
Jonathan Borwein, Pi and the AGM

Richard P. Brent

Australian National University
and CARMA, University of Newcastle

3.14 at 1:59 pm
2018

Copyright c© 2018, R. P. Brent

Richard Brent Jon Borwein, π and the AGM

Why π?
Why was Jon interested in π?
Perhaps because it is transcendental but appears in many
mathematical formulas. For example, here are some that I like:

eiπ = −1, (Euler),
π
4 = arctan(1) = 1− 1

3 + 1
5 − · · · (Gregory/Leibnitz),

= arctan(1
2) + arctan(1

3) (Euler),

= 4 arctan(1
5)− arctan(1

239) (Machin).

You can prove arctan formulas using

tan(x + y) =
tan(x) + tan(y)

1− tan(x) tan(y)
,

e.g. put x := arctan(1/2), y := arctan(1/3), then

tan(x + y) =
1/2 + 1/3
1− 1/6

= 1 = tan(π/4).

Richard Brent Why π?

Formulas involving π and the Gamma function
The Gamma function

Γ(z) :=

∫ ∞
0

xz−1e−x dx

generalises the factorial, as Γ(n + 1) = n! for n ∈ N.
The Gamma function has a “reflection formula”

Γ(1− z)Γ(z) =
π

sinπz

and a “duplication formula”

Γ(z)Γ(z + 1
2) = 21−2zπ1/2Γ(2z)

that involve π. Putting z = 1
2 in either of these gives

Γ(1
2) =

√
π.

Richard Brent Why π?

π and infinite products
There are infinite products that converge to π. Perhaps the first
(historically) is Viète’s formula (1593):

2
π

=

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +
√

2
2

· · ·

A different one is by John Wallis (1655):

π

2
=
∞∏

n=1

4n2

4n2 − 1
=

2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · ·

Viète’s formula has a nice geometric interpretation, and
converges linearly. It gives about 2 bits (0.6 decimals) per term.
Wallis’s formula is more convenient, because of the lack of
square roots, but converges more slowly (as you can see by
taking logarithms of each side).

Richard Brent Why π?

Continued fractions involving π

There are also continued fractions for π, e.g. Brouncker’s

4
π

= 1 +
12

2 +
32

2 +
52

2 + · · ·

William Brouncker (1620–1684) was the first president of the
Royal Society. He solved “Pell’s equation” x2 − Dy2 = 1 before
Pell. However, Bhaskara II (1114–1185) solved it much earlier,
so it should be named after Bhaskara (or maybe Brahmagupta,
who solved special cases even earlier), rather than Pell or
Brouncker.

Richard Brent Why π?

Equivalence of a sum and a continued fraction

Writing Brouncker’s formula as a continued fraction for π/4, the
convergents are given by partial sums of the Gregory/Leibniz
formula for π, e.g.

1

1 +
12

2 +
32

2

= 1− 1
3

+
1
5
.

The general case follows by putting an := (1− 2n)/(1 + 2n)
in Euler’s identity

a0 + a0a1 + · · ·+ a0a1 · · · an

= a0/(1− a1/(1 + a1 − a2/(1 + a2 − · · ·an/(1 + an) · · ·))).

Euler’s identity can easily be proved by induction on n.

Richard Brent Why π?

The BBP formula

In 1995, Simon Plouffe discovered the formula

π =
∞∑

k=0

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
2−4k .

It is called the BBP formula since it was published in a paper by
David Bailey, Peter Borwein and Simon Plouffe.
The BBP formula allows us to find the n-th digit (or a short block
of digits near the n-th) in the binary representation of π faster
(in practice, if not in theory), and using much less memory, than
any known algorithm for computing (all of) the first n digits.
No such formula is known for base ten (i.e. decimal arithmetic).

Richard Brent Binary digit extraction

Formulas involving π and the zeta function

The Riemann zeta function ζ(s) is defined by ζ(s) :=
∑∞

k=1 k−s

for <(s) > 1, and by analytic continuation for other s ∈ C\{0}.
It satisfies the functional equation ξ(s) = ξ(1− s), where

ξ(s) :=
1
2
π−s/2s(s − 1)Γ(s/2)ζ(s).

Euler found that

ζ(2n) = (−1)n+1 B2n(2π)2n

2(2n)!
for non-negative integers n.

The Bernoulli numbers B2n ∈ Q (B0 = 1, B2 = 1
6 , B4 = − 1

30 , · · ·)
have a simple exponential generating function x/(ex −1)− x/2.
Euler’s formula shows that ζ(2n)/π2n is a rational number. For
example, ζ(2) = π2/6, ζ(4) = π4/90.

Richard Brent Binary digit extraction

Generalisations

One reason why formulas involving π are interesting is that they
can often be generalised. For example: eiπ = −1 is a special
case of eiθ = cos θ + i sin θ.
√
π = Γ(1

2) is a special case of
√
π = 22s−1 Γ(s)Γ(s+ 1

2)

Γ(2s)
.

Euler’s formula for ζ(2n) follows from the Hadamard product

sinπz
πz

=
∞∏

n=1

(
1− z2

n2

)
.

