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Abstract

This paper provides an introduction to algorithms for fundamental linear al-
gebra problems on various parallel computer architectures, with the emphasis on
distributed-memory MIMD machines. To illustrate the basic concepts and key issues,
we consider the problem of parallel solution of a nonsingular linear system by Gaus-
sian elimination with partial pivoting. This problem has come to be regarded as a
benchmark for the performance of parallel machines. We consider its appropriateness
as a benchmark, its communication requirements, and schemes for data distribution to
facilitate communication and load balancing. In addition, we describe some parallel
algorithms for orthogonal (QR) factorization and the singular value decomposition
(SVD).

1. Introduction – Gaussian elimination as a benchmark

Conventional benchmarks are often inappropriate for parallel machines. A good
benchmark needs to be a well-defined problem with a verifiable solution, as well as
being representative of the problems which are of interest to users of the machine.
The problem should be scalable because the power of the machine may be wasted on
problems which are too small.

For these reasons, the solution of a system of n nonsingular linear equations in n
unknowns, by the method of Gaussian elimination with partial pivoting, has become
a popular benchmark [15]. For conventional serial machines we can use n = 100, but
for more powerful machines n can be increased to 1000 or more.

In Section 2 we introduce some basic concepts such as speedup and efficiency of
parallel algorithms, and virtual processors. Various parallel computer architectures
are outlined in Section 3.

On parallel machines with distributed memory, questions of data distribution
and data movement are very important. In deciding how to partition data over the
processors of a distributed-memory machine, attention must be paid both to the data
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distribution patterns implicit in the algorithm and the need to balance the load on
the different processors. In Section 4 we consider the data movement required for
Gaussian elimination, and how this maps to the movement of data between proces-
sors. This allows us to reach some conclusions about the appropriateness of different
machine architectures for linear algebra computations.

To illustrate the key issues, Section 5 considers in more detail the problem of
parallel solution of a nonsingular linear system by Gaussian elimination with partial
pivoting on a distributed-memory MIMD machine.

Because of the difficulties and communication overheads associated with pivoting,
it is tempting to try to avoid pivoting, but omission of pivoting in Gaussian elimination
leads to numerical instability. One solution is to implement a parallel version of
the orthogonal (QR) decomposition instead of the triangular (LU) decomposition
obtained by Gaussian elimination. This permits a stable solution without pivoting,
but at the expense of an increase in the number of floating-point operations. The QR
decomposition has many other useful applications, e.g. to the solution of linear least
squares problems or as a preliminary step in the singular-value decomposition. Some
ways of implementing the QR decomposition in parallel are mentioned in Section 5.3.

Many problems in numerical linear algebra are easy to solve if we can find the
singular value decomposition (SVD) of a rectangular matrix, or the eigenvalues and
eigenvectors of a symmetric (or Hermitian) matrix. In Section 6 we describe some
good parallel algorithms for these problems. Often the parallel algorithms are not
just a straightforward modification of the best serial algorithms.

There has been an explosive growth of interest in parallel algorithms (includ-
ing those for linear algebra problems) in recent years, so we can not attempt to be
comprehensive. For more detailed discussions and additional references, the reader
is referred to surveys such as those by Gallivan et al [23], Dongarra et al [16], and
Heller [36].

2. Basic concepts

We assume that a parallel machine with P processors is available. Thus P mea-
sures the degree of parallelism; P = 1 is just the familiar serial case. When considering
the solution of a particular problem, we let TP denote the time required to solve the
problem using (at most) P processors. The speedup SP is defined by

SP = T1/TP ,

and the efficiency EP = SP /P .

When converting a serial algorithm into a parallel algorithm, our aim is usually
to attain constant efficiency, i.e.

EP ≥ c

for some positive constant c independent of P . This may be written as

EP = Ω(1).
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Equivalently, we want to attain linear speedup, i.e.

SP ≥ cP,

which may be written as
SP = Ω(P ).

