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Abstract

Training a multilayer neural net by back-propagation is slow and requires arbi-
trary choices regarding the number of hidden units and layers. This paper describes an
algorithm which is much faster than back-propagation and for which it is not necessary
to specify the number of hidden units in advance. The relationship with other fast
pattern recognition algorithms, such as algorithms based on k-d trees, is mentioned.
The algorithm has been implemented and tested on artificial problems such as the par-
ity problem and on real problems arising in speech recognition. Experimental results,
including training times and recognition accuracy, are given. Generally, the algorithm
achieves accuracy as good as or better than nets trained using back-propagation, and
the training process is much faster than back-propagation. Accuracy is comparable to
that for the “nearest neighbour” algorithm, which is slower and requires more storage
space.

1. Introduction

This paper is concerned with the problem of training a multi-layer feed-forward
neural net, also known as a multi-layer perceptron [1, 2]. “Back-propagation” [3] is
a popular training algorithm, but it is slow and requires arbitrary choices regarding
the number of hidden units and layers. This paper describes an algorithm which is
much faster than back-propagation and for which it is not necessary to specify the
number of hidden units in advance. The key idea is to construct a decision tree and
then simulate the decision tree with a neural net.

In Section 2 we show how a neural net may be derived from a decision tree.
Then, in Section 3, we suggest how to construct a suitable decision tree. An analysis
of the complexity of the construction is given in Section 4. Section 5 is concerned
with various refinements which improve the performance of the neural net (or decision
tree) and reduce the training time. Test results are described in Section 6, and some
conclusions are summarized in Section 7.

Decision tree classifiers have been used successfully in many pattern classification
applications [4-7]. The idea of constructing a decision tree and using this tree to obtain
a neural net is by no means new – see for example [8, 9]. The main contributions of
this paper are the complexity analysis of Section 4 and the practical refinements of
Section 5.
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A reader who is unfamiliar with decision trees and their relationship to neural
networks is advised to read one of the recent surveys [2, 4, 8] before proceeding with
Sections 2 and 3.

2. Construction of a Neural Net from a Decision Tree

Suppose the data D is a set of points x ∈ Rn, with each point x assigned a class
k(x) from a finite set C of possible classes. Without loss of generality we can assume
that C ⊆ {1, . . . , K}, where K is an upper bound on the number of classes. A set
S ⊆ D of points is used for training, and the aim is to be able to predict the class
k(x) of a point x which is not in the training set (i.e. x ∈ D\S). We assume that
k : D → C is a single-valued function.

We restrict our attention to three-layer nets with two hidden layers and one
output layer (the input layer is not counted). The nets have n input units and at
most K output units. Such a net can form arbitrarily complex decision regions [4].
In fact, it has recently been shown that one hidden layer would suffice [10-12], but it
is doubtful if this interesting theoretical result is of practical value (see Theorem B of
[13], and also [14]).

Using the training set S, we may construct a decision tree T which is a binary
tree whose nonterminal nodes correspond to hyperplane tests of the form

a0 +
n∑

j=1

ajxj > 0 ? (1)

and whose leaves correspond to classes. Such a tree correctly classifies all points in
the training set and effectively partitions Rn into a set of convex regions bounded by
hyperplanes, with each region V associated with one leaf of T . For an example see
Figure 1, where R2 has been split into five regions numbered 1, 2, . . . , 5 by four lines;
and Figure 2, which illustrates a corresponding decision tree with t = 4 nonterminal
nodes.†

Each region V contains training points in at most one class. (If the data is noisy
then it may be desirable to prune the tree by merging some regions V – see Section
5.1. For the time being we ignore this possibility.) Suppose that T has t nonterminal
nodes and t + 1 leaves. The value of t is not an input parameter, but is determined
by the algorithm which constructs the decision tree, discussed in detail in Section 3.

