The First Occurrence of Certain Large Prime Gaps

By Richard P. Brent

Abstract. The first occurrence of a string of $2r - 1$ consecutive composite numbers between two primes (denoted by $f(r)$ and $f(r) + 2r$) is tabulated for $f(r)$ in the range $2.6 \times 10^{12} < f(r) < 4.444 \times 10^{12}$. This extends earlier computations in the range $f(r) < 2.6 \times 10^{12}$.

Let $p_1 = 2, p_2 = 3, \ldots$ be the sequence of primes. For integer $r \geq 1$, define

$$f(r) = \begin{cases} p_j & \text{if } j \geq 1 \text{ is minimal such that } p_{j+1} - p_j = 2r, \\ \infty & \text{if no such } j \text{ exists.} \end{cases}$$

See [1] and [3] for a discussion of the asymptotic behavior of $f(r)$, and for additional references. All $f(r) \leq 2.6 \times 10^{12}$ are tabulated in [1] and [2]. In Table 1 we give all eleven values of $f(r)$ in the range $2.6 \times 10^{12} < f(r) \leq 4.444 \times 10^{12}$.

The maximal gap has $r = 326$, i.e. $p_{j+1} - p_j \leq 652$ for all $p_j \leq 4.444 \times 10^{12}$, and $p_{j+1} - p_j = 652$ for $p_j = 2,614,941,710,599$. The minimal $r$ for which $f(r)$ is still unknown is $r = 268$, and the next is $r = 279$.

The computation of Table 1 was performed over the period April 1973 to September 1978, on an IBM 360/50 computer with 256K bytes of memory. The method used was the same as that described in [1], except that the sieve size had to be reduced to fit into the 208K bytes available. About 61 seconds were required to sieve each block of 2,661,120 numbers near $3 \times 10^{12}$.

<table>
<thead>
<tr>
<th>$r$</th>
<th>$f(r)$</th>
<th>$r$</th>
<th>$f(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>2707053887651</td>
<td>285</td>
<td>4442109925217</td>
</tr>
<tr>
<td>272</td>
<td>2652427555639</td>
<td>287</td>
<td>3108794067079</td>
</tr>
<tr>
<td>274</td>
<td>3380058341279</td>
<td>296</td>
<td>3410069454097</td>
</tr>
<tr>
<td>277</td>
<td>3621153039299</td>
<td>309</td>
<td>4165633395149</td>
</tr>
<tr>
<td>278</td>
<td>4338624362173</td>
<td>326*</td>
<td>2614941710599</td>
</tr>
<tr>
<td>280</td>
<td>4260199366373</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Received March 28, 1980.

1980 Mathematics Subject Classification. Primary 10–04, 10A20, 10A25, 65A05.

Key words and phrases. Distribution of primes, prime gap, maximal prime gap, successive composites, consecutive primes.

© 1980 American Mathematical Society

0025-5718/80/0000-0185/S01.50

1435
Department of Computer Science
Australian National University
Canberra, A.C.T. 2600, Australia