
Uniform Random Number Generators for Supercomputers∗

Richard P. Brent1

Computer Sciences Laboratory
Australian National University

Abstract

We consider the requirements for uniform
pseudo-random number generators on modern
vector and parallel supercomputers, consider the
pros and cons of various classes of methods, and
outline what is currently available. We propose
a class of random number generators which have
good statistical properties and can be implemented
efficiently on vector processors and parallel ma-
chines. A good method for initialization of these
generators is described, and an implementation
on a Fujitsu VP 2200/10 vector processor is dis-
cussed.

1 Introduction – Requirements

Pseudo-random numbers have been used in
Monte Carlo calculations [1, 3, 15] since the pi-
oneering days of Von Neumann [26]. With the
increasing speed of vector processors and parallel
computers, considerable attention must be paid
to the quality of random number generators avail-
able in subroutine libraries. A program running
on a supercomputer might use 108 random num-
bers per second over a period of many hours (or
months in the case of QCD calculations), so 1012

or more random numbers might contribute to the
result. Small correlations or other deficiencies in
the random number generator could easily lead to
spurious effects and invalidate the results of the
computation.

Applications require random numbers with
various distributions (e.g. normal, exponential,
Poisson, . . .) but the algorithms used to generate
these random numbers almost invariably require a
good uniform random number generator – see for
example [2, 16, 29]. In this paper we consider only
the generation of uniformly distributed numbers.
Usually we are concerned with real numbers un

which are intended to be uniformly distributed on
the interval [0, 1]. Sometimes it is convenient to
consider integers Un in some range 0 ≤ Un < m.
In this case we require un = Un/m to be (approx-
imately) uniformly distributed.

Pseudo-random numbers generated in a deter-
ministic fashion on a digital computer can not

∗Appeared in Proceedings Fifth Australian Supercom-
puter Conference (Melbourne, December 1992), 95–104.
c© 1992, 5ASC Organising Committee.

be truly random. What is required is that finite
segments of the sequence u0, u1, · · · behave in a
manner indistinguishable from a truly random se-
quence. In practice, this means that they pass all
statistical tests which are relevant to the problem
at hand. Since the problems to which a library
routine will be applied are not known in advance,
random number generators in subroutine libraries
should pass a number of stringent statistical tests
(and not fail any) before being released for gen-
eral use.

A sequence u0, u1, · · · depending on a finite
state must eventually be periodic, i.e. there is a
positive integer p such that un+p = un for all suf-
ficiently large n. The minimal such p is called the
period.

Following are some of the more important re-
quirements for a good pseudo-random number
generator and its implementation in a subroutine
library –

• Uniformity. The sequence of random num-
bers should pass statistical tests for unifor-
mity of distribution. In one dimension this
is easy to achieve. Most generators in com-
mon use are provably uniform (apart from
discretization due to the finite wordlength)
when considered over their full period.

• Independence. Subsequences of the full se-
quence u0, u1, · · · should be independent. For
example, members of the even subsequence
u0, u2, u4, · · · should be independent of their
odd neighbours u1, u3, · · ·. Thus, the se-
quence of pairs (u2n, u2n+1) should be uni-
formly distributed in the unit square. More
generally, random numbers are often used
to sample a d-dimensional space, so the se-
quence of d-tuples (udn, udn+1, . . . , udn+d−1)
should be uniformly distributed in the d-
dimensional cube [0, 1]d for all “reasonable”
values of d (certainly for all d ≤ 6).

• Long Period. As mentioned above, a simu-
lation might use 1012 random numbers. In
such a case the period p must exceed 1012.
For many generators there are strong corre-
lations between u0, u1, · · · and um, um+1, · · ·,

1E-mail address: rpb@cslab.anu.edu.au

rpb132 typeset using LATEX

where m = p/2 (and similarly for other sim-
ple fractions of the period). Thus, in practice
the period should be much larger than the
number of random numbers which will ever
be used.