There is a natural correspondence between the decision tree T and a neural net
N which has t units in the first hidden layer, t+1 units in the second hidden layer, at
most K output units, and hard-limiting (step function) threshold functions. Units in
the first hidden layer correspond directly to nonterminal nodes of T . Each such unit
evaluates one test of the form (1) with weights a1, . . . , an and threshold −a0. Each
unit in the second hidden layer corresponds to a path from the root of T to a leaf,
and effectively computes a conjunction of its inputs or their negations (depending on
whether the path is from a node to a right or left child). Thus the weights in these
units are 0 or ±1. Each unit in the output layer corresponds to a single output class
and effectively computes a disjunction of its inputs. Thus the weights in these units
are 0 or 1.

The neural net N may be used as a good starting approximation for a more
conventional training algorithm such as back-propagation, or may be implemented

† Figures are at the end of the paper.
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directly in parallel hardware. On a serial computer it is more efficient to use the
decision tree T rather than the associated neural net N because the classification of
a point x only depends on the results of tests on a path from the root of T to one leaf
(the leaf corresponding to the region containing x).

3. Construction of a Decision Tree

Our approach is to find a hyperplane H which splits the training set S into two
sets S0 and S1 in an optimal way. Here “optimal” is determined by some criterion. We
then apply the same criterion recursively to S0 and S1, so far as necessary, to construct
a decision tree T which correctly classifies all points in S. There are many reasonable
criteria for the optimal H [5, 6, 15-17]. Our preferred criterion is to maximize

log

 ∏K
k=1 m0,k!m1,k!(∑K

k=1 m0,k

)
!
(∑K

k=1 m1,k

)
!

 , (2)

where mi,k is the number of training points of class k in Si, and logarithms may
be taken to any fixed positive base, e.g. 2. We sketch how (2) is derived using
considerations of entropy.

Let mk be the number of training points of class k, and m =
∑K

k=1 mk be the
total number of training points. The number of ways in which the m training points
could be labelled with the class labels 1, . . . , K, subject to the constraint that there
are m1 points labelled 1, m2 points labelled 2, . . ., mK points labelled K, is

w =
m!

m1!m2! · · ·mK !
,

and the number of bits required to specify such a labelling is log2 w. Define

E(T ) = log w = log m!−
K∑

k=1

log mk! . (3)

E(T ) may be thought of as the entropy associated with T (see (6) below). Any subtree
U of T is associated with a subset of the training set S, and E(U) may be defined in
the same manner as E(T ), with the appropriate modifications to the definitions of m
and mk.

If the hyperplane H splits T into left and right subtrees T0 and T1, we define

I(H) = E(T )− E(T0)− E(T1) . (4)

I(H) may be thought of as the information associated with H. Let the hyperplanes
associated with the t nonterminal nodes of T be H1, . . . , Ht, where H1 = H is asso-
ciated with the root of T . Since E(U) = 0 for any leaf U , we have

E(T ) =
t∑

τ=1

I(Hτ ) . (5)

E(T ) is determined by the training set, so in order to minimize the size of the tree
T we need to maximize the mean value of I(Hτ ). This is a difficult problem, but
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the “greedy” top-down approach is simply to maximize I(H1) and then recursively
apply the same criterion to the left and right subtrees of T . Since m and mk (for
k = 1, . . . ,K) are fixed, maximizing I(H) is equivalent to maximizing (2).

Note that, if we write pk = mk/m and use Stirling’s approximation in (3), we
obtain

E(T )
m

= −
K∑

k=1

pk log pk + O

(
log m

m

)
. (6)

as m → ∞ with K fixed. (See Theorem 14.4.1 of [18] for a more precise result.) In
view of (6), our criterion (2) is a close approximation to the criterion suggested in
Section 2.3 of [5] and also in [16] (which amounts to neglecting the “O” term in (6)).
In practice there is probably little to choose between these criteria.

Maximizing (2) is a discrete optimization problem. Since the objective function
(2) generally has to be evaluated many times, it is worth precomputing a table of
logarithms of integers 1, 2, . . . , m. If H is perturbed slightly, as happens during the
optimization, it is usually the case that S0 and S1 change by only one point, and then
(2) can be updated in constant time. Thus, there is no significant advantage to be
gained by replacing our criterion by a criterion such as the “Gini index of diversity”
[5] purely to reduce the time required to evaluate the criterion.