2.1 Amdahl’s Law

Suppose a positive fraction f of a computation is “essentially serial”, i.e. not
amenable to any speedup on a parallel machine. Then we would expect

TP = fT1 + (1− f)T1/P

so the overall speedup

SP =
1

f + (1− f)/P
≤ 1

f
, (2.1)

i.e. the speedup is bounded, not linear. The inequality (2.1) is called Amdahl’s Law
[1] and has been used as an argument against parallel computation. However, what
it shows is that the speedup is bounded as we increase the number of processors for
a fixed problem. In practice, it is more likely that we want to solve larger problems
as the number of processors increases, because the desire to solve larger problems is
a primary motivation for building larger parallel machines.

Let N be a measure of the problem size. For many problems it is reasonable to
assume that

f ≤ K/N (2.2)

for some constant K. For example, in problems involving N by N matrices, we may
have Ω(N3) arithmetic operations and O(N2) serial input/output.

Suppose also that N increases at least linearly with P , with the same constant
as in (2.2), i.e.

N ≥ KP. (2.3)

(2.2) and (2.3) imply that fP ≤ 1, so from (2.1) we have

SP =
P

fP + (1− f)
≥ P

2− f
≥ P

2
.

Thus we get linear speedup, with efficiency EP ≥ 1/2.

For further discussion of Amdahl’s law and the scaling of problem size, see [33].

2.2 Virtual processors

In practice any parallel machine has a fixed maximum number (say P ) of proces-
sors imposed by hardware constraints. When analysing parallel algorithms it is often
convenient to ignore this fact and assume that we have as many (say p) processors as
desired. We may think of these p processors as virtual processors or processes. Each
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real processor can simulate dp/P e virtual processors (provided the real processor has
enough memory). Thus, ignoring overheads associated with the simulation, we have

SP ≥ Sp/dp/P e. (2.4)

If our analysis for p processors gives us a lower bound on Sp, then (2.4) can be
used to obtain a lower bound on SP . In practice this may be an oversimplification,
because the hardware/software system may or may not provide good support for
virtual processors.

3. Parallel architectures
Many varieties of parallel computer architecture have been proposed in recent

years. They include –
· Pipelined vector processors such as the Cray 1, Fujitsu VP 100, or NEC SX/2,

in which there is a single instruction stream and the parallelism is more or less
hidden from the programmer. (More recent descendants such as the Cray 2S,
Cray Y-MP/8, and Fujitsu VP 2000 series incorporate parallel vector processors.)

· Single-instruction multiple-data (SIMD [19]) machines such as the Illiac IV, ICL
DAP, or MasPar MP-1, in which a number of simple processing elements (PEs
or cells) execute the same instruction on local data and communicate with their
nearest neighbours on a square grid or torus. There is usually a general-purpose
controller which can broadcast instructions and data to the cells.

· Multiple-instruction multiple-data (MIMD) machines such as those constructed
from transputers, the Carnegie-Mellon CM*, the Fujitsu AP 1000, and hypercube
machines such as the Caltech “Cosmic Cube”, Intel iPSC, and nCUBE2. In
the hypercube machines 2k processors are connected like the vertices of a k-
dimensional cube, i.e. the processors are identified by k-bit binary numbers, and
are connected to the processors whose numbers differ by exactly one bit from
their own.

· Massively parallel SIMD machines such as the CM-200 Connection Machine
(which may also be regarded as a hypercube machine).

· Shared-memory multiprocessors such as the Alliant FX/80, Cedar, Encore Mul-
timax, and Sequent Symmetry.

· Systolic arrays [41], which are 1 or 2-dimensional arrays of simple processors
(cells) connected to their nearest neighbours. The cells on the edge of the array
are usually connected to a general-purpose machine which acts as a controller.
Examples are the Warp and iWarp machines [2, 6] and several machines described
in [53]. Variations on the idea of systolic arrays are wavefront arrays [45] and
instruction systolic arrays [58].

The categories listed above are not mutually exclusive. For example, there is an
overlap between vector processors and shared-memory multiprocessors. Also, the dis-
tinction between SIMD and MIMD machines is orthogonal to the distinction between
hypercube, grid and torus topologies.

