
1

Parallel Algorithms
for

Linear Algebra

Richard P. Brent

Computer Sciences
Laboratory

Australian National
University

2
�

Outline

• Basic concepts
• Parallel architectures
• Practical design issues
• Programming styles
• Data movement and

data distribution
• Solution of dense

linear systems and
least squares problems

• Solution of large sparse
linear systems

• SVD and eigenvalue
problems

3
�

Speedup and Efficiency

TP = time to solve problem on
a parallel machine with
P processors

T1 = time to solve problem on
a single processor

S = T1/TP is the speedup

E = S/P is the efficiency

Usually S ≤ P and E ≤ 1.
For effective use of a parallel
machine we want S close to P
and E close to 1.

4
�

Number of Processors
and Problem Size

If we take a problem of fixed
size N (for example, solving a
system of N linear equations),
then the efficiency E → 0 as
the number of processors
P → ∞ (Amdahl’s Law).

However, for many classes of
problems we can keep the
efficiency E > 0.5 provided
N → ∞ as P → ∞
This is reasonable because
parallel machines are intended
to solve large problems.



5
�

Parallel Computer
Architectures

There are many different
computer architectures.

We briefly consider the most
important categories.

6
�

SIMD or MIMD

Single Instruction Stream,
Multiple Data Stream.
All processors execute the
same instructions on their
local data (unless turned off),
e.g. CM1, CM2, Maspar.

Multiple Instruction Stream,
Multiple Data Stream.
Different processors may
execute independent
instructions and need not be
synchronized.
e.g. AP 1000, CM5, Intel Delta.

7

Local or Shared Memory

Local memory is only
accessible to one processor.
Shared (or global) memory is
accessible to several (or all)
processors.

Usually local memory is
cheaper than shared memory
and access to it is faster.

Examples -

AP 1000 - local memory.
VP 2600 - shared memory.
VPP 500 - local and shared.

8
�

Connection Topology

The processors may be
physically connected in
several ways - ring, grid, torus,
3D grid or torus, tree,
hypercube, etc.

The connection topology may
be visible or invisible to the
programmer. If invisible then
the programmer can assume
that all processors are
connected, because routing
by hardware and/or system
software is automatic and
reasonably efficient.



9
�

Message Routing

On local memory machines,
messages may be routed in
several ways, such as -

Store and forward.
High latency (proportional to
number of hops x message
size). e.g. early hypercubes.

Wormhole routing (or similar).
Low latency (proportional to
number of hops + message
size). e.g. Fujitsu AP 1000.

10

Other Design Issues

Power of each processor
versus number of processors.
Should each processor have a
floating-point unit, a vector
unit, or several vector units ?
(Extremes - CM1 and CM5).

Should a processor be able to
emulate several virtual
processors (convenient for
portability and programming) ?

Should multiple users be
handled by time-sharing or
space-sharing (or both) ?

11

Programming Styles

Data-Parallel Programming -
Based on the SIMD model so
popular on SIMD machines
with languages such as C*.
May be emulated on MIMD
machines (e.g. CM5, AP 1000).

Single Program Multiple Data
(SPMD) - often used on MIMD
machines such as the
AP 1000. Sometimes one
program is special, e.g. host
program on AP 1000, or
controller of "worker farm".

12

Message Passing
Semantics

A program for a local-memory
MIMD machine has to explicitly
send and receive messages.
Typically the sender provides
the message and a destination
(a real or virtual processor ID,
sometimes also a task ID).

The send may be blocking
(control returns only after
message transmission
complete) or nonblocking.



13

Semantics of Receive

The receiver typically calls a
system routine to find out if a
message has arrived. There
may be restrictions on the
type or source of the message.

Again, there are blocking and
nonblocking versions.

Sometimes the message is
copied immediately into the
user’s area, sometimes this
requires another system call.

14

Efficiency of
Message Passing

For fast message passing,
context switching and
message copying should be
minimized. On the AP 1000,
the "synchronous" message
passing routines (xy_send etc)
avoid context switching.

