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Abstract

We describe some parallel algorithms for the solution of Toeplitz linear systems
and Toeplitz least squares problems. First we consider the parallel implementation
of the Bareiss algorithm (which is based on the classical Schur algorithm). The
alternative Levinson algorithm is less suited to parallel implementation because it
involves inner products.

The Bareiss algorithm computes the LU factorization of the Toeplitz matrix T
without pivoting, so can be unstable. For this reason, and also for the application to
least squares problems, it is natural to consider algorithms for the QR factorization
of T . The first O(n2) serial algorithm for this problem was given by Sweet, but
Sweet’s algorithm seems difficult to implement in parallel. Also, despite the fact that
it computes an orthogonal factorization of T , Sweet’s algorithm can be numerically
unstable.

We describe an algorithm of Bojanczyk, Brent and de Hoog for the QR factoriza-
tion problem, and show that it is suitable for parallel implementation. This algorithm
overcomes some (but not all) of the numerical difficulties of Sweet’s algorithm. We
briefly compare some other algorithms, such as the “lattice” algorithm of Cybenko
and the “generalized Schur” algorithm of Chun, Kailath and Lev-Ari.

1. Introduction

A Toeplitz matrix A = (ai,j) is one in which ai,j is a function of j − i. It
is convenient to write aj−i for ai,j and consider the m + 1 by n + 1 matrix A =
(aj−i)i=0,...,m;j=0,...,n. Toeplitz matrices often arise in digital signal processing, e.g. in
linear prediction problems [17, 43] as well as in the discretization of certain integral
equations and elsewhere in numerical analysis [13]. We are often interested in solving
one or more linear systems

Ax = b (1.1)

where A is square (m = n) and nonsingular, often symmetric positive definite; or in
solving linear least squares problems

min ‖Ax− b‖2 (1.2)
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(where generally A is rectangular with m > n). We shall assume throughout that A, b
etc are real and that A has rank n+1. We shall not consider block Toeplitz matrices,
although many of the algorithms mentioned here are applicable (with appropriate
modifications) to block Toeplitz problems.

Consider first the linear system (1.1). The “classical” Gaussian elimination
or Cholesky decomposition algorithms [28, 57] involve O(n3) arithmetic operations.
However, for over forty years “fast” algorithms involving only O(n2) operations have
been known [1, 3, 20, 21, 22, 31, 41, 45, 47, 56, 58, 59].

The Toeplitz structure of A implies that the matrix-vector product Ax reduces
to a convolution problem and can be computed via the fast Fourier transform in
O(n log n) arithmetic operations. This observation suggests that o(n2) algorithms
for (1.1) might exist, and indeed such algorithms were found about ten years ago
by Brent et al [10], Bitmead & Anderson [4], and Morf [44]. More such algorithms
have been found recently by de Hoog [29], Musicus [46], Kumar [36], and Ammar
& Gragg [2]. These algorithms all require O(n(log n)2) arithmetic operations and
are termed “superfast” by Ammar & Gragg [2], although we prefer the description
“asymptotically fast” as n may have to be very large before they are actually faster
than the O(n2) algorithms (see Section 4). It is conceivable that (asymptotically)
even faster algorithms exist.

In practice operation counts are not the only criterion. The speed of an implemen-
tation may depend on how readily the algorithm can be implemented on a pipelined
or parallel architecture, and this may depend on whether inner products need to be
computed or not. The overall cost depends on the difficulty of programming and
debugging, so simple algorithms are generally preferable to complex ones. Numerical
stability (or the lack of it) is an important consideration [13, 16, 18, 42].

Algorithms for solving (1.1) split into two main classes –

(A) those that compute A−1 or a factorization of A−1, and
(B) those that compute a factorization of A.

In class (A) we have for example the Levinson [41], Durbin [21] and Trench [54]
algorithms which, in the symmetric case, are closely related to the classical Szegö
recursions for polynomials orthogonal on the unit circle [2, 35, 53]. These algorithms
generally require inner products and are stable if A is positive definite [13].