It may be advantageous to approximate the discrete problem (2) by a continuous
problem. For example, suppose that the hyperplane H = H(a0, a1, . . . , an) is defined
by

a0 +
n∑

j=1

ajxj = 0 (7)

where the normal (a1, . . . , an)T to the hyperplane has unit length (in the Euclidean
norm). Then the signed Euclidean distance d(x, H) of a point x from H is just

d(x, H) = a0 +
n∑

j=1

ajxj (8)

(where d ≥ 0 means x ∈ S1, d < 0 means x ∈ S0). Let φ(z) be a smooth, monotonic
increasing threshold function with range (0, 1), for example

φ(z) =
1 + tanh(λz)

2
=

1
1 + exp(−2λz)

, (9)

where λ is a positive parameter. Then we can approximate m1,j by

µ1,j =
∑

x∈S,k(x)=j

φ(d(x, H)) (10)

and m0,j by
µ0,j =

∑
x∈S,k(x)=j

(1− φ(d(x, H))) = mj − µ1,j . (11)

Since µi,j is not necessarily an integer, we need to replace log z! by log Γ(z +1) (or an
approximation to it) in (2).
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Note that the continuous approximation tends to the discrete problem as the
parameter λ →∞. In practice, optimization becomes more difficult as λ is increased,
because the derivatives of the objective function increase with λ.

Once (2) has been approximated by a continuous problem, continuous opti-
mization algorithms [19-21] are applicable. For example, following the custom with
back-propagation, we could use steepest ascent. However, steepest ascent generally
converges very slowly [21, 22]. Instead, we recommend a suitable version of the
conjugate gradient algorithm [23], which can be implemented with little more work
than steepest ascent and is usually much faster. (Similar remarks are relevant to
back-propagation – see [24-26].) For details, see Section 5.5. More sophisticated
optimization algorithms such as quasi-Newton algorithms [20, 27] could also be used,
and would probably be faster than conjugate gradients. Our implementation uses
conjugate gradients because of its simplicity and low storage requirements.

4. Analysis of Complexity

There are two reasons why our approach is much faster than back-propagation:
1. maximizing (2) is a problem with only n degrees of freedom (the parameters

defining the hyperplane H), whereas back-propagation attempts to find at
least nt parameters simultaneously, where t is the number of hidden units
in the first hidden layer of the neural net.

2. As we recursively construct the decision tree, the relevant part of the training
set becomes progressively smaller. Thus only part of the problem (deter-
mination of the hyperplane corresponding to the root) involves the whole
training set.

To give a rough estimate of the computational work involved, suppose (as above)
that there are m points in the training set, each training point has n real coordinates,
and there are K classes. Our algorithm generates a tree with t nonterminal nodes, so
a net with 2t+1 hidden units and at most K output units. Assume that K = O(t) so
our net has O(t) units. For comparison with back-propagation, assume that the back-
propagation net has the same number of units. Since back-propagation is applied to
a continuous problem, assume that a continuous approximation to (2) is used for our
objective function (although the discrete problem may be solved even faster, at the
possible expense of a larger tree – see examples in Section 6).

Evaluating our objective function (12) takes time O(mn), since m inner products
need to be computed. The partial derivatives of the objective function may also be
computed in time O(mn) via the chain rule. For purposes of comparison, assume
that O(n) evaluations of the objective function and its partial derivatives are required
to obtain a sufficiently good solution to an optimization problem with n degrees of
freedom. This should be true if the conjugate gradient optimization algorithm is used.

Assuming that the tree generated by our algorithm is roughly balanced (i.e.
|S0| ∼ |S1| etc), then for each of O(log t) levels of the tree the work required is
O(mn2), and the total work is O(mn2 log t). The assumption of a balanced tree is
reasonable since the objective function encourages the growth of a well-balanced tree.

By way of comparison, back-propagation involves one optimization problem with
Ω(nt) degrees of freedom, so requires work Ω(mn2t2) under the same assumptions.
We conclude that our training algorithm should be faster by a factor of order t2/ log t.