• Repeatability. For testing and development it
is useful to be able to repeat a run with ex-
actly the same sequence of random numbers
as was used in an earlier run [15]. This is
usually easy if the sequence is restarted from
the beginning (u0). It may not be so easy
if the sequence is to be restarted from some
other value, say um for a large integer m,
because this requires saving the state infor-
mation associated with the random number
generator.

• Portability. Again, for testing and develop-
ment purposes, it is useful to be able to gen-
erate exactly the same sequence of random
numbers on two different machines, possibly
with different wordlengths. In practice it will
be expensive to simulate a long wordlength
on a machine with a short wordlength, but
the converse should be easy – a machine with
a long wordlength (say w = 64) should be
able to simulate a machine with a smaller
wordlength (say w = 32) without loss of effi-
ciency.

• Disjoint Subsequences. If a simulation is to
be run on a machine with several proces-
sors, or if a large simulation is to be per-
formed on several independent machines, it
is essential to ensure that the sequences of
random numbers used by each processor are
disjoint. Two methods of subdivision are
commonly used. Suppose, for example, that
we require 4 disjoint subsequences for a ma-
chine with 4 processors. One processor could
use the subsequence (u0, u4, u8, · · ·), another
the subsequence (u1, u5, u9, · · ·), etc. For
efficiency each processor should be able to
“skip over” the terms which it does not re-
quire. Alternatively, processor j could use
the subsequence (umj , umj+1, · · ·), where the
indices m0,m1, m2,m3 are sufficiently widely
separated that the (finite) subsequences do
not overlap. This requires some efficient
method of generating um for large m with-
out generating all the intermediate values
u1, . . . , um−1.

• Efficiency. It should be possible to imple-
ment the method efficiently so that only
a few arithmetic operations are required
to generate each random number, all vec-
tor/parallel capabilities of the machine are
used, and overheads such as those for subrou-
tine calls are minimal. This implies that the

random number routine should return an ar-
ray of (optionally) several numbers at a time,
not just one.

In Sections 2 and 3 we outline some popular
classes of random number generators, and con-
sider to what extent they pass or fail our require-
ments. Then, in Section 4 we comment on various
implementations. In Section 5 we consider which
algorithms are suitable for vector and/or parallel
machines, and in Section 6 we discuss the spe-
cific requirements for several classes of machines
(vector, MIMD, SIMD, . . .). More detailed com-
ments on a vectorized implementation are given
in Section 7.

The important (but often neglected) topic of
how to initialize generators is discussed in Sec-
tion 8.

2 Linear congruential generators

Linear congruential generators were intro-
duced by D. H. Lehmer in 1948 and are still prob-
ably the most popular class of generators. An in-
teger sequence (Un) is defined by an initial value
U0 (the “seed”) and the recurrence

Un+1 = (aUn + c) mod m

where m > 0 is the “modulus”, a is the “multi-
plier” (0 < a < m), and c is an additive constant.

Often the modulus m is chosen to be a power
of 2, say m = 2w where w is close to the integer
wordlength. In this case it is possible to achieve
a full period m (provided c is odd and 4|(a −
1)). This does not guarantee a good generator –
consider the trivial case a = c = 1.

When m is a power of two the low-order bits of
Un do not behave randomly – in fact the low order
k bits cycle with a period at most 2k. This should
be enough to make us suspicious of such genera-
tors! However, there is hope that the high-order
bits behave randomly, so the normalized sequence

un = Un/m

may be usable as a source of pseudo-random num-
bers in [0, 1].

To avoid the problem of nonrandomness of low-
order bits, the modulus m is sometimes chosen
to be a prime number. For example, on a 32-bit
machine we could take m = 231−1 or m = 232−5.
Provided U0 6= 0 and a is a primitive root mod
m, it is possible to obtain period p = m− 1, even
if c = 0. It is sometimes convenient that an exact
zero does not occur in the sequence.