In class (B) we have for example the algorithms of Bareiss [3], Brent, Kung &
Luk [11, 12], and Kung and Hu [38], which are related to the classical algorithm of
Schur [48] for the continued fraction representation of a holomorphic function in the
unit disk [2, 32, 35].

The fast algorithms of Bitmead & Anderson [4] and Morf [44] are based on the
concept of displacement rank [25, 26, 33, 34] and may be placed in class (A), while
those of Brent et al [10], de Hoog [29], Musicus [46], and Ammar & Gragg [2] are
related to continued fractions and generalized Schur algorithms, so may be placed in
class (B).

Consider now the full rank linear least squares problem (1.2). The solution of
(1.2) is

x = (AT A)−1AT b,
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but it is generally undesirable to compute x from this formula, for numerical reasons
[28] and because AT A is not Toeplitz (although it does have low displacement rank).
A better approach is to compute an “orthogonal factorization” of A, i.e. a factorization

A = QR (1.3)

where Q is an m + 1 by n + 1 matrix with orthonormal columns and R is an n + 1 by
n + 1 upper triangular matrix. Once (1.3) is known, it is easy to solve (1.2), using

Rx = QT b (1.4)

or, to avoid explicit computation of Q, the “semi-normal equations”

RT Rx = AT b (1.5)

As in the discussion of (1.1), there are two classes of algorithms – some algorithms
find the inverse factorization AR̄ = Q instead of A = QR. The algorithms which
compute R̄ are related to the “lattice” algorithm [17, 18, 19, 30, 43], while algorithms
which compute R include those of Sweet [52], Bojanczyk, Brent & Kung [6, 42] and
Chun, Kailath & Lev-Ari [14]. When considering rectangular matrices, “fast” means
algorithms requiring O(mn) operations, since the classical algorithms require Ω(mn2)
operations.

Clearly with exact arithmetic we have

R̄ = R−1,

but numerically there is a difference between algorithms which compute R̄ and those
which compute R. Cybenko [18] has analysed the classical lattice algorithm and he
suggests that its good numerical properties may carry over to his algorithm [19] for
the solution of (1.2). This is by no means certain, because of the use of non-Euclidean
inner products. On the other hand, Sweet’s algorithm can be unstable [6, 42], even
though it computes the orthogonal decomposition (1.3). The algorithms of Bojanczyk,
Brent & de Hoog [6] and Chun, Kailath & Lev-Ari [14] involve the downdating of a
Cholesky factorization, and this is known to be a poorly conditioned problem [8,
51]. It is an open problem whether there is a fast (O(mn)), unconditionally stable
algorithm for the computation of the QR factorization of a Toeplitz matrix. Such
algorithms do exist when the Toeplitz matrix has a special structure [5, 18].

Another approach [27, 50] to the solution of (1.2) is to solve the m + n + 2 by
m + n + 2 system (

0 AT

A −I

) (
x
r

)
=

(
0
b

)
(1.6)

to find both the solution vector x and the residual vector r = Ax − b. This can
be done in O(m(log m)2) operations, by generalizations of some of the algorithms
mentioned above, for the matrix in (1.6) has low displacement rank. This approach
has the advantage that iterative refinement [28, 57] may easily be applied to improve
the accuracy of the solution, if this is necessary. Its disadvantage is its obvious
inefficiency if m� n, unless the special structure is used to advantage [50].

3



In practice space requirements need to be considered. The problem (1.1) can be
defined with O(n) parameters, and its solution can be expressed with O(n) parame-
ters, but many algorithms require Ω(n2) words of intermediate storage. Clearly this is
necessary if the triangular factors of A or A−1 are stored explicitly, since these factors
are not Toeplitz. However, with care and a little extra computation, it is possible
to implement some of the algorithms mentioned above with only “linear”, i.e. O(n),
storage. Similar remarks apply to algorithms for the solution of (1.2).