In view of the diversity of parallel computer architectures, it is difficult to describe
practical parallel algorithms in a machine-independent manner. In some cases an
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algorithm intended for one class of parallel machine can easily be converted for another
(more general) class. For example, an algorithm designed for a systolic array can easily
be mapped onto a hypercube, but not conversely (in general). An algorithm designed
for a distributed-memory machine can easily be implemented on a shared memory
machine, but the converse may not be true. As a rough approximation, it is easier
to implement algorithms on the more general machines, but the more specialised
machines may be more efficient (or cost-effective) for certain classes of problems. For
example, systolic arrays are sufficient and cost-effective for many problems arising in
digital signal processing [7, 31, 41, 44, 45, 53].

In the following sections we describe algorithms for distributed-memory message-
passing machines or systolic arrays – the reader should be able to translate to other
appropriate architectures.

4. Data movement and data distribution
Before considering how to map data (e.g. vectors and matrices) onto distributed-

memory machines, it is worth considering what forms of data movement are common
in linear algebra algorithms. For the sake of example we focus our attention on
Gaussian elimination with partial pivoting, but most other linear algebra algorithms
have similar data movement requirements. To perform Gaussian elimination we need –
· Row/column broadcast. For example, the pivot row needs to be sent to processors

responsible for other rows, so that they can be modified by the addition of a
multiple of the pivot row. The column which defines the multipliers also needs
to be broadcast.

· Row/column send/receive. For example, if pivoting is implemented by explicitly
interchanging rows, then at each pivoting step two rows have to be interchanged.
(This could be done by broadcasting both rows, but it might be less efficient than
explicitly sending the rows to the appropriate destinations.)

· Row/column scan. Here we want to apply an associative operator θ to data in
one (or more) rows or columns. For example, when selecting the pivot row it is
necessary to find the index of the element of maximum absolute value in (part
of) a column. This may be computed via an associative operator θ defined on
pairs:

(a, i) θ (b, j) =
{

(a, i), if |a| ≥ |b|;
(b, j), otherwise. (4.1)

Other useful associative operators are addition (of scalars or vectors) and con-
catenation (of vectors).

4.1 Data distribution

On a distributed-memory machine where each processor has a local memory
which is accessible to other processors only by explicit message passing, it is customary
to partition data such as matrices and vectors across the local memories of several
processors. This is essential for problems which are too large to fit in the memory
of one processor, and in any case it is usually desirable for load-balancing reasons.
(The exception is for very small problems which may as well be solved in a single
processor.) Since vectors are a special case of matrices, we consider the partitioning
of an m by n matrix A.
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It is desirable for data to be distributed in a “natural” manner, so that the
operations of row/column broadcast/send/receive/scan described above can be im-
plemented efficiently. This is possible if a square grid is a subgraph of the connection
graph of the parallel machine. For example, it is true for machines whose connection
topology is an s by s torus or a hypercube of even dimension. (On machines for which
a rectangular grid of moderate aspect ratio can be embedded, say an s by ks grid for
some small positive integer k, we can use a square virtual ks by ks grid by having
each processor simulate k virtual processors.)

The simplest mapping of data to processors is the column-wrapped (or row-
wrapped) representation. Here column (or row) i of a matrix is stored in the memory
associated with processor i mod P , assuming that the P processors are numbered
0, 1, . . . , P − 1. (A Fortran programmer might prefer i − 1 mod P , but we find that
C array conventions are more convenient.)

Although simple, and widely used in parallel implementations of Gaussian elim-
ination (e.g. [24, 25, 46, 52]), the column-wrapped (or row-wrapped) representation
has some disadvantages –

· Lack of symmetry – rows are treated differently from columns. It is instructive
to consider the data communication involved in transposing a matrix.

· Poor load-balancing for moderate-sized problems – if n < P some processors
store no columns, so presumably perform no useful work. On the other hand,
if n increases from P to P + 1 then the load on processor 0 doubles. Thus, the
performance curve as a function of n (the number of columns in the matrix) will
be “jagged” – there will be jumps at each multiple of P .