"Active" messages contain a
destination address in their
header, so they can be
transferred directly into the
user address space, avoiding
copying overheads.

15

Avoiding
�

Explicit
Message Passing

On shared memory machines
the programmer does not have
to worry about the semantics
of message passing.
However, synchronization is
required to make sure that
data is available before it is
used.

Data-parallel languages
remove the need for explicit
message passing by the
programmer. The compiler
does whatever is necessary.

16

Broadcast and Combine

Broadcast of data from one
processor to others, and
combination of data on several
processors (using an
associative operator such as
addition or concatenation) are
very often required.

For example, we may wish to
sum several vectors or the
elements of one vector, or to
find the maximum element of a
vector, where the vectors are
distributed over several local
memories.



17

Efficiency of Broadcast
and Combine

With hardware support, the
broadcast and combine
operations can be about as
fast as simple processor to
processor message passing.

Without hardware support they
require a binary tree of
communications (implemented
by software) so are typically
more expensive by a factor

O(log P)

18

Aims
�

of Numerical
Computation on Parallel

Computers

Speed (else why bother with
parallel algorithms ?)

Numerical stability

Efficiency

Simplicity, generality etc

We illustrate with some
examples involving linear
algebra.

19

Typical
�

Numerical Linear
Algebra Problems

Solution of dense linear
systems by Gaussian elimin-
ation with partial pivoting
(LINPACK Benchmark).

Solution of least squares
problems by QR factorization.

Solution of large sparse linear
systems by direct or iterative
methods.

Eigenvalue and SVD problems.

20
�

The
�

LINPACK Benchmark

A popular benchmark for
floating-point performance.

Involves the solution of a
nonsingular system of n
equations in n unknowns by
Gaussian elimination with
partial pivoting.
(Pivoting is generally
necessary for numerical
stability).



21
�

Three
�

Cases

n = 100

The original benchmark
(too easy for our purposes).

n = 1000

Often used to compare vector
processors and parallel
computers.

n 1000

Often used to compare
massively parallel computers.

22
�

Assumptions
�

Assume double-precision
arithmetic (64-bit).

Interested in n ≥ 1000.

Assume coefficient matrix
available in processors.

Use C indexing conventions -

Indices 0, 1, ...
Row-major ordering

Results are for the AP 1000

23
�

Hardware

The Fujitsu AP 1000 (also
known as the CAP II)

	
is a

MIMD machine with up to 1024
independent 25 Mhz Sparc
processors (called cells).

Each cell has 16 MB RAM,
128 KB cache, and Weitek
floating-point unit capable of
5.56 Mflop for overlapped
multiply and add.

24
�

Communication

The topology of the AP 1000 is
a torus with wormhole routing.
The theoretical bandwidth
between any pair of cells is
25 MB/sec.

In practice, because of system
overheads, copying of buffers,
etc, about 6 MB/sec is
attainable by user programs.



25
�

Data Distribution

Ways of storing matrices
(data and results) on a local
memory MIMD machine -

• column wrapped
• row wrapped
• scattered = torus wrapped =

row and column wrapped
• blocked versions of these

We chose the scattered
representation because of
its good load-balancing and
communication bandwidth
properties.

26
�

Scattered Storage

On a 2 by 2 configuration

cell cell
cell cell

a 4 by 6 matrix would be
stored as follows, where the
color-coding indicates the cell
where an element is stored -

00 01 02 03 04 05
10 11 12 13 14 15
20 21 22 23 24 25
30 31 32 33 34 35

27
�

Scattered Storage -
Global ↔ Local Mapping

On a machine configuration
with ncelx . ncely cells (x, y),
0 ≤ x < ncelx, 0 ≤ y < ncely,
element ai,j is stored in cell

(j mod ncelx, i mod ncely)

with local indices1

i’ = i div ncely,
j’ = j div ncelx.

1


Sorry

�
about the confusing (i,j) and�

(y,x) conventions !