Although the trees generated by our algorithm in numerical tests (Section 6)
have invariably been well balanced, we can not prove that this is always true. If an
unbalanced tree does occur it has at most O(t) levels, and for each level the work
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required is O(mn2), so the total work is O(mn2t). Thus, even in this extreme case
our algorithm should be faster than back-propagation.

The storage requirements of our algorithm are no worse than those of the back-
propagation algorithm. If steepest ascent is used, both algorithms require space
O(mn) for the training points and O(nt) for the tree or net generated. If quasi-
Newton optimization algorithm are used, our algorithm has lower intermediate storage
requirements (O(n2) versus O(n2t2)).

If the neural net is to be simulated on a serial computer, processing one input
requires O(nt) operations, but this can be reduced to O(n log t) by using the equivalent
decision tree (assuming as above that the tree is well-balanced so its depth is O(log t)).
The nearest-neighbour algorithm (used as a benchmark in Section 6) takes O(mn)
operations when implemented in a straight-forward way. In [28] it is suggested that
this can be reduced to O(cn log m) (on average) using k-d trees [29], but this is only
relevant for small n as cn appears to increase exponentially with n.

The “conditional class entropy” approach of [17] is similar to ours at the top level,
i.e. construction of the first hyperplane H1. However, for subsequent hyperplanes
the approach of [17] differs from ours because it involves the estimation of O(K2t)
conditional probabilities to construct t hyperplanes. Thus, the approach of [17] is
probably slower than ours if t is large.

5. Refinements

5.1 Pruning

If the training set S is large and the data noisy, there may be regions where
training points with several values of k(x) are distributed in a manner determined
mainly by the noise. It is pointless to attempt to subdivide such regions as this will
only increase the size of the decision tree T without improving its accuracy on points
x ∈ D\S. Unfortunately, it is not always easy to recognise when this situation has
arisen. The approach recommended in [5] is to generate a tree T which may be too
large, then prune it by merging sets of neighbouring nodes if it appears that T is larger
than warranted by the data. The criteria for merging and for terminating the pruning
process depend on estimates of the misclassification error before and after pruning.
For details we refer to Chapter 3 of [5], and also [8, 30]. The results presented in
Section 6 do not make use of pruning.

5.2 Dimension Reduction

It is desirable for the dimension n of the data space to be kept as low as possible.
One reason is the “curse of dimensionality” [31]. Suppose the data space D is the
unit cube [0, 1]n. To sample D with m equally spaced training points on a grid with
spacing h requires m = (1/h)n. If h = 0.1, this may be feasible for n ≤ 3, but it is
certainly not feasible for n ≥ 10. Another reason is that for m ≤ n it is possible to
find a hyperplane H on which all the training points lie; by perturbing H slightly we
can usually separate the classes of the training points by hyperplanes which are quite
useless for classifying points outside the training set. Finally, the complexity analysis
(Section 4) shows that the training time can be expected to increase rapidly with n.

For these reasons, it is often desirable to reduce the dimension n of the data
space by a preliminary transformation of the data. One way to do this is to perform
a principal components analysis [32, 33]. Let A be the overall scatter matrix for
the training data, and suppose that A = QT ΛQ, where Λ is a diagonal matrix of
eigenvalues λ1 ≥ · · · ≥ λn and Q is an orthogonal matrix of eigenvectors. If λ2

ν+1 is
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negligible compared to λ2
1, then we may reduce the dimension to ν by making the linear

transformation y = QT x and discarding the coordinates yν+1, . . . , yn. (Numerically,
it may be preferable to use the singular value decomposition [34].)

The need for dimension reduction often arises when the data is a discretization
of continuous data. Examples are given in Section 6.

5.3 The Discrete Optimization Problem

Let F (a0, a1, . . . , an) be the discrete objective function (2) or some similar ob-
jective function. Here a0, a1, . . . , an are the coefficients defining a hyperplane H as in
(7). Finding the global maximum of F (a0, a1, . . . , an) is generally too difficult. We
recommend the following alternative –

1. Fix (a1, . . . , an), which specifies the normal to H, using one or more of the
heuristics C, R and/or U described below.