· Poor communication bandwidth for column broadcast – since each column is
stored in the memory associated with only one processor, the speed of column
broadcast is constrained by the communication bandwidth of a single processor
(compare the blocked/scattered storage representations below).

Another conceptually simple mapping is the blocked representation. Assume that
the processors form an s by s grid (P = s2). The matrix A is padded with zero rows
and columns if necessary, so that m and n can be assumed to be multiples of s.
A is partitioned into an s by s matrix of blocks. Each block, of dimension m/s
by n/s, is assigned to one processor in the natural way. This avoids the lack of
symmetry inherent in the row/column-wrapped representation. It also improves the
communication bandwidth for column broadcast, because each column is shared by
s = P 1/2 processors. However, it suffers from a load-balancing problem –

· Poor load balancing for triangular and band matrices – if A is upper triangular
then about half the processors (those storing the strict lower triangle of blocks)
are only storing zeros and can probably not do any useful computation. Similarly
(but even worse) if A is a band matrix with bandwidth small relative to m and n.

Harder to visualize, but often better than the row/column-wrapped or blocked
representations, is the scattered representation [21] (also called dot mode in image-
processing applications [39]). Assume as above that the processors form an s by
s grid, and let the processors be numbered (0, 0), (0, 1), . . . , (s − 1, s − 1). Then the
matrix element ai,j is stored in processor (i mod s, j mod s). Now the matrices stored
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locally on each processor have the same shape (e.g. triangular, band, . . .) as the global
matrix A, so the computational load on each processor is approximately equal.

It is sometimes useful to regard a blocked representation of a matrix as a scattered
representation of the same matrix with its rows and columns permuted. Formally, if
s|k, define a k by k permutation matrix πk whose (i, j)-th element is 1 iff

j =
{

i.s mod k − 1, if i < k − 1;
k − 1, if i = k − 1 (4.2)

(assuming C conventions – indices run from 0 to k− 1). If P = s2, s|m, s|n, then the
scattered representation of the m by n matrix A is the same as the block representation
of πmAπ−1

n . Similarly, if B is n by p, s|p, then the scattered representation of B is
the same as the block representation of πnBπ−1

p , and the scattered representation
of AB is the same as the block representation of πmABπ−1

p = (πmAπ−1
n )(πnBπ−1

p ).
This shows formally that a matrix multiplication algorithm which works for matrices
stored using the blocked representation should also work for matrices stored using the
scattered representation, and vice versa.

The blocked and scattered representations do not actually require a square pro-
cessor array – rectangular would suffice. The reason why we ask for the processor
array to be square is that this makes matrix multiplication and matrix transposition
much simpler than in the general case.

4.2 Implications for architectures

First consider distributed memory machines. In order to have a natural mapping
of global matrices to a scattered storage representation, the inter-processor connec-
tion graph should have a square grid as a subgraph. A square torus is safisfactory,
though slightly more general than necessary. A hypercube of even dimension is also
satisfactory, but considerably more general than necessary.

A hypercube does have some advantages over a simple square s by s grid. Con-
sider communication along one row (or column) of the grid. With a simple grid the
maximum distance between processors in one row is s − 1, so time required to send
or broadcast a short message is of order s in the worst (and average) case. With a
hypercube this is reduced to order log s.

In practice, for small and moderate values of s, the reduction from order s to order
log s may not be so important as the overhead incurred at each intermediate node
in the path from source to destination. For example, early hypercube machines used
store and forward, which imposed a considerable processing load on the intermediate
nodes. Consider sending a message of length n. At each intermediate node the delay
is of order n, so the overall delay is of order n log s.

Some more recent hypercube and torus machines (e.g. the Fujitsu AP 1000) have
used wormhole routing [14] rather than store and forward. With wormhole routing
the overall delay is of order n + log s (for a hypercube) or n + s (for a grid). Also,
the wormhole routing protocol can be implemented in hardware so as not to impose
a load on the processors at intermediate nodes.
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For shared memory machines the problems are different. Clearly the memory
must have sufficiently high overall bandwidth, but this is not sufficient. The problem
of hotspots, i.e. memory locations accessed intensively by several processors, needs
to be overcome. For example, in Gaussian elimination the memory locations where
the pivot row is stored will be hotspots. On a distributed memory machine the
programmer (or compiler) has to solve this problem by explicitly broadcasting the
pivot row, but on a shared memory machine the hardware needs to be able to provide
for simultaneous read-only access to the pivot row by several processors.