28
�

Blocked Storage

If the above definition of
scattered storage is applied to
a block matrix with b by b
blocks, then we get the
blocked panel-wrapped
(blocked torus-wrapped)
representation. Choosing
larger b reduces the number of
communication steps but
worsens the load balance.

We use b = 1 on the AP 1000,
but b > 1 has been used on
other local-memory machines
(e.g. Intel Delta).



29
�

Blocked Matrix
Operations

The rank-1 updates in
Gaussian elimination can be
grouped into blocks of ω�
so rank-ω� updates can be
performed using level 3 BLAS
(i.e. matrix-matrix operations).

The two possible forms of
blocking are independent - we
can have b > 1 or ω > 1 or
both. If both then b = ω is
convenient but not necessary.
In our implementation

b = 1, ω ≥ 1.

30
�

Gaussian Elimination

The idea of Gaussian
Elimination (G.E.) is to
transform a nonsingular
linear system

Ax = b
into an equivalent upper
triangular system

Ux = b’
which is (relatively) easy to
solve for x. It is also called
LU Factorization because

PA = LU,
where P is a permutation
matrix and L is lower
triangular.

31
�

A
�

Typical Step of G.E.

x x x x x x x
x x x x x x

x x x x x
x x x x x
x x x x x
x x x x x

by row operations ⇒

x x x x x x x
x x x x x x

x x x x x
0 x’ x’ x’ x’
0 x’ x’ x’ x’
0 x’ x’ x’ x’

32
�

Comments

x is a nonzero element,
x is the pivot element,
x is an element to be zeroed,
x is in the pivot row,
x → x’ is in the active region.

Row interchanges are
generally necessary to bring
the pivot element x into the
correct position.

The right-hand side vector has
been stored as the last column
of the (augmented) matrix.



33
�

Communication
Requirements for G.E.

Pivot selection requires
finding the largest element in
(part of) a column;
then, if necessary, two rows
are interchanged. We do this
explicitly to avoid later load-
balancing problems.

The rank-1 update requires
vertical broadcast (y_brd) of
the pivot row and horizontal
broadcast (x_brd) of the
multiplier column.

34
�

x_brd� and y_brd

The AP 1000 has hardware
support for x_brd and y_brd,
so these can be performed in
the same time as a single cell
to cell communication.
(A binary tree with O(log P)
communication overheads is
not required.)

y y y y y
↓
�

↓ ↓ ↓ ↓ y_brd

x →�
x →� x_brd
x →�

35
�

Memory Refs per Flop

The ratio

R = (loads and stores)/(flops)

is important because it is
impossible to keep the
floating-point unit busy unless
R < 1. Rank-1 updates

aij ← aij + ui x vj

have R ≥ 1. To reduce R and
improve performance, need
blocking. (ω� rank-1 updates →�

one rank-ω� update.)

36
�

G.E. with Blocking

Defer operations on the region
labelled D until ω� steps of G.E.
have been performed. Then
the rank-ω� update is simply

D ← D - BC
and can be performed by
level-3 BLAS without inter-cell
communication.



37
�

Choice of ω

Operations in the vertical strip
of width ω� and the horizontal
strip of depth ω� are done using
rank-1 updates (slow) so want
ω to be small. However, level-3
BLAS for rank-ω� updates are
slow unless ω� is large. The
optimum choice is usually

ω ∼ n1/2

However, ω� should be small
enough that the parts of B and
C stored in each cell are
smaller than the cache size.