2. Compute the inner products V (x) =
∑n

j=1 ajxj occurring in (8) for each of
the m training points x. This takes time O(mn).

3. Sort the m values V (x). This takes time O(m log m).
4. Solve a 1-dimensional optimization problem to maximize

f(a0) = F (a0, a1, . . . , an)

with a1, . . . , an fixed and only a0 allowed to vary. Note that f(a0) is a
piecewise constant function with jumps at the m values −V (x). Using the
sorted list of V (x) values, we can find the interval on which f(a0) is maximal
in time O(m).

5. Repeat steps 1 – 4 as often as desired, and use the best result obtained.
Each iteration of steps 1 – 4 takes time O(mn) + O(m log m). In practice
the term O(m log m) is usually negligible.

We have used three different heuristics to choose the parameters (a1, . . . , an) in
step 1 above –

C. Try the K(K − 1)/2 possible normalised differences of centroids of two
distinct classes (selected from the K possible classes).

R. Try a random vector of unit length.
U. Try the n possible unit vectors (1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T .

Restriction to heuristic U, as in Quinlan’s ID3 system [6], would essentially reduce
our decision tree to a k-d tree [28, 29]. This would make hyperplane tests cheaper,
but would usually increase the size of the decision tree and decrease the generalization
ability [35].

For badly scaled problems it may pay to perform a linear transformation of the
data before attempting heuristics C and/or R. For example, we may compute the
within-class scatter matrix SW (see Chapter 4 of [32]), find its Cholesky factorization

SW = LLT ,

(where L is a lower triangular matrix, and we assume that SW is positive definite or
add a small multiple of the identity matrix to ensure this), and then transform data
points x → y by solving Ly = x. This transformation reduces the within-class scatter
matrix to the identity matrix.
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5.4 The Continuous Optimization Problem

From Section 3, the continuous objective function is

F (y) =
1∑

i=0

(
K∑

k=1

G(µi,k)−G

(
K∑

k=1

µi,k

))
, (12)

where G(z) = log Γ(z+1) and y = (y0, . . . , yn)T is a vector of dimension n+1 defining
a hyperplane H(a0, . . . , an) as in (7). To obtain the parameters a0, . . . , an above we
normalise (y1, . . . , yn), i.e.

aj = yj/(y2
1 + · · ·+ y2

n)1/2 (for j = 0, . . . , n) . (13)

It is desirable to keep (a1, . . . , an) normalised in order to maintain control over
the parameter λ occuring in the threshold function (9). From (8) – (11) we see that
multiplying (a0, . . . , an) by a positive constant c has the same effect as dividing λ
by c. Thus, the optimization procedure can in effect impose undesired changes in λ
unless we enforce a normalization condition such as

a2
1 + · · ·+ a2

n = 1 . (14)

The partial derivatives of F (y) with respect to yj may be evaluated in a straight-
forward manner by use of the chain rule. This is the same as for backpropaga-
tion, except that the objective function (12) differs from the sum of squares used in
backpropagation. We avoid using partial derivatives with respect to aj because the
expressions for them are more complicated.

When using optimization algorithms, normalization can be performed at the end
of each iteration. It may also be worthwhile to ensure by projection that any search
directions are orthogonal to (0, y1, . . . , yn)T . This maintains normality up to first
order.

If our aim is to approximate the discrete problem, then we may solve a sequence
of continuous problems with increasing values of λ. Note that 1/λ is analogous to
the “temperature” parameter used in simulated annealing. Extrapolation methods
may be used if we assume that the solutions to the continous problem are given by
a power series expansion in 1/λ. (This is similar to the use of penalty functions in
constrained optimization [21].) We generally use the heuristic methods described in
Section 5.3 to obtain a starting approximation for continuous optimization, and only
accept the final result of the continous optimization (or sequence of optimizations) if
the discrete objective function is improved.