We’ll later see examples involving elliptic integrals, theta
functions, etc. Thus, a formula for π is often just the tip of a
large iceberg!

Richard Brent Binary digit extraction

Why do we need many digits of π?

To compute the circumference of the Earth to an accuracy of
1mm from the formula 2πr , we only need π to 11 decimal digits.
The circumference of the observable universe can be
computed to within one Planck length (1.6× 10−35 metres) if
we know π to about 62 decimal digits, assuming that
space-time is flat and we know the radius.
Hence, why would anyone ever be interested in computing π to
more than 100 decimal digits?

Richard Brent Why so many digits?

One answer

One possible answer: because

e :=
∞∑

k=0

1
k !

is too easy, and Brun’s constant

B :=
∑

p, p+2 prime

(
1
p

+
1

p + 2

)

is too hard! We only know

1.84 < B < 2.29

(Platt and Trudgian, 2018).

Richard Brent Why so many digits?

Another answer
So we can draw pictures like this [Aragón, Bailey, Borwein et al]

This “walk” on the first 1011 base-4 digits of π suggests (but
doesn’t prove) that π is normal in base 4.

Richard Brent Why so many digits?

More answers

As we said already, π is the tip of an iceberg, and we want to
see what is underwater.
To find identities using the PSLQ algorithm (Ferguson and
Bailey) or to numerically verify conjectured identities, we need
to be able to compute the relevant terms to high precision.
For example, the BBP algorithm was found in this way.
Thus, we want to be able to compute many constants to high
precision, for example ζ(3), γ, Γ(p/q) for rational p/q,
exp(π

√
163) = 262537412640768743.9999999999992 · · · , etc.

To implement arbitrary-precision software such as MPFR, we
need algorithms for the computation of elementary and special
functions to arbitrary precision.

Richard Brent Why so many digits?

Another answer

As in mountain-climbing, “because it is there!”
Of course, a mountain has a finite height, so in principle we can
get to the top. π = 3.14159265 · · · has a non-terminating (and
non-periodic) decimal (or binary) expansion, so we can never
compute all of it.
For this reason, it is more satisfying to work on algorithms for
computing π than on programs that approximate it to a large
(but finite) number of digits. I suspect that Jon Borwein had the
same view, since he found some nice algorithms for π, but left it
to collaborators to implement them.
In the rest of this talk we’ll concentrate on algorithms for
computing π. It would be more accurate to say “approximating”
than “computing”, since we can never compute the full
(countably infinite) binary or decimal representation of π.

Richard Brent Why so many digits?

Some means

To refresh your memory, the arithmetic mean of a,b ∈ R is

AM(a,b) :=
a + b

2
.

The geometric mean is

GM(a,b) :=
√

ab,

and the harmonic mean (for ab 6= 0) is

HM(a,b) := AM(a−1,b−1)−1 =
2ab

a + b
.

Assuming that a and b are positive, we have the inequalities

HM(a,b) ≤ GM(a,b) ≤ AM(a,b).

Richard Brent Arithmetic, geometric and harmonic means

The arithmetic-geometric mean

Given two positive reals a0,b0, we can iterate the arithmetic
and geometric means by defining, for n ≥ 0,

an+1 = AM(an,bn)

bn+1 = GM(an,bn).

The sequences (an) and (bn) converge to a common limit
called the arithmetic-geometric mean (AGM) of a0 and b0.
We denote it by AGM(a0,b0).

Richard Brent The AGM

The harmonic-geometric mean

We could define an iteration

an+1 = HM(an,bn)

bn+1 = GM(an,bn).

However, we see that

a−1
n+1 = AM(a−1

n ,b−1
n)

b−1
n+1 = GM(a−1

n ,b−1
n).

Thus, the common limit is just AGM(a−1
0 ,b−1

0)−1.
Replacing the arithmetic mean by the harmonic mean in the
definition of the AGM does not give anything essentially new.

Richard Brent The HGM

Another mean

Note that AGM(a0,b0) = AGM(b0,a0) is symmetric in a0,b0.
This is not true if we use a slightly different iteration

an+1 = AM(an,bn)

bn+1 = GM(an+1,bn)

which converges to a limit which we denote by ARM(a0,b0)
(“AR” for “Archimedes”, as we’ll explain shortly).
The ARM is slightly easier to implement in a program than the
AGM, as we can just drop the subscripts and iterate
{a := AM(a,b); b := GM(a,b)}, avoiding the use of a
temporary variable.

Richard Brent The mean of Archimedes

Archimedes
Archimedes (c.287–c.212 BC) gave perhaps the first iterative
algorithm for computing π to arbitrary precision, and used the
first few iterations to show that

3.1408 ≈ 310
71 < π < 31

7 ≈ 3.1429 .

Many people believe that π = 31
7 . Archimedes knew better.

Digression: a recent one-line proof that π < 31
7 is

0 <
∫ 1

0

x4(1− x)4

1 + x2 dx =
22
7
− π.

To evaluate the integral, write the integrand as

x6 − 4x5 + 5x4 − 4x2 + 4− 4
1 + x2

and integrate term by term, using∫ 1

0

dx
1 + x2 = arctan(1) =

π

4
.