In Section 2 we describe a version of the Bareiss algorithm for solving the linear
Toeplitz system (1.1), and show how it can be implemented efficiently in parallel, using
only linear storage. We briefly compare some other fast algorithms for solving (1.1).
In Section 3 we consider algorithms for solving (1.2), and in particular we describe the
algorithm of Bojanczyk, Brent & de Hoog and its parallel implementation. Finally,
in Section 4 we comment on some of the asymptotically fast algorithms for solving
(1.1).

When considering parallel algorithm we shall concentrate on algorithms suitable
for systolic arrays [37]. Because systolic arrays are such a restricted class of parallel
machines, they can be simulated efficiently on most other classes of parallel machines
(e.g. hypercubes or shared memory machines). Thus, our algorithms for systolic
arrays are easily converted into efficient algorithms for these other classes of parallel
machines (but not conversely).

2. A parallel Bareiss algorithm

Write (1.1) as
A(0)x = b(0).

At iteration k of the Bareiss algorithm (k = 1, . . . , n) we have two linear systems

A(±(k−1))x = b(±(k−1))

which are both equivalent to (1.1), and these are transformed into two further systems

A(±k)x = b(±k).

The transformations are chosen to eliminate diagonals, rather than rows or columns.
Because of the Toeplitz nature of A, each transformation requires only O(n) oper-
ations. After k iterations, the matrix A(+k) has k zero diagonals above the main
diagonal, and the matrix A(−k) has k zero diagonals below the main diagonal. For-
mally, if

Zk = (δi−j+k)i=0,...,n;j=0,...,n

is a shift matrix (premultiplication by Z+k shifts k rows up with zero fill; premultipli-
cation by Z−k shifts k rows down with zero fill), then the transformations are defined
by

A(−k) = A(−(k−1)) −m−kZ−kA(k−1),

b(−k) = b(−(k−1)) −m−kZ−kb(k−1),

A(+k) = A(k−1) −mkZkA(−k),

b(+k) = b(k−1) −mkZkb(−k)
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for k = 1, . . . , n, where
m−k = a

(−(k−1))
k,0 /a0

and
m+k = a

(k−1)
0,k /a(−k)

n,n .

To ensure that the multipliers m±k are well-defined, we must assume that all the
leading principal submatrices of A are nonsingular.

After n iterations we obtain an upper triangular system

A(−n)x = b(−n) (2.1)

which may easily be solved in O(n2) operations. In fact, we have computed a trian-
gular factorization of A, for it may be shown that A = LU , where a0L = (A(n))T2,
U = A(−n), and “T2” denotes matrix transpose about the main antidiagonal [52].
Thus, the Bareiss algorithm has essentially the same numerical properties as Gaus-
sian elimination without pivoting – it is numerically stable if A is positive definite
or diagonally dominant (as is often the case in applications), but it is unstable in
general. Provided real-time response is not required, it is possible to handle this
potential instability by computing the residual vector r = Ax̄ − b (where x̄ is the
computed, possibly inaccurate solution), then applying iterative refinement [28, 57]
or switching to a slower but more stable algorithm if ‖r‖ is unacceptably large.

Note that L and U are not Toeplitz. The Toeplitz structure gradually disappears
during the iterations of the Bareiss algorithm. In fact, all but the top k rows of A(−k)

are Toeplitz, and all but the bottom k rows of A(+k) are Toeplitz. This seems to
imply that Ω(n2) storage space is required. However, it was shown by Brent et al
[11, 12] that space O(n) is sufficient to solve (2.1), as we can generate the rows of
A(−n) as required for the backsubstitution process by running the Bareiss algorithm
backwards (using the stored multipliers m±k) –

A(k−1) = A(k) + mkZkA(−k)

and
A(−(k−1)) = A(−k) + m−kZ−kA(k−1)

for k = n, . . . , 1. For details and numerical examples, see Brent & Luk [12].
It is easy to convert the Bareiss algorithm into a “semisystolic” algorithm [40, 55]

in which the multipliers m±k are broadcast to all processing elements in a linear array
of n + 1 systolic cells. By a standard technique [40, 55] this semisystolic algorithm
can be converted into a true systolic algorithm in which no broadcasting is required,
only nearest neighbour communication. For details, we again refer to Brent & Luk
[12]. Here we merely note that one systolic processor needs to perform divisions (to
compute the multipliers); the others need only perform “multiply and accumulate”
operations of the form α← α + β · γ.