5. The solution of linear systems

Suppose we want to solve a nonsingular n by n linear system

Ax = b (5.1)

on a parallel machine for which a 2-dimensional mesh is a natural interconnection
pattern. It is easy to implement Gaussian elimination without pivoting, because
multipliers can be propagated along rows of the augmented matrix [A|b], and it is
not necessary for one row operation to be completed before the next row operation
starts. Unfortunately, as is well-known [32, 60, 63], Gaussian elimination without
pivoting is numerically unstable unless A has some special property such as diagonal
dominance or positive definiteness. Thus we consider the implementation of Gaussian
elimination with partial pivoting on a parallel machine.

5.1 Gaussian elimination with partial pivoting

For the sake of definiteness, we assume that Gaussian elimination is to be per-
formed on a distributed-memory machine with an s by s grid, and that the augmented
matrix [A|b] is stored in the scattered representation. The reader should be careful
to distinguish between a row (or column) of processors and a row (or column) of the
matrix. Generally, each row of processors stores several rows of the matrix.

It is known [32, 60, 63] that Gaussian elimination is equivalent to triangular
factorization. More precisely, Gaussian elimination with partial pivoting produces an
upper triangular matrix U and a lower triangular matrix L (with unit diagonal) such
that

PA = LU (5.2)

where P is a permutation matrix (not the number of processors here !). In the usual
implementation A is overwritten by L and U (the diagonal of L need not be stored).
If the same procedure is applied to the augmented matrix Ā = [A|b], we obtain

PĀ = LŪ (5.3)

where Ū = [U |b̄] and (5.1) has been transformed into the upper triangular system

Ux = b̄ (5.4)

In the following we shall only consider the transformation of A to U , as the transfor-
mation of b to b̄ is similar.
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If A has n rows, the following steps have to be repeated n − 1 times, where the
k-th iteration completes computation of the k-th column of U –

1. Find the index of the next pivot row by finding an element of maximal absolute
value in the current (k-th) column, considering only elements on and below the
diagonal. With the scattered representation this involves s processors, which
each have to find a local maximum and then apply the associative operator (4.1).

2. Broadcast the pivot row vertically.
3. Exchange the pivot row with the current k-th row, and keep a record of the row

permutation. Generally the exchange requires communication between two rows
of s processors. Since the pivot row has been broadcast at step 3, only the current
k-th row needs to be sent at this step. (Alternatively, the exchanges could be
kept implicit, but this would lead to load-balancing problems and difficulties in
implementing block updates, so explicit exchanges are usually preferable).

4. Compute the “multipliers” (elements of L) from the k-th column and broadcast
horizontally.

5. Perform Gaussian elimination (using the portion of the pivot row and the other
rows held in each processor). If done in the obvious way, this involves saxpy
operations (a saxpy is the addition of a scalar multiple of one vector to another
vector), but the computation can also be formulated as a rank-1 update.

We can make an estimate of the parallel time TP required to perform the trans-
formation of A to upper triangular form. There are two main contributions –
A. Floating-point arithmetic. The overall computation involves 2n3/3+O(n2) float-

ing-point operations (counting additions and multiplications separately). Be-
cause of the scattered representation each of the P = s2 processors performs
approximately the same amount of arithmetic. Thus floating-point arithmetic
contributes a term O(n3/s2) to the computation time.

B. Communication. At each iteration of steps 1-5 above, a given processor sends
or receives O(n/s) words. We shall assume that the time required to send or
receive a message of w words is c0 + c1w, where c0 is a “startup” time and 1/c1

is the transfer rate. (For real machines the time may depend on other factors,
such as the distance between the sender and the receiver and the overall load on
the communication network.) With our assumption, the overall communication
time is O(n2/s) + O(n), where the O(n) term is due to startup costs.