Richard Brent Archimedes

Inscribed and circumscribed polygons
Archimedes’ key idea is to use the perimeters of inscribed and
circumscribed polygons in a circle of radius 1/2 to give lower
and upper bounds on π. We start with hexagons and keep
bisecting angles to get polygons with 6 · 2n sides.
Let An denote the perimeter of a circumscribed regular
6 · 2n-gon, and Bn ditto for the inscribed regular 6 · 2n-gon.
Writing `n := 6 · 2n, θn := π

`n
, we see that

Bn = `n sin θn < π < An = `n tan θn.

The initial values are `0 = 6, θ0 = π/6,A0 = 2
√

3,B0 = 3.
Using “half-angle” formulas we can verify that

An+1 = HM(An,Bn),

Bn+1 = GM(An+1,Bn).

Richard Brent Archimedes

Archimedes continued
Recall that

An+1 = HM(An,Bn),

Bn+1 = GM(An+1,Bn).

To avoid the harmonic mean, define an := 1/An, bn := 1/Bn.
Then

an+1 = AM(an,bn),

bn+1 = GM(an+1,bn).

This is just an instance of the “Archimedes mean” ARM defined
previously, so we see that

ARM

(√
3

6
,
1
3

)
=

1
π
.

Similar methods give

ARM(cos θ,1) =
sin θ

θ
, ARM(cosh θ,1) =

sinh θ

θ
.

Richard Brent Archimedes

Upper and lower bounds via Archimedes
Using Archimedes’ method gives (correct digits in blue):

iteration 0 : 3.0000000 < π < 3.4641017
iteration 1 : 3.1058285 < π < 3.2153904
iteration 2 : 3.1326286 < π < 3.1596600
iteration 3 : 3.1393502 < π < 3.1460863 < 3.1464
iteration 4 : 3.1410319 < π < 3.1427146 < 3.1435
iteration 5 : 3.1414524 < π < 3.1418731
iteration 6 : 3.1415576 < π < 3.1416628
iteration 7 : 3.1415838 < π < 3.1416102
iteration 8 : 3.1415904 < π < 3.1415971

The bounds satisfy

An − Bn = π

(
tan θn − sin θn

θn

)
< 2−2n−1.

We get two bits of accuracy per iteration (linear convergence).
Richard Brent Archimedes

Implications of Archimedes’ method

David Bailey has observed that there are at least eight
recent papers in the “refereed” literature claiming that
π = (14−

√
2)/4 = 3.1464 · · · , and another three claiming that

π = 17− 8
√

3 = 3.1435 · · · .
These claims must be incorrect, due to Lindemann’s 1882
theorem that π is transcendental, but we can give a more
elementary disproof of the claims for anyone who does not
understand Lindemann’s proof.
Since A3 < 3.1464 and A4 < 3.1435, we see that four iterations
of Archimedes’ method suffice to disprove the claims.
Four iterations of Archimedes’ method suffice to show that

3.1408 < 310
71 < π < 31

7 < 3.1429 ,

as (correctly) claimed by Archimedes.

Richard Brent Archimedes

What if Archimedes made a small change?

We’ve seen that the essential part of Archimedes’ method is
the iteration

an+1 = AM(an,bn),

bn+1 = GM(an+1,bn).

If Archimedes had written it this way, he might have considered
making a small change and using the (more symmetric)
iteration

an+1 = AM(an,bn),

bn+1 = GM(an,bn).

This is just the arithmetic-geometric mean!

Richard Brent What if . . . ?

What if · · · continued

Archimedes would have found that the new (AGM) iteration
converges much faster than the old (ARM) iteration. To see
this, suppose that xn := an/bn = 1 + εn. Then

xn+1 = 1
2(an/bn + 1)/

√
an/bn = 1

2(x1/2
n + x−1/2

n),

so

1 + εn+1 = 1
2((1 + εn)1/2 + (1 + εn)−1/2) = 1 + 1

8ε
2
n + O(ε3

n).

Thus εn+1 ≈ 1
8ε

2
n if |εn| is small.

This is an example of quadratic convergence – the number of
correct digits roughly doubles at each iteration. In contrast, the
ARM has only linear convergence – the number of correct digits
increases roughly linearly with each iteration.

Richard Brent What if . . . ?

The limit

Although the AGM iteration converges faster than the ARM
iteration, it does not give the same limit. Thus, it’s not
immediately obvious that it is useful for computing π
(or anything else of interest).
Gauss and Legendre solved the problem of expressing
AGM(a,b) in terms of known functions. The answer may be
written as

1
AGM(a,b)

=
2
π

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

The right-hand-side is the product of a constant (whose precise
value will be significant later) and a complete elliptic integral.

Richard Brent What if . . . ?

Elliptic integrals
The complete elliptic integral of the first kind is defined by

K (k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

,

and the complete elliptic integral of the second kind by

E(k) :=

∫ π/2

0

√
1− k2 sin2 θ dθ

=

∫ 1

0

√
1− k2t2
√

1− t2
dt .