There is much theory regarding the best choice
of multiplier a for linear congruential genera-
tors [16, 27], and an exhaustive search has been
performed for certain moduli [8]. Marsaglia [19]
pointed out the fundamental weakness of the

class of linear congruential generators. If d-tuples
(udn, udn+1, . . . , udn+d−1) of normalized numbers
are considered as points in the d-dimensional unit
cube, then these points lie on a small number Nd

of hyperplanes, far less than would be expected of
a truly random sequence with discretization error
O(2−w). In fact

Nd ≤ (d!m)1/d = O(dm1/d).

For example, with m ≤ 231 and d = 6, Marsaglia’s
bound gives Nd ≤ 107.

The reason for such behaviour is intuitively
clear. There are 2wd points in the unit d-cube
with coordinates exactly representable as w-bit
binary fractions. These points lie on 2w hyper-
planes with separation 2−w. However, a linear
congruential generator with period p ≤ 2w can
give at most 2w of these points, and it is easy to
see that some of these points have a large separa-
tion Ω(2−w/d) from their nearest neighbours.

Although Marsaglia’s result shows that all lin-
ear congruential generators perform poorly in
high dimensions, there is still a great difference
between the best such generators and generators
with poorly chosen multipliers. For example [8],
a generator RANDU with m = 231, a = 65539,
c = 0 was used in the IBM Scientific Subroutine
Library on System 360/370 computers for many
years. The multiplier a = 216 + 3 may have been
chosen so that multiplication could be performed
by a small number of shifts and adds. However,
using the relation

(a− 3)2 = 0 mod m

it is easy to see that

Un+2 − 6Un+1 + 9Un = c′ mod m

and

un+2 − 6un+1 + 9un = c′′ mod 1,

where c′ and c′′ are constants. This means that 3-
tuples generated by RANDU lie on only 16 planes
(separated by distance 118−1/2 ' 0.092) in the
unit cube.

Surprisingly, generators almost as bad as
RANDU are still in use. The problems apparent
in the choice of multiplier for these generators can
be detected using the “Spectral Test” [16] or by
a variety of statistical tests on the distribution of
d-tuples, with d ≥ 3 and a sufficiently fine grid.

3 Generalized Fibonacci genera-
tors

The Fibonacci numbers satisfy the recurrence

Fn = Fn−1 + Fn−2.

However, it is easy to see that the corresponding
recurrence

un = un−1 + un−2 mod 1

does not give a satisfactory sequence of pseudo-
random numbers because the inequality

un−2 < un < un−1

never holds, even though it would hold with
probability 1/6 for a random sequence ([16],
ex. 3.2.2.2).

Attempts have been made to generalize the
Fibonacci recurrence to obtain “generalized Fi-
bonacci” or “lagged Fibonacci” random number
generators [12, 16, 30]. Marsaglia [20] considers
generators F (r, s, θ) which satisfy

Un = Un−rθUn−s

for fixed “lags” r and s (r > s > 0) and n ≥ r.
Here θ is some binary operator, e.g. addition
(mod m), subtraction (mod m), multiplication
(mod m) or “exclusive or” (mod m = 2w). We
abbreviate these operators by +,−, ∗ and ⊕ re-
spectively. Generators using ⊕ are also called
“shift register” generators or “Tausworthe” gen-
erators [11, 18, 31].

If θ is + or − (mod m) then a theory of gener-
alized Fibonacci generators can be based on the
generating function

G(x) =
∞∑

n=0

Unxn

which is given by

G(x) = P (x)/Q(x) mod m,

where
Q(x) = 1− (xrθxs)

and P (x) is a polynomial of degree at most r− 1
determined by the initial values U0, . . . , Ur−1. For
example, if m = 2 and the initial values are not
all zero, then the sequence has maximal period
2r−1 if and only if Q(x) is a primitive polynomial
(mod 2). Tables of such primitive polynomials
are available [17, 32]. Verification is particularly
simple if r is the exponent of a Mersenne prime
(i.e. 2r − 1 is prime) because then we only need
to check that

x = x2r

mod (Q(x), 2)

which can be done by r squarings of polynomials
(mod 2), involving a total of only O(r2) opera-
tions [33]. The more usual formulation in terms
of r by r matrices [20, 21] instead of polynomials
is less efficient computationally because matrix
multiplication is more expensive than polynomial
multiplication.