38
�

LINPACK Benchmark
Results (n = 1000)

on the AP 1000

cells time speedup efficiency
(sec)

512
�

1.10 147 0.29
256 1.50 108 0.42
128 2.42 66.5 0.52
64 3.51 46.0 0.72
32 6.71 24.0 0.75
16 11.5 13.9 0.87
8 22.6 7.12 0.89
4 41.3 3.90 0.97
2 81.4 1.98 0.99
1 160 1.00 1.00

39
�

Comparison for n = 1000
using Dongarra’s Table 2

The AP 1000 is fastest for
≥ 128 processors and shows
little "tailoff" as their number ↑

40
�

LINPACK Benchmark
Results (n large)
on the AP 1000

cells rmax nmax nhalf rmax/
Gflop rpeak

512
�

2.251 25600 2500 0.79
256 1.162 18000 1600 0.82
128 0.566 12800 1100 0.80
64 0.291 10000 648 0.82
32 0.143 7000 520 0.80
16 0.073 5000 320 0.82

Note the high ratio rmax/rpeak
and the large ratio nmax/nhalf



41
�

Comparison of Options
on 64-cell AP 1000

The graph shows the effect of
turning off blocking, hardware
x_brd, y_brd, or assembler
BLAS 3 inner loops.

42
�

Conclusions from
LINPACK Benchmark

The AP 1000 is a well-balanced
machine for linear algebra. We
can attain at least 50% of peak
performance over a wide range
of problem sizes.

The communication speed is
high and startup costs are low
relative to the floating-point
speed2. Hardware support for
x- and y-broadcast is an
excellent feature.

2Floating-point is slow by current standards

43
�

QR Factorization

Gaussian elimination gives an
triangular factorization of the
matrix A. For some purposes
an orthogonal factorization
A = QR is preferable, although
it requires more arithmetic
operations.

The QR factorization is more
stable, does not usually
require pivoting, and can be
used to solve over-determined
linear systems by the method
of least squares.

44
�

Parallel Algorithms for
QR Factorization

The idea is to transform the
input matrix A to the upper
triangular matrix R using
simple orthogonal trans-
formations which may be
accumulated to give Q
(if it is needed).

The simple orthogonal
transformations are usually
plane rotations
(Givens transformations) or
elementary reflectors
(Householder transformations).



45
�

Plane Rotations

Represented by the matrix

cos θ -sin θ
sin θ cos θ

46
�

Elementary Reflectors

Represented by the matrix

I - 2uuT

where u is a unit vector.

47
�

Application
�

of Plane
Rotations

Plane rotations are numerically
stable, use local data, and can
be implemented on a systolic
array or SIMD machine.

They involve more
multiplications than additions,
unless the "Fast Givens"
variant is used. Thus, the
speed in Mflop may be
significantly less than for the
LINPACK Benchmark,
and there are more operations.

48
�

Application
�

of
Elementary Reflectors

Elementary reflectors are
suitable for vector processors
and MIMD machines. They may
be grouped into blocks via the

I - WY

representation (or variants) to
make use of level-3 BLAS.

The communication
requirements and speed in
Mflop are close to those of the
LINPACK Benchmark.



49
�

Large Sparse Linear
Systems

Large linear systems which
arise in practice are more
often sparse than dense. By
"sparse" we mean that most of
the coefficients are zero.

For example, large sparse
linear systems arise in the
solution of structural problems
by finite elements,
the solution of partial
differential equations (PDEs),
and optimization problems
(linear programming).

50
�

Direct Methods for Large
Sparse Systems

For structured sparse systems
(e.g. band, block tridiagonal)
the methods used for dense
linear systems can be adapted.

For example, the scattered
storage representation is good
for band matrices provided the
bandwidth w is at least sqrt(P)

51
�

Iterative Methods for
Large Sparse Systems

Direct methods are often
impractical for very large,
sparse linear systems, so
iterative methods are
necessary. Most iterative
methods involve -

Preconditioning - problem-
dependent, aims to increase
the speed of convergence.

Iteration by a recurrence
involving matrix x vector
multiplications.

52
�

Sparse Matrix x Vector
Multiplication

The key to fast parallel
solution of sparse linear
systems by iterative methods
is an efficient implementation
of matrix x vector
multiplication. This is not so
easy as it sounds !

Consider storing sparse rows
(or columns) on each cell,
or using scattered storage.
Communication of some sort
is unavoidable (e.g. for vector
sums or combine operations).