5.5 The Conjugate Gradient Algorithm

In this subsection, subscripts denote iterations rather than components of vectors.
We assume that the objective function F (y) defined in Section 5.4 is to be maximized
(not minimized, so some signs change in the standard formulas). This section also
applies to backpropagation with the appropriate change in the objective function and
increase in the dimension of y.

The basic conjugate gradient iteration of Fletcher and Reeves [23, 36] has the
form

yi+1 = yi + λidi , (15)
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where λi is chosen to maximize f(λ) = F (yi +λdi), gi is the gradient of the objective
function F at yi,

di+1 = gi+1 + µidi , (16)

and

µi =
gT

i+1gi+1

gT
i gi

, (17)

except that µi = 0 for i = 0 and whenever the algorithm is restarted (see below).
Observe that the standard back-propagation iteration using steepest ascent has

the same form as (15) – (16), except that for back-propagation we would take λi and
µi to be constants defining the strength of the “reinforcement” and “momentum”
terms. Thus the work involved per iteration is almost the same for steepest ascent as
for conjugate gradients. There is convincing theoretical and empirical evidence that
conjugate gradients should converge faster (i.e. require less iterations) than steepest
ascent.

Maximizing f(λ) is a 1-dimensional optimization problem which may be solved
using an efficient algorithm such as localmin of [19]. As for the discrete problem
(Section 5.3), it is useful to precompute inner products of the search direction di and
the points x in the training set. This requires time O(mn) and once it is done each
evaluation of f(λ) requires time only O(m). Thus, there is little point in trying to
save time by skimping on accurate 1-dimensional optimization.

Rather than trying to maximize f(λ), we may try to find a zero of the derivative
f ′(λ) using an algorithm such as zero of [19]. This is preferable numerically (provided
a check is made that the algorithm has found a local maximum and not a minimum).
The work involved is about the same as for maximizing f(λ) directly, provided the
appropriate inner products are precomputed.

There are several different formulations of the conjugate gradient algorithm.
Some of these are equivalent on quadratic functions, but not on general functions
[21, 37]. Shanno [38] suggests some conjugate gradient methods which do not depend
on exact line searches. However, in this particular application the line search is
inexpensive if performed as described above. We use the iteration (15) – (17) because
of its simplicity and the fact that the denominator in (17) can not vanish unless gi = 0.

It is important to note that the conjugate gradient algorithm must be restarted
periodically in order to guarantee superlinear convergence [39]. The usual recommen-
dation [21] is to restart after dim(y) + 1 iterations. Thus, we set µi = 0 whenever i is
divisible by n + 2.

6. Test Results

Our algorithm has been tested on artificial problems such as the parity problem;
on real problems arising in speech recognition [40-42]; and on a variety of other
problems from various sources [43, 44]. The algorithm has been implemented in
Pascal on a VAX 11/750 (under VMS) and in Turbo Pascal on an IBM PC.

Comparisons of training algorithms often use the number of “epochs” (passes
through the training data) as a machine-independent measure of training time, but
this is only appropriate when the algorithms being compared involve similar amounts
of work per epoch. This is not the case when comparing our algorithm with back-
propagation. Thus, the training times given below are the (machine-dependent) CPU
times required for training on a VAX 11/750. The ratios of these times should be sim-
ilar on other serial computers with floating-point hardware, but could be significantly
different on parallel computers.
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When conjugate gradients or steepest ascent is used we solve a sequence of
problems with increasing λ (typically λ = 1, 2, 4, 8, 16) as suggested in Section 5.4.
As a benchmark we use the “nearest neighbour” algorithm, which simply classifies a
point x according to the class of the nearest point in the training set. Here “nearest”
depends on the norm used – unless otherwise specified it is the Euclidean norm.

The concept of linear separability [45, 46] is clear if there are only two classes;
in this case data is linearly separable if there is a hyperplane H such that all points
in class 1 lie on one side of H and all points in class 2 lie on the other side of H. If
the number of classes is K > 2, several definitions are possible. We say that data
is linearly separable if there exists a decision tree with at most K leaves (so at most
K − 1 hyperplanes) which classifies the data correctly.