The systolic implementation of the Bareiss algorithm uses n + 1 systolic cells
and solves (1.1) in time O(n) and space O(n), i.e. constant space per systolic cell.
On other parallel architectures such as transputer arrays, hypercubes, etc with p
processors, we can simulate the systolic array in time O(n2/p), provided p = O(n).
Thus, the speedup is of order p and the efficiency is of order unity.
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The algorithm described above does not take advantage of any symmetry. How-
ever, a symmetric version of the algorithm exists, and saves some time and commu-
nications overhead if A is symmetric [12, 38].

The algorithms in class (A) generally require less arithmetic operations than the
Bareiss algorithm (by a moderate constant factor), but they involve a sequence of
O(n) inner products which need to be performed sequentially. On a parallel machine
with p = O(n) processors, each inner product takes time Ω(n/p + log p), so a parallel
implementation of these algorithms will take time Ω(n2/p + n log p). In particular, if
p ∼ n, the time is Ω(n log n), greater than the time O(n) for the Bareiss algorithm.

3. Fast Toeplitz QR Factorization

Sweet [52] gave the first fast (O(mn)) algorithm for the orthogonal factorization
(1.3) of a Toeplitz matrix. The classical Givens and Householder algorithms [28, 39,
50, 57] form Q as a product of elementary orthogonal matrices, so the computed
matrix Q is guaranteed to be very close to orthogonal. Unfortunately, this is not the
case for Sweet’s algorithm – it turns out that the computed Q can deviate significantly
from orthogonality because of the effect of rounding errors during the computation.
(Similar remarks apply to algorithms which compute R or R−1 and then find Q from
Q = AR−1 – this approach is unsatisfactory if R is poorly conditioned.) Luk & Qiao
[42] show (for the case m = n) that Sweet’s algorithm is unstable if the matrix formed
by deleting the first row and last column of A is poorly conditioned. We recommend
the numerical examples given by Luk & Qiao to anyone interested in understanding
the numerical behaviour of the Sweet, Bareiss and Trench algorithms.

Bojanczyk, Brent & de Hoog [6] (BBH for short) discovered a different Toeplitz
QR factorization algorithm while trying to understand the reason for numerical in-
stability in Sweet’s algorithm. The key idea is to obtain a recursion for the rows of R
(and, optionally, for the columns of Q) from the shift-invariance property of Toeplitz
matrices. We partition the Toeplitz matrix A in two ways –

A =
(

a0 yT

z A−1

)
=

(
A−1 ȳ
z̄T an−m

)
and partition R in two corresponding ways –

R =
(

r0,0 uT

0 Rb

)
=

(
Rt ū
0 rn,n

)
,

where u, ū, y, ȳ, z and z̄ are column vectors, A−1 is the principal (top left or bottom
right – they are identical) m by n submatrix of A, Rt is the top left principal n by n
submatrix of R, and Rb is the bottom right principal n by n submatrix of R. Using
the relation RT R = AT A we obtain

r0,0 = (a2
0 + zT z)1/2, (3.1)

r0,0u = a0y + AT
−1z, (3.2)

and
RT

b Rb = RT
t Rt + yyT − z̄z̄T − uuT . (3.3)
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Relations (3.1) and (3.2) define the first row of R. Relation (3.3) shows that Rb

differs from Rt by a matrix of rank 3. In fact, Rb can be obtained from Rt by a rank-1
update followed by two rank-1 downdates. This allows us to calculate the kth row of
Rb from the first k rows of Rt. However, the kth row of Rb defines the (k + 1)st row
of Rt. Thus, we have a recursion for calculating the rows of R, starting from the first.
It is possible to obtain a similar recursion for the columns of Q, although this is not
necessary if (1.5) is used to solve the least squares problem (1.2).