If m = 2w and the lags r and s are chosen
correctly, it is possible to obtain period

p =

2r − 1 if θ = ⊕,
2w−1(2r − 1) if θ = ± mod m,
2w−3(2r − 1) if θ = ∗ mod m.

The initial values must be odd for θ = ∗, not all
even for θ = ±, and not all zero for θ = ⊕. For
precise conditions, see [5, 21]. We see one advan-
tage of the generalized Fibonacci generators over
linear congruential generators – the period can
be made very large by choosing r large. However,
one should refrain from using more than 2r − 1
numbers from such generators with θ = ±, be-
cause Un and Un+p/2k differ in at most k bits
(0 < k < w).

Marsaglia [20] reports the results of statisti-
cal tests on the generators F (17, 5, θ), F (31, 13, θ)
and F (55, 24, θ). The results for θ = ⊕ are poor –
several tests are failed. All tests are passed for
the generators F (607, 273, θ) and F (1279, 418, θ),
so the conclusion is that ⊕ generators should only
be used if the lag r is large.

Marsaglia’s results for θ = ± are good with one
exception – the generators with r ≤ 55 fail the
“Birthday Spacings” test. This is not surprising
because (in the case θ = −) the recurrence

Un = Un−r − Un−s mod m

shows that a small value of Un implies a small
difference Un−r − Un−s. The Birthday Spacings
test is designed to test if such small differences
occur more (or less) often than they should. If
θ = + a similar argument applies, since

Un−s = Un − Un−r mod m.

The conclusion is that these generators are prob-
ably acceptable if r and s are sufficiently large
(not necessarily as large as for the ⊕ generators).

Our argument against the simple Fibonacci re-
currence also applies to the generalized Fibonacci
recurrence

un = un−r ± un−s mod 1,

because only four of the six orderings of
(un, un−r, un−s) can occur. A statistical test
based on this fact can easily “fail” any F (r, s,±)
generator. Even if r and s are not assumed to
be known, the test can check all possible r and
s satisfying 0 < s < r < B say, where B is a
prescribed bound. The storage and number of
operations required are of order B2. We call such
a test a “Generalized Triple” test. Clearly the
existence of such tests is a reason for choosing a
large r.

Marsaglia’s results indicate that generalized
Fibonacci generators with θ = ∗ mod m are ac-
ceptable. In fact, these are the only class of gen-
erators other than “combination” generators to

pass all his tests. Unfortunately, it is more dif-
ficult to implement multiplication (mod m) than
addition/subtraction (mod m) because of the re-
quirement for a double-length product unless m is
small enough for m2 to be representable in single-
precision. When testing generalized Fibonacci
generators with θ = + Marsaglia used small r;
such generators should be acceptable for suffi-
ciently large r.

Empirically, and with some theoretical justifi-
cation, we have found two ways to improve the
performance of generalized Fibonacci generators
on the Birthday Spacings and Generalized Triple
tests. The simplest is to include small odd integer
multipliers α and β in the generalized Fibonacci
recurrence, i.e.

Un = αUn−r + βUn−s mod m.

We denote these generators by G(r, s, α, β). The
theory goes through with minor modifications.
By Theorem 2 of [5], the period is 2w−1(2r − 1)
if m = 2w, provided the trinomial xr + xs + 1
is primitive (mod 2) and U0, . . . , Ur−1 are not all
even.

An alternative which avoids difficulties with
the Birthday Spacings and Generalized Triple
tests but is almost as fast and easy to implement
as the F (r, s,±) generators is to include another
term in the generalized Fibonacci recurrence, i.e.

