / Série internationale d’Analyse numérique book 72.
Basel: Birkhäuser, 1985, pp. 96–107. doi: 10.1007/978-3-0348-6253-0_7.

[35] A. Dontchev. private communication.

[36] J. Douglas and H. H. Rachford. “On the numerical solution of the heat conduction
problem in 2 and 3 space variables”. In: Transactions of the American Mathematical
Society 82.2 (May 1956), pp. 421–43. doi: 10.2307/1993056.

[37] V. Elser, I. Rankenburg, and P. Thibault. “Searching with iterated maps”. In: Pro-
ceedings of the National Academy of Sciences 104.2 (2007), pp. 418–423. doi: 10.
1073/pnas.0606359104.

[38] H. R. P. Ferguson. “A Short Proof of the Existence of Vector Euclidean Algorithms”.
In: Proceedings of the American Mathematical Society 97.1 (1986), pp. 8–10. doi:
10.2307/2046068.

[39] H. R. P. Ferguson. “A Noninductive GL(n, Z) Algorithm That Constructs Integral
Linear Relations for n Z-Linearly Dependent Real Numbers”. In: Journal of Algo-
rithms 8.1 (Mar. 1987), pp. 131–145.

[40] H. R. P. Ferguson. “PSOS. A new integral relation finding algorithm involving par-
tial sums of squares and no square roots”. In: Abstracts of Papers Presented to the
American Mathematical Society 9 (Mar. 1988), p. 214.

[41] H. R. P. Ferguson and D. H. Bailey. A Polynomial Time, Numerically Stable Integer
Relation Algorithm. RNR Technical Report RNR-91-032. July 1992. url: https://
www.nas.nasa.gov/assets/pdf/techreports/1991/rnr-91-032.pdf.

[42] H. R. P. Ferguson, D. H. Bailey, and S. Arno. “Analysis of PSLQ, an Integer Relation
Finding Algorithm”. In: Mathematics of Computation 68.225 (1999), pp. 351–369.
doi: 10.1090/S0025-5718-99-00995-3.

[43] H. R. P. Ferguson and R.W. Forcade. “Generalization of the EuclideanAlgorithm for
Real Numbers to All Dimensions Higher Than Two”. In: Bulletin (New Series) of the
American Mathematical Society 1.6 (Nov. 1979), pp. 912–914. doi: 10.1090/S0273-
0979-1979-14691-3.

[44] H. R. P. Ferguson and R. W. Forcade. “Multidimensional Euclidean Algorithms”. In:
Journal für die reine und angewandte Mathematik (Crelle’s Journal) 1982.334 (1982),
pp. 171–181.

229

https://www.jstor.org/stable/10.4169/j.ctt5hh99x
https://www.jstor.org/stable/10.4169/j.ctt5hh99x
https://doi.org/10.1007/978-3-0348-6253-0_7
https://doi.org/10.2307/1993056
https://doi.org/10.1073/pnas.0606359104
https://doi.org/10.1073/pnas.0606359104
https://doi.org/10.2307/2046068
https://www.nas.nasa.gov/assets/pdf/techreports/1991/rnr-91-032.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/1991/rnr-91-032.pdf
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0273-0979-1979-14691-3
https://doi.org/10.1090/S0273-0979-1979-14691-3

Bibliography

[45] Y. H. Gan, C. Ling, and W. H. Mow. “Complex lattice reduction algorithm for low-
complexity full-diversity MIMO detection”. In: IEEE Transactions on Signal Process-
ing 57.7 (July 2009), pp. 2701–2710. doi: 10.1109/TSP.2009.2016267.

[46] S. Gravel and V. Elser. “Divide and concur: A general approach to constraint satis-
faction”. In: Physical Review E 78.3 (Sept. 2008), p. 036706. doi: 10.1103/PhysRevE.
78.036706.

[47] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. 5th ed.
Oxford University Press, 1979. isbn: 978-0-19-853171-5; 978 0-19-853170-8.