If arithmetic and communication can not be overlapped, the overall time TP is
simply the sum of A and B above, i.e.

TP ' αn3/s2 + βn2/s + γn, (5.5)

where α depends on the floating-point and memory speed of each processor, β depends
mainly on the communication transfer rate between processors, and γ depends mainly
on the communication startup time. We would expect the time on a single processor
to be

T1 ' αn3, (5.6)

although this may be inaccurate for various reasons – e.g. the problem may fit in
memory caches on a parallel machine, but not on a single processor.
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From (5.5) and (5.6), the efficiency EP is

EP ' 1
1 + (1 + γ̄/n̄)β̄/n̄

, (5.7)

where β̄ = β/α is proportional to the ratio of communication to computation speed,
γ̄ = γ/β measures the importance of the communication startup time, and n̄ = n/s
is the number of rows or columns of A stored in a single processor. From (5.7), the
efficiency is close to 1 only if n̄ � β̄.

We have ignored the “back-substitution” phase, i.e. the solution of the upper
triangular system (5.4), because this can be performed in time much less than (5.5)
(see [21, 46]).

5.2 Blocking

On many machines it is impossible to achieve peak performance if the Gaussian
elimination is performed via saxpys or rank-1 updates. This is because performance
is limited by memory accesses rather than by floating-point arithmetic, and saxpys or
rank-1 updates have a high ratio of memory references to floating-point operations.
Closer to peak performance can be obtained for matrix-vector or (better) matrix-
matrix multiplication.

It is possible to reformulate Gaussian elimination so that most of the floating-
point arithmetic is performed in matrix-matrix multiplications, without compromis-
ing the error analysis. Partial pivoting introduces some difficulties, but they are
surmountable. The idea is to introduce a “blocksize” or “bandwidth” parameter ω.
Gaussian elimination is performed via saxpys or rank-1 updates in vertical strips of
width ω. Once ω pivots have been chosen, a horizontal strip of height ω can be
updated. At this point, a matrix-matrix multiplication can be used to update the
lower right corner of A. The optimal choice of ω depends on details of the machine
architecture, but

ω ∼ n1/2 (5.8)

is a reasonable choice.

The effect of blocking is to reduce the constant α in (5.5) at the expense of
increasing the lower-order terms. Thus, a blocked implementation should be faster
for sufficiently large n, but may be slower than an unblocked implementation for
small n.

5.3 Orthogonal factorization

On machines whose architecture makes pivoting difficult, we can avoid it at the
expense of increasing the amount of arithmetic. For example, on systolic arrays it
is possible to compute the orthogonal (QR) factorization of A efficiently and in a
numerically stable manner using Givens transformations [5, 27, 47]. The cost is an
increase by a factor of four in the number of arithmetic operations (though this factor
may be reduced if “fast” Givens transformations [26] are used). In any case, the QR
factorization is of independent interest because it can be used to solve the linear least
squares problem

min ‖Ax− b‖2 (5.9)
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where A is an m by n matrix of rank n.

On a single processor Householder transformations are cheaper than Givens
transformations. The steps involved in implementing a Householder QR factoriza-
tion on a parallel machine are similar to those involved in implementing Gaussian
elimination. Although pivoting is not usually required, the vectors u which define the
Householder transformations I − 2uuT need to be broadcast in the same way as the
pivot row and multiplier column in Gaussian elimination.

As for Gaussian elimination, optimal performance for large matrices may require
blocking. Several Householder transformations can be combined [3, 57] and then ap-
plied together so that most of the arithmetic is done in matrix-matrix multiplication.

6. The SVD and symmetric eigenvalue problems

A singular value decomposition (SVD) of a real m by n matrix A is its factor-
ization into the product of three matrices:

A = UΣV T , (6.1)

where U is an m by n matrix with orthonormal columns, Σ is an n by n nonnegative
diagonal matrix, and V is an n by n orthogonal matrix (we assume here that m ≥ n).
The diagonal elements σi of Σ are the singular values of A. The singular value
decomposition has many applications [29, 44].