6.1 The Parity Problem

The parity problem is to determine the parity (i.e. sum mod 2) of n-vectors
consisting of zeros and ones. Clearly n hyperplanes

∑n
i=1 xi = j − 1

2 (j = 1, . . . , n)
could be used to separate the data. Thus, a decision tree with n nonterminal nodes
and n + 1 leaves certainly exists. Our program was able to find such a tree for n ≤ 6.
For larger n the program could find a tree with rather more than n nonterminal nodes.

For example, with dimension n = 10 and m = 523 training points (approximately
50% of the 1024 possible points), the best result was a failure rate of 3.2% after
training for 4729 seconds using steepest ascent. The decision tree generated had
t = 19 nonterminal nodes, so the neural net derived from it had 2t + 1 = 39 hidden
units. The conjugate gradient algorithm was faster than steepest ascent but gave
slightly worse recognition accuracy. This was due to minor differences in the stopping
criteria for the optimization algorithms rather than any inherent property of conjugate
gradients versus steepest ascent. The discrete algorithm was significantly faster but
also significantly less accurate. In fact, its performance on points x which were not
in the training set was no better than random. The nearest neighbour algorithm is
hopeless (for the parity problem) since it usually gives the wrong answer for points x
which are not in the training set! Our results for n = 10 are summarized in Table 1.
Similar results for n = 12 and m = 1049 are given in Table 2. The error rates are
measured over a random sample of all possible x, including points in the training set.

Table 1: Results for the Parity Problem with dimension 10

Method Training time (sec) Error Rate (%) Nonterminal nodes
Discrete 277 26.5 78
Conjugate gradients 2057 6.4 30
Steepest ascent 4729 3.2 19
Nearest neighbour 48.1

Table 2: Results for the Parity Problem with dimension 12

Method Training time (sec) Error Rate (%) Nonterminal nodes
Discrete 1025 37.8 150
Conjugate gradients 5625 20.9 56
Steepest ascent 11649 12.2 31
Nearest neighbour 72.2

Comparison with back-propagation is difficult because we have not found any
published results for back-propagation with n ≥ 10 – most published results are for
n ≤ 4, which is trivial for our algorithm (training time less than 2 seconds). Also,
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most published results are for training with m = 2n, i.e. all points in the input
space are included in the training set. This makes the problem much easier as no
“generalization” is required.

6.2 Michalski’s Soybean Disease Data

This data was distributed by Schwartz [44] as a test for supervised learning
programs. It is apparently based on Michalski’s “well-known” soybean disease data
set. The data is believed to be linearly separable, although our program failed to
verify this.

The data has dimension n = 50 and each component is an integer in the range
[0, . . . , 10]. There are K = 17 classes. The training set S has m = 184 points (there
are two duplicates in the set of 186 points distributed) and the testing set has 102
points.

We applied our discrete algorithm as described in Section 5.3. For each non-
terminal node in the decision tree we performed 1-dimensional optimizations with
50 unit vectors (U), 20 random vectors (R) and K(K − 1)/2 = 136 differences of
centroids (C). For vectors (R) and (C) we applied a linear transformation to reduce
the within-class scatter matrix SW to the identity (see Section 5.3). The result was a
decision tree with 20 nonterminal nodes and 21 leaves. Using the method described
in Section 2, the tree was converted into a neural net with 50 trivial input units, 20
units in the first hidden layer, 21 units in the second hidden layer, and 17 output
units. (In fact, 13 of the output units were trivial, so it would be easy to convert the
tree into a net with only 28 nontrivial hidden units and 17 nontrivial output units.)
The total training time was 559 seconds.

When applied to the test data, there were 5 errors out of 102 trials (i.e. error rate
4.9%). This is better than the error rate of 7.8% obtained with the nearest-neighbour
algorithm (using both the Euclidean and L1 norms), although the difference is not
statistically significant.