53
�

The Symmetric
Eigenvalue Problem

The eigenvalue problem for a
given symmetric matrix A is to
find an orthogonal matrix Q
and diagonal matrix Λ

�
such

that

QTAQ = Λ

The columns of Q are the
eigenvectors of A, and the
diagonal elements of Λ

�
are the

eigenvalues.

54
�

The
�

Singular Value
Decomposition (SVD)

The singular value
decomposition of a real
m by n matrix A is its
factorization into the product
of three matrices

A = U∑VT

where U and V have
orthonormal columns, and ∑

�
is

a nonnegative diagonal matrix.
The n diagonal elements of ∑
are called the singular values
of A. (We assume m ≥ n)

55
�

Connection Between the
SVD and Symmetric
Eigenvalue Problems

The eigenvalues of ATA are
just the squares of the
singular values of A.

However, it is not usually
recommended that singular
values be computed in this
way, because forming ATA
squares the condition number
of the problem and causes
numerical difficulties if this
condition number is large.

56
�

The
�

Golub-Kahan-
Reinsch-Chan Algorithm

for the SVD

On a serial computer the SVD
is usually computed by a QR
factorization, followed by
reduction of R to bidiagonal
form by a two-sided
orthogonalization process.
The singular values are then
found by an iterative method.

This process is complicated
and difficult to implement on a
parallel computer.



57
�

A
�

Parallel Algorithm
for the SVD

The 1-sided orthogonalization
algorithm of Hestenes is
simple and easy to implement
on parallel computers. The
idea is to generate an
orthogonal matrix V such that
AV has orthogonal columns.
The SVD is then easily found.

V is found by an iterative
process. Pairs of columns are
orthogonalized using plane
rotations, and V is built up as
the product of the rotations.

58
�

Parallel Sweeps

For convergence we must
orthogonalize each pair
(i, j) of columns, 1 ≤ i < j ≤ n.
This is a total of N = n(n-1)/2
pairs, called a sweep. Several3

sweeps are necessary.

A parallel algorithm is based
on the fact that n/2 pairs of
columns can be processed
simultaneously, using O(n)
processors which need only
be connected in a ring.

3
�
O(log n) ?

59
�

Parallel Algorithms for
the Eigenvalue Problem

The Jacobi algorithm for the
symmetric eigenvalue problem
is closely related to the
Hestenes SVD algorithm.4 The
significant differences are that
rotations are chosen to zero
off-diagonal elements of A,
and are applied on both sides.
22 n/2 off-diagonal elements
can be zeroed simultaneously,
using O(n2) processors.

4
�
Recall the relationship between the

SVD and eigenvalue problems.

60
�

The
�

Hestenes and Jacobi
Algorithms on
the AP 1000

The Jacobi and Hestenes
algorithms are ideal for
systolic arrays, but not for
machines like the AP 1000,
because they involve too
much communication.

For good performance on the
AP 1000 it is necessary to
group blocks of adjacent
columns (and rows) to reduce
communication requirements.



61
�

Other Parallel
Eigenvalue Algorithms

Dongarra & Sorensen suggest
a "divide and conquer"
algorithm which is attractive
on shared-memory computers.

They first reduce A to
tridiagonal form using a
parallel version of the usual
algorithm, then split the
tridiagonal matrix into two
pieces by making a rank-1
modification whose effect can
later be reversed. The splitting
can be repeated recursively.

62
�

An
�

Alternative - Sturm
Sequences

The rank-1 modification in the
Dongarra-Sorensen algorithm
causes numerical difficulties.
An alternative is to find all the
eigenvalues of the tridiagonal
matrix in parallel, using the
Sturm sequence method to
isolate each eigenvalue.

If required, the eigenvectors
can then be found in parallel
using inverse iteration. It is
not clear how to guarantee
orthogonality in all cases.

63
�

Conclusions

• Parallel computers provide
many new opportunities and
challenges.

• Good serial algorithms do
not always give good parallel
algorithms.

• The best parallel algorithm
for a problem may depend on
the machine architecture.

• Similar observations apply to
non-numerical problems.