The SVD is usually computed by a two-sided orthogonalization process, e.g. by
two-sided reduction to bidiagonal form (possibly preceded by a one-sided reduction
[11]), followed by the QR algorithm [28, 30, 63]. It is difficult to implement this
Golub-Kahan-Reinsch algorithm efficiently on a parallel machine. It is much simpler
(though perhaps less efficient) to use a one-sided orthogonalization method due to
Hestenes [37]. The idea is to generate an orthogonal matrix V such that AV has
orthogonal columns. Normalizing the Euclidean length of each nonnull column to
unity, we get

AV = ŨΣ (6.2)

As a null column of Ũ is always associated with a zero diagonal element of Σ, there
is no essential difference between (6.1) and (6.2).

The cost of simplicity is an increase in the operation count, compared to the
Golub-Kahan Reinsch algorithm.

6.1 Implementation of the Hestenes method

Let A1 = A and V1 = I. The Hestenes method uses a sequence of plane rotations
Qk chosen to orthogonalize two columns in Ak+1 = AkQk. If the matrix V is required,
the plane rotations are accumulated using Vk+1 = VkQk. Under certain conditions
limQk = I, lim Vk = V and lim Ak = AV . The matrix Ak+1 differs from Ak only in
two columns, say columns i and j. In fact

(
a
(k+1)
i , a

(k+1)
j

)
=

(
ak

i , ak
j

) (
cos θ sin θ
− sin θ cos θ

)
11



where the rotation angle θ is chosen so that the two new columns a
(k+1)
i and a

(k+1)
j

are orthogonal. This can always be done with an angle θ satisfying

|θ| ≤ π/4, (6.3)

see for example [9].

It is desirable for a “sweep” of n(n−1)/2 rotations to include all pairs (i, j) with
i < j. On a serial machine a simple strategy is to choose the “cyclic by rows” ordering

(1, 2), (1, 3), · · · , (1, n), (2, 3), · · · , (n− 1, n).

Forsythe and Henrici [20] have shown that the cyclic by rows ordering and condition
(6.3) ensure convergence of the Jacobi method applied to AT A, and convergence of
the cyclic by rows Hestenes method follows. In practice only a small number of sweeps
are required. The speed of convergence is discussed in [9].

6.2 The Go tournament analogy

On a parallel machine we would like to orthogonalize several pairs of columns
simultaneously. This should be possible so long as no column occurs in more than
one pair. The problem is similar to that of organizing a round-robin tournament
between n players. A game between players i and j corresponds to orthogonalizing
columns i and j, a round of several games played at the same time corresponds to
orthogonalizing several pairs of (disjoint) columns, and a tournament where each
player plays each other player once corresponds to a sweep in which each pair of
columns is orthogonalized. Thus, schemes which are well-known to Go players (or
players of other two-person games such as Chess, Sumo, . . .) can be used to give
orderings amenable to parallel computation. It is usually desirable to minimize the
number of parallel steps in a sweep, which corresponds to the number of rounds in
the tournament.

On a parallel machine with restricted communication paths there are constraints
on the orderings which we can implement efficiently. A useful analogy is a tournament
of lazy Go players. After each round the players want to walk only a short distance
to the board where they are to play the next round.

Using this analogy, suppose that each Go board corresponds to a virtual processor
and each player corresponds to a column of the matrix (initially A but modified as the
computation proceeds). A game between two players corresponds to orthogonalization
of the corresponding columns. Thus we suppose that each virtual processor has
sufficient memory to store and update two columns of the matrix. If the Go boards
(processors) are arranged in a linear array with nearest-neighbour communication
paths, then the players should have to walk (at most) to an adjacent board between
the end of one round and the beginning of the next round, i.e. columns of the matrix
should have to be exchanged only between adjacent processors. Several orderings
satisfying these conditions have been proposed [8, 9, 50, 56].