The variable k is called the modulus, and k ′ :=
√

1− k2 is
called the complementary modulus.

Richard Brent Elliptic integrals

Some (confusing) notation
It is customary to define

K ′(k) := K (
√

1− k2) = K (k ′)

and
E ′(k) := E(

√
1− k2) = E(k ′),

so in the context of elliptic integrals a prime (′) does not denote
differentiation. Apologies for any confusion, but this is the
convention that is used in the literature, including Pi and the
AGM.
On the rare occasions when we need a derivative, we use
operator notation DkK (k) := dK (k)/dk .
Pi and the AGM uses the “dot” notation K̇ (k) := dK (k)/dk , but
this is confusing and hard to see, so we’ll avoid it.
k and k ′ can in general be complex, but in this talk we’ll
assume that they are real and in the interval (0,1).

Richard Brent Elliptic integrals

What’s in a name?

The arc-length L of an ellipse with semi-major axis a and
semi-minor axis b is given by

L = 4
∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ = 4aE ′(b/a).

elliptic functions arise by inverting (incomplete) elliptic integrals.

elliptic curves are named because of their connection with
elliptic functions.
· · ·
ellipsis comes from the same Greek word, meaning “leave out”
or “defective” (ellipses are defective circles).

Richard Brent Elliptic integrals

Connection with hypergeometric functions
In terms of the Gaussian hypergeometric function

F (a,b; c; z) := 1 +
a · b
1! · c

z +
a(a + 1) · b(b + 1)

2! · c(c + 1)
z2 + · · ·

we have
K (k) =

π

2
F
(

1
2 ,

1
2 ; 1; k2

)
and

E(k) =
π

2
F
(
−1

2 ,
1
2 ; 1; k2

)
.

We also have

K ′(k) =
2
π

log

(
4
k

)
K (k)− f (k),

where f (k) = k2/4 + O(k4) is analytic in the disk |k | < 1.
Note: in this talk, log always denotes the natural logarithm.

Richard Brent Elliptic integrals

The AGM and elliptic integrals
Substituting (a,b) 7→ (1, k) above, and recalling that
k2 + (k ′)2 = 1, we have

1
AGM(1, k)

=
2
π

∫ π/2

0

dθ√
cos2 θ + k2 sin2 θ

=
2
π

∫ π/2

0

dθ√
1− (1− k2) sin2 θ

=
2
π

∫ π/2

0

dθ√
1− (k ′)2 sin2 θ

=
2
π

K ′(k),

so

AGM(1, k) =
π

2K ′(k)
.

Richard Brent Elliptic integrals

Computing both E ′ and K ′ via the AGM

We have seen that, if we start from a0 = 1, b0 = k ∈ (0,1) and
apply the AGM iteration, then K ′(k) can be computed from

lim
n→∞

an =
π

2K ′(k)
.

We also have

E ′(k)

K ′(k)
=

1 + k2

2
−
∞∑

n=0

2n (an − an+1)2,

so E ′(k) can be computed at the same time as K ′(k).

Richard Brent Elliptic integrals

Logarithms and the AGM

Recall that, for small k , we have

K ′(k) =
2
π

log

(
4
k

)
K (k) + O(k2),

but
2
π

K (k) = F
(

1
2 ,

1
2 ; 1; k2

)
= 1 + O(k2).

Thus, assuming that k ∈ (0,1), we have

K ′(k) =
(

1 + O(k2)
)

log

(
4
k

)
.

An explicit bound on the O(k2) term is given in Thm. 7.2 of
Pi and the AGM.

Richard Brent Logarithms and the AGM

First attempt to compute π via the AGM

Choose k := 22−n for some sufficiently large positive integer n.
Then

log

(
4
k

)
= n log 2,

but
π

2 AGM(1, k)
= K ′(k) =

(
1 + O(k2)

)
log

(
4
k

)
,

which gives

π

log 2
= 2n AGM(1, k)

(
1 + O(4−n)

)
.

Thus, we can compute π/ log 2 to (2n + O(1))-bit accuracy
using an AGM computation. Similarly for π/ log 3, etc.

Richard Brent Computing π, except for a log factor

Historical notes
The algorithm for π/ log 2 was essentially given by Salamin in
HAKMEM (1972), pg. 71, although presented as an algorithm
for computing log(4/k), assuming that we know π.
On the same page Salamin gives an algorithm for computing π,
taking k = 4/en instead of our k = 4/2n. With his choice
π ≈ 2n AGM(1, k). However, this assumes that we know e, so it
is not a “standalone” algorithm for π via the AGM.
In 1975, Salamin (and independently the speaker) discovered
an algorithm for computing π via the AGM without needing to
know e or log 2 to high precision. It is called the
“Gauss-Legendre” or “Brent-Salamin” algorithm, and is about
twice as fast as the algorithm given in HAKMEM (1972).
In 1984, Jon and Peter Borwein discovered another
quadratically convergent algorithm for computing π, with about
the same speed as the Gauss-Legendre algorithm. We’ll
describe the Gauss-Legendre and Borwein-Borwein algorithms
shortly.