Un = Un−r ± Un−s ± Un−t mod m,

where r > s > t > 0 are suitably chosen lags.
We call such generators “4-term generalized Fi-
bonacci” generators in contrast to the usual 3-
term generators. For a discussion of 4-term gen-
erators, we refer to [4].

4 Comments on some available
generators

We have discussed RANDU in the sub-section
on linear congruential generators, and shown why
similar generators are not to be recommended.
Even with an improved choice of multiplier, such
generators suffer from having a period p = 231

which is far too short. It takes less than one
minute to run through the whole period of such
a generator on the Fujitsu VP 2200/10 at ANU.
Similar comments apply to any linear congruen-
tial generator with modulus representable as a 32-
bit integer. Linear congruential generators with
larger modulus (e.g. 264) are difficult to imple-
ment efficiently on many machines because they
require multiple-precision integer arithmetic.

Attempts have been made to improve the sta-
tistical properties of linear congruential genera-
tors by shuffling (see [16], page 32). This does
usually improve the d-dimensional uniformity of
the output for d > 1, but does little (if anything)

to increase the period. Shuffling does not improve
the performance on some statistical tests, e.g. the
Birthday Spacings test. Most important, shuf-
fling is slow and difficult to vectorize, so it is in-
appropriate to use it on vector processors.

Instead of shuffling, the output of two genera-
tors can be combined by addition (mod 1) or ⊕.
These operations vectorize, but the combination
generator is still two to three times slower than
a single generator, and the results are not guar-
anteed to pass all statistical tests (see comments
on the “Super-Duper” generator in the next sec-
tion). For these reasons, it seems preferable to
use a single (good) generator.

Some generators, especially those based on
the linear congruential method with multipliers
a power of two, suffer from poor resolution, be-
cause they return only single-precision (32-bit)
real numbers. Since most serious work on vector
processors and fast parallel machines use double-
precision (64-bit) real numbers, it is desirable for
a library routine to return double-precision num-
bers (with the low-order 32 bits not all zero). If N
random numbers are used in a simulation, there is
not much point in requiring resolution finer than
1/N . Thus, it may be acceptable for a small num-
ber of the low-order bits (say up to four) to be
zero when 64-bit numbers are returned.

The trend appears to be for generalized Fi-
bonacci generators to supplant linear congruen-
tial generators. For example, the recent re-
views [1, 15] approve of the generators F (r, s,±)
mod 2w, provided the lags are large. Anderson
uses F (607, 273,−) and shows how it can be im-
plemented efficiently on a vector processor.

Siemens Nixdorf in collaboration with the Uni-
versity of Karlsruhe have implemented a pack-
age of random number generators (RAND/VP).
The generators are adapted from the generator
UNI of [23], which is based on the generalized
Fibonacci generator F (97, 33,−). Marsaglia [22]
now prefers his VLP generators (described be-
low).

The algorithm used in RAND/VP “has been
modified to generate several streams of random
numbers in parallel” [13]. Presumably this means
that the recurrence

un = un−97 − un−33 mod 1

is applied to vectors of length v > 1 rather than
to single real numbers un. This is equivalent to
using the generator F (97v, 33v,−). As far as the
statistical properties are concerned, it would be
better to use a single generalized Fibonacci gen-
erator F (r, s,−) with lags 0 < s < r ' 97v chosen
to give maximal period. As we outline below, it
is possible to vectorize the generation of a single
stream of random numbers.

In his recent papers [22, 24] Marsaglia recom-
mends a new class of generators, termed “very

long period” (VLP) generators. These are sim-
ilar to generalized Fibonacci generators but can
achieve periods close to 2rw, whereas the general-
ized Fibonacci generators can “only” achieve pe-
riod O(2r+w). Our tests indicate that the VLP
generators perform almost as badly on the Birth-
day Spacings test as the generalized Fibonacci
generators using addition/subtraction. Perhaps
this is why Marsaglia recommends combining
them with a different class of generator [22]. In
any event, the VLP generators require the com-
putation of a “carry” or “borrow” which prop-
agates to the next term in the sequence. This
dependence causes a problem on vector proces-
sors. Although it is possible to vectorize each
carry/borrow propagation step, the number of op-
erations required in the inner loop is 2–3 times
greater than for the generalized Fibonacci gener-
ators.