Since A has n columns and at most bn/2c pairs can be orthogonalized in parallel,
a sweep requires as least n−1 parallel steps (n even) or n parallel steps (n odd). The
ordering of [9] attains this minimum, and convergence can be guaranteed if n is odd
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[50, 59]. It is an open question whether convergence can be guaranteed, for any
ordering which requires only the minimum number of parallel steps, when n is even –
the problem in proving convergence is illustrated in [34]. However, in practice lack
of convergence is not a problem, and it is easy to ensure convergence by the use of a
“threshhold” strategy [63], or by taking one additional parallel step per sweep when
n is even [51].

As described above, each virtual processor deals with two columns, so the column-
wrapped representation is convenient. However, the block or scattered representations
can also be used. The block representation involves less communication between real
processors than does the scattered representation if the standard orderings are used.
However, the two representations are equivalent if different orderings are used. (As
in the discussion of matrix multiplication at the end of Section 4.1, the algorithm
can assume that the block representation is used, since the SVD of πmAπ−1

n is just
a reordering of the SVD of A.) The scattered representation does not have a load-
balancing advantage here, since the matrix does not change shape.

6.3 The symmetric eigenvalue problem

There is a close connection between the Hestenes method for finding the SVD
of a matrix A and the Jacobi method for finding the eigenvalues of a symmetric
matrix B = AT A. Important differences are that the formulas defining the rotation
angle θ involve elements bi,j of B rather than inner products of columns of A, and
transformations must be performed on the left and right instead of just on the right
(since (AV )T (AV ) = V T BV ). Instead of permuting columns of A as described in
Section 6.2, we have to apply the same permutation to both rows and columns of
B. An implementation on a square systolic array of n/2 by n/2 processors is de-
scribed in [9], and could easily be adapted to other parallel architectures. If less than
n2/4 processors are available, we can use the virtual processor concept described in
Section 2.2.

6.4 Other SVD and eigenvalue algorithms

In Section 6.2 we showed how the Hestenes method could be used to compute the
SVD of an m by n matrix in time O(mn2S/P ) using P = O(n) processors in parallel.
Here S is the number of sweeps required (conjectured to be O(log n)). In Section 6.3
we sketched how Jacobi’s method could be used to compute the eigen-decomposition
of a symmetric n by n matrix in time O(n3S/P ) using P = O(n2) processors. It is
natural to ask if we can use more than Ω(n) processors efficiently when computing the
SVD. The answer is yes – Kogbetliantz [40] and Forsythe & Henrici [20] suggested
an analogue of Jacobi’s method, and this can be used to compute the SVD of a
square matrix using a parallel algorithm very similar to the parallel implementation
of Jacobi’s method. The result is an algorithm which requires time O(n3S/P ) using
P = O(n2) processors. Details and a discussion of several variations on this theme
may be found in [10].

In order to find the SVD of a rectangular m by n matrix A using O(n2) processors,
we first compute the QR factorization QA = R (see Section 5.3), and then compute
the SVD of the principal n by n submatrix of R (i.e. discard the m − n zero rows
of R). It is possible to gain a factor of two in efficiency by preserving the upper
triangular structure of R [48].
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The Hestenes/Jacobi/Kogbetliantz methods are not often used on a serial com-
puter, because they are slower than methods based on reduction to bidiagonal or
tridiagonal form followed by the QR algorithm [63]. Whether the fast serial algo-
rithms can be implemented efficiently on a parallel machine depends to some extent
on the parallel architecture. For example, on a square array of n by n processors it is
possible to reduce a symmetric n by n matrix to tridiagonal form in time O(n log n) [4].
On a serial machine this reduction takes time O(n3). Thus, a factor O(log n) is lost
in efficiency, which roughly equates to the factor O(S) by which Jacobi’s method is
slower than the QR algorithm on a serial machine. It is an open question whether
the loss in efficiency by a factor O(log n) can be avoided on a parallel machine with
P = Ω(n2) processors. When P = O(n), “block” versions of the usual serial algo-
rithms are attractive on certain architectures [17], and may be combined with the
“divide and conquer” strategy [18]. Generally, these more complex algorithms are
attractive on shared memory MIMD machines with a small number of processors,
while the simpler algorithms described above are attractive on systolic arrays and
SIMD machines.
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