Richard Brent Some history

Legendre’s relation

The Gauss-Legendre algorithm takes advantage of a nice
identity known as Legendre’s relation: for 0 < k < 1,

E(k)K ′(k) + E ′(k)K (k)− K (k)K ′(k) =
π

2
.

For a proof, see Pi and the AGM, Sec. 1.6.

Richard Brent Legendre’s relation

A quadratically convergent algorithm for π

Using Legendre’s relation and the formulas that we’ve given for
E and K in terms of the AGM iteration, it is not difficult to derive
the Gauss-Legendre algorithm.
Set a0 = 1, b0 = 1/

√
2, s0 = 1

4 and iterate (for n = 0,1, . . .)

an+1 =
an + bn

2
, bn+1 =

√
anbn, sn+1 = sn − 2n (an − an+1)2.

Then we get upper and lower bounds on π:

a2
n

sn
> π >

a2
n+1

sn
,

and both bounds converge quadratically to π. The lower bound
is more accurate, so the algorithm is often stated with just the
lower bound a2

n+1/sn.

Richard Brent Gauss-Legendre algorithm

Gauss and Legendre

Gauss c. 1828 Legendre

Richard Brent Gauss-Legendre algorithm

How fast does it converge?
n a2

n+1/sn a2
n/sn

0 : 2.914213562373095048801689 < π < 4.000000000000000000000000
1 : 3.140579250522168248311331 < π < 3.187672642712108627201930
2 : 3.141592646213542282149344 < π < 3.141680293297653293918070
3 : 3.141592653589793238279513 < π < 3.141592653895446496002915
4 : 3.141592653589793238462643 < π < 3.141592653589793238466361

Compare Archimedes:

0 : 3.0000000 < π < 3.4641017
1 : 3.1058285 < π < 3.2153904
2 : 3.1326286 < π < 3.1596600
3 : 3.1393502 < π < 3.1460863
4 : 3.1410319 < π < 3.1427146

· · ·
37 : 3.141592653589793238462636 < π < 3.141592653589793238462659

Richard Brent Gauss-Legendre algorithm

Jacobi theta functions

To estimate the speed of convergence and, more precisely, to
obtain upper and lower bounds on the error after n iterations,
we consider the parameterisation of the AGM in terms of Jacobi
theta functions.

Richard Brent Gauss-Legendre algorithm

Theta functions and the AGM

We need the basic theta functions of one variable defined by

θ3(q) :=
∑
n∈Z

qn2
, θ4(q) :=

∑
n∈Z

(−1)nqn2
, |q| < 1.

It is not difficult to show that

θ2
3(q) + θ2

4(q)

2
= θ2

3(q2) and
√
θ2

3(q)θ2
4(q) = θ2

4(q2).

This shows that the AGM variables (an,bn) can, if scaled
suitably, be parameterised by (θ2

3(q2n
), θ2

4(q2n
)).

Richard Brent Gauss-Legendre algorithm

Theta functions and the AGM

If 1 = a0 > b0 = θ2
4(q)/θ2

3(q) > 0, where q ∈ (0,1), then the
variables an, bn appearing in the AGM iteration satisfy

an =
θ2

3(q2n
)

θ2
3(q)

, bn =
θ2

4(q2n
)

θ2
3(q)

.

We can write q (which is called the nome) explicitly in terms of
the elliptic integral K with k ′ = b0/a0, in fact

q = exp(−πK ′(k)/K (k)).

This is due to Gauss/Jacobi.
An efficient special case is k = k ‘ = 1/

√
2. Then K ′ = K and

q = e−π = 0.0432139 . . .

Richard Brent Gauss-Legendre algorithm

Theta functions and the AGM
Recall that in the Gauss-Legendre algorithm we have a0 = 1,
b0 = 1/

√
2, s0 = 1

4 and, for n ≥ 0,

an+1 =
an + bn

2
, bn+1 =

√
anbn, sn+1 = sn − 2n (an − an+1)2.

Take q = e−π, and write

a∞ := lim
n→∞

an = θ−2
3 (q) = 2π3/2/Γ2(1

4) ≈ 0.8472,

s∞ := lim
n→∞

sn = θ−4
3 (q)/π = 4π2/Γ4(1

4) ≈ 0.2285 .

It is curious that the algorithm computes π as the ratio of a2
∞

and s∞, both of which appear more “complicated” than π.
As on the previous slide, an = θ2

3(q2n
)/θ2

3(q), and thus

sn − s∞ = θ−4
3 (q)

∞∑
m=n

2m
(
θ2

3(q2m
)− θ2

3(q2m+1
)
)2
.

Richard Brent Gauss-Legendre algorithm

Simplification

The expression for sn − s∞ can be simplified if we use the theta
function

θ2(q) :=
∑
n∈Z

q(n+1/2)2
.

Jacobi’s identity
θ4

3(q) = θ4
2(q) + θ4

4(q)

connects θ2, θ3 and θ4. Using it, we see that

sn − s∞ = θ−4
3 (q)

∞∑
m=n

2mθ4
2(q2m+1

).