5 Suggested vector and parallel al-
gorithms

In this subsection we consider which classes of
random number generators are suitable for im-
plementation on vector processors and/or parallel
machines.

Linear congruential generators of the form

Un+1 = (aUn + c) mod m

can be implemented efficiently on a parallel ma-
chine with k processors or a vector processor with
vector registers of length k, using the relations

Un = anU0 +
(

an − 1
a− 1

)
c mod m

and

Uk(n+1) = akUkn +
(

ak − 1
a− 1

)
c mod m.

Note that an mod m can be computed in O(log n)
operations using the binary representation of
n [16].

Despite the possibility of efficient implementa-
tion, linear congruential generators are not rec-
ommended because of their poor d-dimensional
distribution (for d > 1) and small periods. Even
when the multiplier a is chosen to pass the Spec-
tral Test, the multiplier ak which is effectively
being used to produce each k-th term in the se-
quence may fail (in fact this is sure to happen for
some values of k).

The statistical properties of generators can be
improved by combining two or more independent
generators, using ± (mod m), ⊕, or shuffling. If
generators with relatively prime periods p1 and
p2 are combined, the period of the combined gen-
erator is generally p1p2.

r s r s
127 97 3217 2641
258 175 4423 3004
521 353 9689 5502
607 334 19937 10095
1279 861 23209 13470
2281 1252 44497 23463

Table 1: 3-term generators

Combination generators are not recommended
because they are slow – usually two to three times
slower than the component generators. Also, they
are not guaranteed to have good statistical prop-
erties. For example, Marsaglia’s “Super-Duper”
combination generator, which combines a linear
congruential generator and a shift register gener-
ator, fails the MTUPLE test on substrings of low
order bits [20].

Generalized Fibonacci generators can be im-
plemented efficiently on vector/parallel ma-
chines [1]. The Tausworthe/shift register gen-
erators must be treated with suspicion because
of their poor statistical properties for small and
moderate lags [20]. Presumably the discrepancy
between their behaviour and ideal behaviour is
a decreasing function of the lag r, so they pass
standard tests if r is sufficiently large, but for
any fixed r they would probably fail a sufficiently
stringent test. This may or may not be relevant
in a particular application, but it is hardly ac-
ceptable for a library routine.

Generalized Fibonacci generators F (r, s, ∗)
based on multiplication (mod 2w) pass all of
Marsaglia’s tests [20] (w is not specified, but pre-
sumably is at least 16). The problem with these
generators is that they are difficult to implement
without double-precision multiplication if w ex-
ceeds half the word-length. For example, to ob-
tain 56-bit fractions (w = 56) would require the
multiplication of 56-bit integers mod 256. A li-
brary routine should have close to the maximum
precision allowed by the hardware, so returning
a “random” number whose low-order bits are all
zero is unacceptable.

Generalized Fibonacci generators F (r, s,±)
based on addition or subtraction (mod 2w) are
well-suited to vector and parallel machines. The
lag r should be chosen large enough that the
Birthday Spacings test is passed. Preliminary
tests indicate that r > 100 is satisfactory. This
is not a serious constraint because it is desirable
to choose a large r to give long vector lengths
and a long period. The second lag s should not
be either too small or too close to r. We recom-
mend s ' ρr, where ρ = 0.618 · · · is the golden
ratio, subject to the constraint that the polyno-
mial xr +xs +1 is primitive (mod 2) so the period
is at least 2r − 1. Some suitable pairs (r, s) are
given in Table 1.