Despite their similar derivations, the BBH algorithm and Sweet’s algorithm are
different. The operation count for the BBH algorithm is slightly lower than for Sweet’s
algorithm [6]. While Sweet’s algorithm appears difficult to implement in parallel, the
BBH algorithm can be implemented on a systolic array and runs in time O(m) with
n+1 processors [7]. Also, because the rows of R can be generated in reverse order by
running the algorithm backwards (as for the Bareiss algorithm described in Section
2), the linear least squares problem (1.2) can be solved with space O(m). Finally, the
numerical properties of the BBH algorithm and Sweet’s algorithm differ – numerical
experiments suggest that the BBH algorithm is never much less accurate that Sweet’s
algorithm, and often much more accurate.

Updating Cholesky factors after a (positive) rank-1 correction can be done in
a numerically stable way using plane rotations (i.e. circular transformations) [24].
However, it is known that downdating of Cholesky factors is numerically dangerous [8,
24, 51]. This is to be expected because the (real) Cholesky factorization of RT R−vvT

only exists if RT R − vvT has no negative eigenvalues. Thus, we would anticipate
numerical difficulties if RT

b Rb is poorly conditioned. We conjecture that the BBH
algorithm is weakly stable in the sense that R is computed accurately provided that
RT R (= AT A) is well-conditioned. Similarly, we conjecture that the BBH algorithm
combined with the seminormal equations (1.5) gives a weakly stable algorithm for the
solution of the linear least squares problem (1.2) so long as min ‖Ax− b‖2 � ‖b‖2.

Recently Chun, Kailath & Lev-Ari [14] (CKL for short) presented a Toeplitz
QR factorization algorithm (or family of algorithms) based on the fact that R is a
Cholesky factor of the matrix AT A, and this matrix has low displacement rank. They
were able to interpret the BBH algorithm in this context, and show that it is closely
related to the CKL algorithm. The algorithms have similar operation counts – we
shall not be specific because the operation counts depend on details such as whether
“fast” Givens transformations [23] are used. Because the algorithms are so closely
related, it is not surprising that the CKL algorithm has a nice parallel implementation
similar to that of the BBH algorithm.

It might be supposed that the CKL algorithm would have better numerical
properties than the BBH algorithm because the CKL algorithm uses less hyperbolic
transformations (and correspondingly more circular transformations) than the BBH
algorithm. However, this is not necessarily the case. Equation (3.3) suggests that
the critical factor, at least for the BBH algorithm, is the condition of RT

b Rb, which
is dependent on the original Toeplitz matrix A but not on the number of hyperbolic
transformations performed by the algorithm. There is no need to invoke several
hyperbolic transformations as a cause of instability when a single one is sufficient. As
an analogy, we mention that the presence of just one large multiplier during Gaussian
elimination without pivoting is sufficient to cause instability.
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Cybenko [19] has recently suggested a quite different Toeplitz orthogonalization
algorithm. His algorithm finds R̄ and Q such that AR̄ = Q, and is based on a
generalization of the “lattice” algorithm [17, 30, 43], which solves the same prob-
lem when A is restricted to have a special structure. Because Cybenko’s algorithm
uses orthogonalization with respect to a non-Euclidean inner product, its numerical
properties are uncertain.

The comparison of Cybenko’s algorithm with the BBH and CKL algorithms
is analogous to the comparison of Levinson’s algorithm with the Bareiss algorithm.
Cybenko’s algorithm uses less arithmetic operations and has different numerical prop-
erties, but it is less well suited to parallel implementation because it requires the
evaluation of inner products.