Richard Brent Gauss-Legendre algorithm

Theta functions and the AGM

Write an/a∞ = 1 + δn and sn/s∞ = 1 + εn. Then

δn = θ2
3(q2n

)− 1 ∼ 4q2n
as n→∞,

and
εn ∼ π 2n θ4

2(q2n+1
) ∼ 2n+4πq2n+1

.

Richard Brent Gauss-Legendre algorithm

Upper and lower bounds
Writing

a2
n/a2
∞

sn/s∞
=

a2
n

πsn
=

(1 + δn)2

1 + εn
,

it is straightforward to obtain an upper bound on π:

0 < a2
n/sn − π < U(n) := 8πq2n

.

Convergence is quadratic: if en := a2
n/sn − π, then

lim
n→∞

en+1/e2
n = 1

8π
.

Replacing an by an+1 and δn by δn+1, we obtain a lower bound
(after n + 1 square roots)

0 < π −
a2

n+1

sn
< L(n) := (2n+4π2 − 8π)q2n+1

.

Richard Brent Gauss-Legendre algorithm

Numerical values of upper and lower bounds

n a2
n/sn − π π − a2

n+1/sn
a2

n/sn−π
U(n)

π−a2
n+1/sn

L(n)

0 8.58e-1 2.27e-1 0.790369040 0.916996189
1 4.61e-2 1.01e-3 0.981804947 0.999656206
2 8.76e-5 7.38e-9 0.999922813 0.999999998
3 3.06e-10 1.83e-19 0.999999999 1.000000000
4 3.72e-21 5.47e-41 1.000000000 1.000000000
5 5.50e-43 2.41e-84 1.000000000 1.000000000
6 1.20e-86 2.31e-171 1.000000000 1.000000000
7 5.76e-174 1.06e-345 1.000000000 1.000000000
8 1.32e-348 1.11e-694 1.000000000 1.000000000

U(n) := 8π exp(−2nπ) and L(n) := (2n+4π2 − 8π) exp(−2n+1π)
are the bounds given above. It can be seen that they are very
accurate, as expected from our analysis.

Richard Brent Gauss-Legendre algorithm

The Borwein2 quadratic AGM algorithm for π
In Pi and the AGM, Jon and Peter Borwein present a different
quadratically convergent algorithm for π based on the AGM. (It
is Algorithm 2.1 in Chapter 2, and was first published in 1984.)
Instead of using Legendre’s relation, the Borwein-Borwein
algorithm uses the identity

K (k) DkK (k)
∣∣
k=1/

√
2 =

π√
2
,

where Dk denotes differentiation with respect to k .
Using the connection between K (k ′) and the AGM, we obtain

π = 23/2 (AGM(1, k ′))3

Dk AGM(1, k ′)

∣∣∣∣
k=1/

√
2
.

An algorithm for approximating the derivative in this formula can
be obtained by differentiating the AGM iteration symbolically.
Details are given in Pi and the AGM.

Richard Brent The Borwein-Borwein algorithm

The Borwein2 quadratic AGM algorithm for π
The Borwein-Borwein algorithm (Alg. 2.1 of Pi and the AGM):

x0 :=
√

2; y1 := 21/4; π 0 :=
√

2; π0 := 2 +
√

2;

for n ≥ 0, xn+1 := 1
2(x1/2

n + x−1/2
n);

for n ≥ 1, yn+1 :=
yn x1/2

n + x−1/2
n

yn + 1
;

for n ≥ 1, πn :=
2πn−1

yn + 1
, πn := πn

(
xn + 1

2

)
.

Then πn decreases monotonically to π, and πn increases
monotonically to π. (The algorithm given in Pi and the AGM
defines πn := πn−1(xn + 1)/(yn + 1) and omits πn.)
The AGM iteration is present in Legendre form: if a0 := 1,
b0 := k ′ = 1/

√
2, and we perform the AGM iteration, then

xn = an/bn and, for n ≥ 1, yn = Dkbn/Dkan.

Richard Brent The Borwein-Borwein algorithm

How fast does Borwein-Borwein converge?
n πn πn

0 : 1.414213562373095048801689 < π < 3.414213562373095048801689
1 : 3.119132528827772757303373 < π < 3.142606753941622600790720
2 : 3.141548837729436193482357 < π < 3.141592660966044230497752
3 : 3.141592653436966609787790 < π < 3.141592653589793238645774
4 : 3.141592653589793238460785 < π < 3.141592653589793238462643
Compare Gauss-Legendre:

n a2
n+1/sn a2

n/sn

0 : 2.914213562373095048801689 < π < 4.000000000000000000000000
1 : 3.140579250522168248311331 < π < 3.187672642712108627201930
2 : 3.141592646213542282149344 < π < 3.141680293297653293918070
3 : 3.141592653589793238279513 < π < 3.141592653895446496002915
4 : 3.141592653589793238462643 < π < 3.141592653589793238466361

Borwein-Borwein gives better upper bounds, but worse lower
bounds, for the same value of n (i.e. same number of sqrts).