A nice feature of the generalized Fibonacci gen-
erators F (r, s,±) is that they can be implemented
in floating-point arithmetic without conversion
from integer to floating-point (see [16], page 27).
This may give higher speed than competing meth-
ods, and also allows the generation of full (or al-
most full)-precision numbers. For example, on a
machine with 32-bit integer arithmetic and 56-bit
floating-point fractions, it is possible to generate
random numbers with all 56 bits nonzero and ran-
dom. The idea is to use floating-point numbers
to represent integers scaled by 2−56 and ensure
that all floating-point additions/subtractions are
exact. Despite this observation, the fastest im-
plementation on machines with fast floating-point
hardware may well be to use the hardware integer
↔ real instructions to obtain the fractional parts
of numbers (or vectors of numbers). This is es-
pecially likely to be true if multipliers α, β other
than ±1 are used.

At some cost in performance any worries about
the Birthday Spacings test can be avoided by us-
ing a 4-term (rather than the usual 3-term) re-
currence, or by using a 3-term recurrence with
odd integer multipliers α, β > 1 (see above). Our
implementation on the Fujitsu VP 2200 indicates
that the loss of performance is 26 percent for the
4-term recurrence, and 23 percent for the 3-term
recurrence with non-unit multipliers.

6 Architectural considerations

In this section we consider the implementation
of the generalized Fibonacci method F (r, s, +) on
the following classes of machines –

1. Single-processor serial machines, e.g. Sun
Sparcstation, IBM PC, . . .

2. Vector processors, e.g. Fujitsu VP series,
Cray.

3. Local-memory MIMD multiprocessors, e.g.
Intel Delta, Fujitsu AP 1000.

4. Shared-memory SIMD multiprocessors, e.g.
Connection Machine (CM 2).

On single-processor serial “Von Neumann” ma-
chines there is little justification for using the
larger values of r given in Table 1. Probably
r ≤ 1279 is sufficient. Large values of r re-
quire correspondingly large arrays, which may be
a problem on machines such as IBM PCs. Perfor-
mance for large r may also be degraded because
of an increase in cache misses.

On a vector processor we can assume that am-
ple memory is available, even for the largest r
given in Table 1. We certainly should use r large
enough that vector operations on vectors of length
s and r − s can be performed efficiently. Com-
ments based on our experience in implementing

the generalized Fibonacci methods on the Fujitsu
VP 2200 are given in Section 7.

On a local-memory MIMD multiprocessor such
as the Fujitsu AP 1000, the comments regarding
implementation on single-processor machines ap-
ply, because each processor is such a machine. (If
each processor has a vector unit and sufficient
memory, as on the CM 5, then the comments
on vector processors apply.) Our initialization
scheme (Section 8) ensures that different random
sequences will be generated in each processor pro-
vided each processor uses a different seed. Thus, it
might be wise for the initialization routine to ap-
pend the processor ID to the user-supplied seed.
For example, on the AP 1000, with a maximum
of 1024 processors (also called “cells”), the seed
on processor cid might be 1024*useed + cid,
where useed is the seed supplied by the user. We
assume here that (0 < useed < 221).

On a shared-memory SIMD multiprocessor
such as the Connection Machine (CM 1 or CM 2),
with a large number (say P) of relatively slow pro-
cessors, it is not appropriate for each processor to
generate an independent segment of the sequence
(un). This would require total memory of order
Pr words. It is better to group the processors in
sets of some moderate size (say 256 for the sake of
example). The processors in each set can cooper-
atively generate a single segment of the sequence
(un), with each processor generating each 256-th
number in the sequence. This scheme can be im-
plemented efficiently provided s ≥ 256, and the
total memory requirement is only of order Pr/256
words. We can think of each set of 256 proces-
sors as emulating a single vector processor, and
operating on vectors of length 256.

7 Vectorization

In this section we consider in more detail the
implementation of a generalized Fibonacci gener-
ator on a vector processor, using our experience
in implementing such a generator on the Fujitsu
VP 2200.