[48] J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. “Polynomial Time Algorithms for
Finding Integer Relations Among Real Numbers”. In: SIAM Journal on Computing
18.5 (1989), pp. 859–881. doi: 10.1137/0218059.

[49] J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. “Erratum: Polynomial Time
Algorithms for Finding Integer Relations Among Real Numbers”. In: SIAM Journal
on Computing 43.1 (2014), p. 254. doi: 10.1137/130947799.

[50] T. L. Heath. The Thirteen Books of Euclid’s Elements. Translated from the text of
Heiberg. Vol. 3: Books X–XIII and Appendix. Cambridge University Press, 1908.

[51] V. Lakshmikantham and D. Trigiante. Theory of Difference Equations. Numerical
Methods and Applications. 2nd ed. Monographs and textbooks in pure and applied
mathematics 251. Marcel Dekker, Inc, 2002. isbn: 978-0-8247-0803-0.

[52] A. K. Lenstra, H.W. Lenstra Jr, and L. Lovász. “Factoring Polynomials with Rational
Coefficients”. In: Mathematische Annalen 261.4 (Dec. 1982), pp. 515–534. doi: 10.
1007/BF01457454.

[53] S. B. Lindstrom, B. Sims, and M. P. Skerritt. “Computing intersections of implicitly
specified plane curves”. In: Journal of Nonlinear and Convex Analysis 18.3 (2017),
pp. 347–359.

[54] P. Lions and B. Mercier. “Splitting algorithms for the sum of two nonlinear op-
erators”. In: SIAM Journal on Numerical Analysis 16.6 (1979), pp. 964–979. doi:
10.1137/0716071.

[55] J. E. Littlewood. Littlewood’s Miscellany. Ed. by B. Bollobás. Cambridge University
Press, 1986. isbn: 978-0521337021.

[56] Y. Luo and S. Qiao. “A Parallel LLL Algorithm”. In: Proceedings of The Fourth Inter-
national C* Conference on Computer Science and Software Engineering. C3S2E ’11.
Montreal, Quebec, Canada: Association for Computing Machinery, 2011, pp. 93–
101. doi: 10.1145/1992896.1992908.

[57] S. Lyu, C. Porter, and C. Ling. “Performance Limits of Lattice Reduction over Imag-
inary Quadratic Fields with Applications to Compute-and-Forward”. In: 2018 IEEE
Information Theory Workshop (ITW). 2018, pp. 1–5. doi: 10 . 1109 / ITW . 2018 .
8613476.

230

https://doi.org/10.1109/TSP.2009.2016267
https://doi.org/10.1103/PhysRevE.78.036706
https://doi.org/10.1103/PhysRevE.78.036706
https://doi.org/10.1137/0218059
https://doi.org/10.1137/130947799
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1137/0716071
https://doi.org/10.1145/1992896.1992908
https://doi.org/10.1109/ITW.2018.8613476
https://doi.org/10.1109/ITW.2018.8613476

Bibliography

[58] A. Meichsner. “Integer Relation Algorithms and the Identification of Numerical
Constants”. M.Sc thesis. Simon Fraser University, 2001.

[59] A.Meichsner. “The Integer Chebyshev Problem: Computational Explorations”. PhD
thesis. Simon Fraser University, 2009.

[60] J. S. Milne.Algebraic Number Theory. Course notes. 2017. url: http://www.jmilne.
org/math/CourseNotes/ant.html.

[61] T. Needham. Visual complex analysis. Oxford: Clarendon Press, 1997. isbn: 978-0-
19-853446-4.

[62] G. Pierra. “Eclatement de contraintes en parallele pour laminimisation d’une forme
quadratique”. In: Optimization Techniques Modeling and Optimization in the Service
of Man Part 2. Ed. by J. Cea. Berlin, Heidelberg: Springer, 1976, pp. 200–218. isbn:
978-3-540-38150-1. doi: 10.1007/3-540-07623-9_288.