Richard Brent The Borwein-Borwein algorithm

Bounding the error using theta functions

As for the Gauss-Legendre algorithm, we can express the error
after n iterations of the Borwein-Borwein algorithm using theta
functions, and deduce the asymptotic behaviour of the error.
The result is an upper bound (for n ≥ 1)

0 < πn − π < 2n+4π2q2n+1
,

and a lower bound

0 < π − πn < 4πq2n
,

where q = e−π.
These can be compared with the lower bound 2n+4π2q2n+1

and upper bound 8πq2n
for the Gauss-Legendre algorithm.

Richard Brent The Borwein-Borwein algorithm

Numerical values of upper and lower bounds

n π − π ratio to bound π − π ratio to bound

1 1.01e-3 0.9896487063 2.25e-2 0.9570949132
2 7.38e-9 0.9948470082 4.38e-5 0.9998316841
3 1.83e-19 0.9974691480 1.53e-10 0.9999999988
4 5.47e-41 0.9987456847 1.86e-21 1.0000000000
5 2.41e-84 0.9993755837 2.75e-43 1.0000000000
6 2.31e-171 0.9996884727 6.01e-87 1.0000000000
7 1.06e-345 0.9998444059 2.88e-174 1.0000000000
8 1.11e-694 0.9999222453 6.59e-349 1.0000000000

It can be seen that the bounds are very accurate (as expected
from the exact expressions for the errors in terms of theta
functions). The upper bound overestimates the error by a factor
of 1 + O(2−n).

Richard Brent The Borwein-Borwein algorithm

A fourth-order algorithm for π

The Borwein brothers did not stop at quadratic (second-order)
algorithms for π. In Chapter 5 of Pi and the AGM they gave
algorithms of orders 3, 4, 5 and 7. Here is a nice iteration of
order 4. It can be derived using a modular identity of order 4.

y0 :=
√

2− 1; a0 := 2y2
0 ;

yn+1 :=
1− (1− y4

n)1/4

1 + (1− y4
n)1/4

;

an+1 := an(1 + yn+1)4 − 22n+3yn+1(1 + yn+1 + y2
n+1).

Then πn := 1/an converges quartically to π, i.e. the number of
correct digits is multiplied by (approximately) 4 each iteration!
An error bound is

0 < π − πn < 4π2 4n+1 exp(−2π 4n).

Richard Brent A Borwein quartic algorithm for π

Convergence of the quartic algorithm
The table shows the error π − πn after n iterations of the
Borwein quartic algorithm, and the ratio

π − πn

4π2 4n+1 exp(−2π 4n)

of the error to the upper bound given on the previous slide.

n π − πn (π − πn)/bound
0 2.273790912e-1 0.7710517124
1 7.376250956e-9 0.9602112619
2 5.472109145e-41 0.9900528160
3 2.308580715e-171 0.9975132040
4 1.110954934e-694 0.9993783010
5 9.244416653e-2790 0.9998445753
6 6.913088685e-11172 0.9999611438
7 3.376546688e-44702 0.9999902860
8 3.002256862e-178825 0.9999975715

Richard Brent A Borwein quartic algorithm for π

Remark on efficiency

A higher-order algorithm is not necessarily more efficient than a
quadratically convergent algorithm. We have to take the work
per iteration into account. For a fair comparison, we can use
Ostrowski’s efficiency index, defined as

E :=
log p
W

,

where p > 1 is the order of convergence and W is the work per
iteration.
For example, three iterations of a quadratic algorithm can be
combined to give an order 8 algorithm with three times the work
per iteration. The efficiency index is the same in both cases, as
it should be.

Richard Brent Ostrowski efficiency

An observation

After 2n iterations of the Gauss-Legendre algorithm we have an
(accurate) error bound

0 < π − a2
2n+1/s2n < 4π2 4n+1 exp(−2π 4n).

This is the same as the (accurate) error bound

0 < π − πn < 4π2 4n+1 exp(−2π 4n);

for the Borwein quartic algorithm!
On closer inspection we find that the two algorithms
(Gauss-Legendre “doubled” and Borwein quartic) are
equivalent, in the sense that they give exactly the same
sequence of approximations to π. This observation seems to
be new – it is not stated in Pi and the AGM or in any of the
relevant references that I have looked at.

Richard Brent A subtle program optimisation

Numerical verification
Here k is the number of square roots, and “π − approximation”
is the error in the approximation given by the Gauss-Legendre
algorithm after k − 1 iterations, or by the Borweins’ quartic
algorithm after (k − 1)/2 iterations. The error is the same for
both algorithms (computed to 1000 decimal digits).

k π − approximation

1 2.2737909121669818966095465906980480562749752399816e-1
3 7.3762509563132989512968071098827321760295030264154e-9
5 5.4721091456899418327485331789641785565936917028248e-41
7 2.3085807149343902668213207343869568303303472423996e-171
9 1.1109549335576998257002904117322306941479378545140e-694

Richard Brent Verification

Verification continued

For example, the first line of the table follows from

a2
1/s0 = π0 = 3

2 +
√

2
≈ π − 0.227

and the second line follows from

a2
3/s2 = π1 =

(2−2 + 2−5/2 + 2−5/4 +
√

2−5/4 + 2−7/4)2

23/4 + 21/4 − 2−1/2 − 5
4

≈ π − 7.376...× 10−9.