4. Asymptotically fast algorithms

The asymptotically fast algorithms mentioned in Section 1 require O(n(log n)2)
operations to solve the Toeplitz linear system (1.1). The theory of these algorithms
is fascinating as it exhibits connections between many apparently unrelated topics –
Szegö polynomials, Schur’s algorithm, Padé approximants, the Euclidean algorithm,
etc. Space does not permit a discussion of these topics, so we refer to the literature
[2, 10, 32, 35].

Sexton et al [49] evaluated the constant hidden in the “O” notation for an asymp-
totically fast algorithm based on the concept of displacement rank [4], and found that
the constant was so large that the algorithm was impractical. More recent asymptoti-
cally fast algorithms, such as that of de Hoog [29], appear to have a smaller constant.
Ammar & Gragg [2] have made a thorough attempt to minimize the constant and
claim that their generalized Schur algorithm should be faster than Levinson’s algo-
rithm for n > 256 (approximately) when applied to a positive definite system. The
comparison here is with the classical Levinson algorithm rather than with the slightly
faster “split Levinson” algorithm.

All the asymptotically fast algorithms involve a “doubling step” in which the
problem of size n is split into two subproblems of size approximately n/2, the results
of which can be combined by some operations equivalent to convolution. Thus the
time T (n) required satisfies

T (n) = 2T (n/2) + C(n), (4.1)

where C(n) is the time required for a convolution of size n. Using the fast Fourier
transform (or other fast convolution algorithm) gives C(n) = O(n log n) and thus
(4.1) implies T (n) = O(n(log n)2). Of course, the constant factor here depends on
the constant for the convolution algorithm.

When we attempt to implement the asymptotically fast algorithms on a parallel
machine, (4.1) still holds because the two subproblems are dependent – the second can
not be performed until the first is complete. On a linear systolic array [37] we have
C(n) = O(n), so (4.1) implies that T (n) = O(n log n). Even on a more general parallel
machine such as a hypercube, with C(n) = O((log n)α) for some positive constant α,
we only get T (n) = O(n), which is disappointing as the same result can be obtained
much more easily by the parallel Bareiss algorithm (Section 2). On a hypercube with
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enough processors it is certainly possible to obtain T (n) = O((log n)2), but we only
know how to do this by ignoring the Toeplitz structure and using a fast but very
inefficient algorithm such as that of Csanky [15], which requires O(n3.5) processors.

5. Concluding remarks and open problems

Toeplitz systems are of interest to mathematicians because they display connec-
tions between various apparently unrelated areas of mathematics. They are of interest
to numerical analysts and engineers because they arise in many applications and need
to be solved quickly and accurately. A large literature exists, and many interesting
algorithms have been developed, but there is still room for progress. We mention a
few interesting problem areas in which progress on algorithms might be made –

1. The development of fast, provably stable algorithms for computing the QR de-
composition of a Toeplitz matrix A and solving the linear least squares problem
(1.2).

2. The discovery of “asymptotically fast” algorithms which are actually fast (com-
pared to O(n2) algorithms) for moderate values of n.

3. The development of good parallel algorithms which solve the Toeplitz system
(1.1) in time O((log n)2) on a hypercube, using only a moderate number of pro-
cessors (say O(n2)).

4. Generalization of 1-3 above to algorithms with provably good numerical proper-
ties for low displacement rank matrices.

5. The discovery of good algorithms for other problems involving Toeplitz and low
displacement rank matrices, e.g. eigenvalue and inverse eigenvalue problems.
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48. J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”,
J. Reine Angew. Math. 147 (1917), 205-232.

11



49. H. Sexton, M. Shensa and J. Speiser, “Remarks on a displacement-rank inversion
method for Toeplitz systems”, J. Linear Algebra Appl. 45 (1982), 127-130.

50. G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York,
1973.

51. G. W. Stewart, “The effects of rounding error on an algorithm for downdating a
Cholesky factorization”, J. Inst. Math. Appl. 23 (1979), 203-213.

52. D. R. Sweet, “Fast Toeplitz orthogonalization”, Numer. Math. 43 (1984), 1-21.
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