[63] G. Pierra. “Decomposition Through Formalization in a Product Space”. In: Mathe-
matical Programming 28 (Jan. 1984), pp. 96–115. doi: 10.1007/BF02612715.

[64] H. L. Resnikoff. On Curves and Surfaces of Constant Width. 2015. arXiv: 1504.06733
[math.DG].

[65] H. S. Shapiro. The Schwarz Function and Its Generalization to Higher Dimensions.
John Wiley and Sons, 1992. isbn: 978-0-471-57127-8.

[66] M. P. Skerritt.Algebraic-PSLQ: Testing and Results. Version Thesis/Submission. 2020.
doi: 10.5281/zenodo.3900580.

[67] M. P. Skerritt and P. Vrbik. “Extending the PSLQAlgorithm toAlgebraic Integer Re-
lations”. In: From Analysis to Visualization. JBCC 2017. Ed. by B. Sims et al. Springer
Proceedings in Mathematics & Statistics. Cham: Springer International Publishing,
2020, pp. 407–421. doi: 10.1007/978-3-030-36568-4_26.

[68] I. Stewart and D. Tall. Algebraic Number Theory and Fermat’s Last Theorem. 3rd ed.
A K Peters, 2001. isbn: 978-1-56881-119-2.

[69] A. Straub. A Gentle Introduction to PSLQ. 2010. url: http://arminstraub.com/
math/pslq-intro.

231

http://www.jmilne.org/math/CourseNotes/ant.html
http://www.jmilne.org/math/CourseNotes/ant.html
https://doi.org/10.1007/3-540-07623-9_288
https://doi.org/10.1007/BF02612715
https://arxiv.org/abs/1504.06733
https://arxiv.org/abs/1504.06733
https://doi.org/10.5281/zenodo.3900580
https://doi.org/10.1007/978-3-030-36568-4_26
http://arminstraub.com/math/pslq-intro
http://arminstraub.com/math/pslq-intro

	Title Page
	Statement of Originality
	Acknowledgment of Authorship
	Abstract
	Table of Contents
	Introduction
	Integer Relations
	Douglas-Rachford

	Integer Relations
	Classical Integer Relations
	Preliminaries
	PSLQ
	LLL
	Reduced Lattice Bases
	Integer Relations with LLL
	Complex Integer Relations with LLL

	Numeric Considerations
	Minimum Theoretical Required Precision
	Candidate Integer Relations
	Identifying Candidate Integer Relations

	Experimental Methodology
	Test Set Generation
	Testing Procedure

	Experimental Results
	Real Test Sets
	Complex Test Sets

	Algebraic Integer Relations
	Preliminaries
	Algebraic Number Theory
	The Specific Case of Quadratic Fields

	Generalising Integer Relations to Include Algebraic Integers
	Computing Quadratic Integer Relations
	Reduction
	LLL and Complex Quadratic Relations
	Algebraic PSLQ

	Experimental Methodology
	Test Set Generation
	Testing Procedure

	Experimental Results
	Classical Integer Relations
	Real Quadratic Extension Fields
	Complex Quadratic Extension Fields

	Douglas–Rachford
	Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres
	Preliminaries
	Notation
	Computation of Projections

	The Case of an Ellipse and a Line
	Studying Convergence: Numerical Motivations
	Visualisation Through Parallelisation
	Correctness and Reproducibility

	Line and p-sphere
	A Theoretical Interlude: Local Convergence to a Feasible Point
	Important Lessons About Global Behaviour
	The Feasible Case
	Infeasible Cases

	Computing Intersections of Implicitly Specified Plane Curves
	Preliminaries
	Local Convergence of the Modified Douglas-Rachford Algorithm
	Alternative Approaches to the Problem
	Experimental Results
	Two Circles
	Ellipse and Line
	Finding a Zero of a Function

	Summary
	Final Remarks and Further Work
	Integer Relations
	Douglas-Rachford

	Appendices
	Numeric Integer Relation Algorithm Implementations
	(A)PSLQ
	LLL

	Complete Collection of Numeric Result Graphs

	Bibliography