Clearly this method of proof does not generalise. An inductive
proof is given in my arXiv paper (arXiv:1802.07558).

Richard Brent Verification

Some amazing series (and fast algorithms) for π

Let (x)n := x(x + 1) · · · (x + n − 1) denote the ascending
factorial. In Chapter 5 of Pi and the AGM, Jon and Peter
Borwein discuss Ramanujan-Sato series such as

1
π

= 23/2
∞∑

n=0

(1
4)n(1

2)n(3
4)n

(n!)3
(1103 + 26390n)

994n+2
.

This series is linearly convergent, but adds nearly eight decimal
digits per term, since 994 ≈ 108.
A more extreme example is the Chudnovsky series

1
π

= 12
∞∑

n=0

(−1)n (6n)! (13591409 + 545140134n)

(3n)! (n!)3 6403203n+3/2
,

which adds about 14 decimal digits per term.

Richard Brent Ramanujan-Sato series

Complexity of computing elementary functions
It turns out that all the elementary functions can be computed
to n-bit accuracy in the same time as π, up to a moderate
constant factor. In other words, they all have bit-complexity
O(M(n) log n), where M(n) = O(n log n log log n) is the
bit-complexity of n-bit multiplication. (The log log n here can be
improved.)
A key idea is to use the AGM (with complex arguments) to
compute the (principal value of) the complex log function, and
Newton’s method to compute inverse functions. We can
compute all the usual “elementary” functions using

exp(ix) = cos x + i sin x or = log(1 + ix) = arctan(x)

combined with Newton’s method and elementary identities.
There is no time to talk about this in detail today. See my arXiv
paper and Chapter 6 of Pi and the AGM for further details.

Richard Brent Elememtary functions

Conclusion

I hope that I have given you some idea of the mathematics
contained in the book Pi and the AGM. In the time available I
have only been able to cover a small fraction of the gems that
can be discovered there.
It is not an “easy read”, but it is a book that you can put under
your pillow, like Dirichlet is said to have done with his copy of
Gauss’s Disquisitiones Arithmeticae.
Although the research covered in Pi and the AGM is only a
small fraction of Jon’s legacy, it is the part that overlaps most
closely with my own research, which is why I decided to talk
about it today, on “π day”.

Richard Brent Concluding remarks

Jon and Peter Borwein, 2008

Richard Brent Jon and Peter

References
D. H. Bailey, The computation of π to 29,360,000 decimal digits
using Borweins’ quartically convergent algorithm, Math. Comp.
50 (1988), 283–296.
D. H. Bailey, Pi and the collapse of peer review,
http://mathscholar.org/
pi-and-the-collapse-of-peer-review, 20 July 2017.
D. H. Bailey and J. M. Borwein, Pi: The Next Generation,
Springer, 2016.
M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM,
AI Memo 239, MIT AI Lab, Feb. 1972. (Entry by E. Salamin.)
J. M. Borwein, The life of pi: from Archimedes to Eniac and
beyond, prepared for Berggren Festschrift, 19 June 2012,
https://www.carmamaths.org/jon/pi-2012.pdf

J. M. Borwein and P. B. Borwein, The arithmetic-geometric
mean and fast computation of elementary functions, SIAM
Review 26 (1984), 351–365.

Richard Brent References

http://mathscholar.org/pi-and-the-collapse-of-peer-review
http://mathscholar.org/pi-and-the-collapse-of-peer-review
https://www.carmamaths.org/jon/pi-2012.pdf

References cont.

J. M. Borwein and P. B. Borwein, Pi and the AGM,
Monographies et Études de la Société Mathématique du
Canada, John Wiley & Sons, Toronto, 1987.
J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan,
modular equations, and approximations to pi or how to compute
one billion digits of pi, Amer. Math. Monthly 96 (1989), 201-219.
J. M. Borwein and P. B. Borwein, A cubic counterpart of
Jacobi’s identity and the AGM, Trans. Amer. Math. Soc., 323
(1991), 691–701.
R. P. Brent, Multiple-precision zero-finding methods and the
complexity of elementary function evaluation, in Analytic
Computational Complexity (edited by J. F. Traub), Academic
Press, New York, 1975, 151–176.
R. P. Brent, Fast multiple-precision evaluation of elementary
functions, J. ACM 23 (1976), 242–251.

Richard Brent References

References cont.

R. P. Brent, The Borwein brother, pi and the AGM,
arXiv:1802.07558, 21 Feb. 2018.
R. P. Brent and P. Zimmermann, Modern Computer Arithmetic,
Cambridge University Press, 2010.
D. V. Chudnovsky and G. V. Chudnovsky, The computation of
classical constants, Proc. Nat. Acad. Sci. USA 88(21),
8178–8182.
A. M. Ostrowski, Solution of Equations and Systems of
Equations, Academic Press, New York, 1960.
D. Platt and T. Trudgian, Improved bounds on Brun’s constant,
arXiv:1803.01925, 5 March 2018.
E. Salamin, Computation of π using arithmetic-geometric
mean, Math. Comp. 30 (1976), 565–570.

Richard Brent References