6.3 The Canberra Speech Data

This data encodes the vowel nuclei from 10 hVd words (e.g. “had”, “hid”) each
spoken once by 15 male Australian speakers [41]. Each vowel nucleus is represented
by 84 real numbers (12 cepstral coefficients, derived by 12th order auto-regressive
analysis, for each of 7 time frames). Thus n = 84 and K = 10. Our program
discovered that the data is linearly separable (a surprise). We randomly selected 80%
of the data for training (so m = 120) and used the other 20% for testing.

Applying the discrete algorithm with n = 84, we obtained a tree with 9 non-
terminal nodes in 1011 seconds, and the error rate was 42%. Better results were
obtained after using the procedure described in Section 5.2 to reduce the dimension
of the data. With n = 15 the training time was reduced to 364 seconds and the error
rate was reduced to 16%. The number of nonterminal nodes was unchanged. Further
reduction of n reduced the training time (as expected from the complexity analysis)
but increased the number of nonterminal nodes and the error rate. For example, with
n = 4 the training time was 333 seconds, the number of nonterminal nodes was 24,
and the error rate was 42%.

Dimension reduction did not improve the performance of the nearest-neighbour
algorithm. For n = 84, 15 and 4 the nearest-neighbour algorithm gave error rates of
23%, 29% and 42% respectively.

The continuous approximation (Sections 5.4 – 5.5) generally gave similar results
to the discrete algorithm, but the training time was increased by a factor of 2 to 4 for
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conjugate gradients and 6 to 12 for steepest ascent. This was still much faster than
back-propagation, which required several hours to give error rates in the range 23%
to 30%.

6.4 The Deterding Speech Data

This data [40, 43] encodes 11 vowels each spoken 6 times by 15 British speakers
(both male and female). 8 speakers (4 male and 4 female) were used for training,
and a different 7 speakers (4 male and 3 female) were used for testing. The front
end processing is described in [42] (excerpt available in [43]). The result is 10 real
numbers per utterance. Thus n = 10, K = 11 and m = 528.

The problem is more difficult than that described in Section 6.3 because of the use
of different speakers (of both sexes) for training and testing. Our method performed
best with dimension reduction to n = 8. Using the conjugate gradient algorithm, it
generated a decision tree with 48 nonterminal nodes in 2511 seconds. Results using
single-layer and multi-layer perceptrons and the nearest neighbour algorithm (as well
as some other algorithms omitted here) are given by Robinson in [42, 43]. The training
times for the multi-layer perceptrons are not known, but Robinson states “I ran it on
several MicroVax II’s for many nights”, so our method is certainly much faster. The
results (from Robinson except for our method) are summarized in Table 3.

Table 3: Results for the Deterding Speech Data

Method Error Rate (%) Hidden Units
Single-layer perceptron 67
Multi-layer perceptron 49 88

55 22
56 11

Nearest neighbour 44
Our method (n = 10) 53 81
Our method (n = 8) 42 97

It is interesting that the nearest neighbour algorithm is the best of those consid-
ered by Robinson. Our method performs slightly better than multi-layer perceptrons
trained by back-propagation (using a comparable number of hidden units), and about
as well as the nearest neighbour algorithm.

7. Conclusion

We have shown how to “train” a multi-layer perceptron by first constructing
a decision tree and then deriving the perceptron from the decision tree. Generally
our algorithm achieves recognition accuracy as good as or better than multi-layer
perceptrons trained using back-propagation, and the training process is much faster
than back-propagation. This is true even if various “ad hoc” modifications [47-49]
are made to speed up the convergence of back-propagation. The recognition accuracy
achieved by our algorithm is comparable to that for the nearest neighbour algorithm,
which is slower and requires more storage space. We conclude that our algorithm
should be useful for practical pattern recognition. It also serves to demonstrate a close
connection between neural nets and some classification and data retrieval methods
used by statisticians [5, 32, 33, 50], computer scientists [6, 28, 29] and others [2, 51-
54]. We do not claim any relevance to the manner in which the human brain processes
information [1, 55, 56], but for many applications the performance of the neural net
is more important than its plausibility as a biological model.
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