The usual implementation of generalized Fi-
bonacci generators involves a ring buffer of length
at least r (the larger lag). This is inconvenient
on a vector processor, but can be avoided in sev-
eral ways. One way is described in Anderson’s
review [1]. We have implemented another idea
which is more efficient because it involves less
copying. We have also removed Anderson’s re-
striction on the number of random numbers which
may be returned on each call of the library rou-
tine.

Although it is clear in principle that the in-
ner loops of the implementation should vectorize,
some care has to be taken to avoid dependencies
which would inhibit vectorization. For example,

the recurrence

un = un−r + un−s mod 1

can be vectorized without difficulty in a loop
whose repeat count is at most min(r, s). In our
implementation we have found that it is conve-
nient to assume that r − s < s < r (which is
not a serious constraint, since we can always re-
place s by r − s). For good vector performance,
min(s, r − s) should not be too small.

In our implementation the user asks for any
positive number (say N) of random numbers, and
provides a buffer BUF of size at least N words. We
also maintain an array WORK of size r, not accessed
directly by the user, and the index of the last word
used in WORK. There are essentially two cases –

1. N < 2r. Copy previously-generated num-
bers from WORK to BUF. Generate batches of
r numbers directly in WORK as required. Each
batch can be generated with two vectorizable
loops (generating s and r − s numbers).

2. N ≥ 2r. To avoid the copying overhead im-
plicit in case 1, generate numbers directly in
BUF. For the first r numbers this requires ac-
cess to WORK, but once the first r numbers
are in BUF, batches of s numbers can be gen-
erated using a vectorizable loop. The last r
numbers must be copied into WORK for use on
the next call, as it is not assumed that BUF
is preserved between calls.

Logically, case 2 is superfluous, but it is im-
portant if the best performance is to be obtained
on machines for which arithmetic is as fast as (or
faster than) memory access.

There is a question as to the best way to code
the “mod 1” operation in Fortran or C. For ex-
ample, in Fortran we could use

X(N) = X(N) - INT(X(N))

if it is known that X(N) ≥ 0, or

IF (X(N) .GE. 1D0) X(N) = X(N) - 1D0

if it is known that 0 ≤ X(N) < 2. On the VP 2200
both forms vectorize, but the first is faster be-
cause it avoids the need for masked operations.
It is also more general, because if applies even if
X(N) ≥ 2 (which may be the case if α > 1 or
β > 1). Note that both forms need modification
if α < 0 or β < 0 – in this case we would have to
use something like

X(N) = X(N) + BIAS - INT(X(N) + BIAS)

where BIAS ≥ max(|α|, |β|, |α + β|), or possibly

IF (X(N) .LT. 0D0) X(N) = X(N) + 1D0

α Terms Pipes Loops Cycles
α > 1 3 1 normal 3.32
α > 1 3 2 normal 2.71
α > 1 3 2 unrolled 2.71
α = 1 3 2 normal 2.31
α = 1 3 2 unrolled 2.21
α = 1 4 2 unrolled 2.78

Table 2: Cycles/number on the VP 2200/10

if (α, β) = (1,−1) or (−1, 1).
Care has to be taken in the initialization and

choice of w because of the possible loss of the
least significant bit(s) when an intermediate re-
sult is greater than 1. (It is possible to avoid
losing any bits, but only with a significant perfor-
mance penalty.) With the moderate restriction

|α|+ |β| ≤ 16,

a straightforward implementation loses only 4 bits
(one hex digit), which seems acceptable. In or-
der to preserve the theory, which assumes ex-
act arithmetic, the initialization routine should
ensure that the bits which could be lost due to
rounding errors are always zero. For example, on
a machine with a 56-bit fraction and |α|+|β| ≤ 16,
only the leading 52 bits in the fraction should be
set by the initialization routine. This amounts to
using w = 52 rather than w = 56.

The results of some experiments on the Fu-
jitsu VP 2200/10 at ANU are summarised in Ta-
ble 2. In order to understand their significance,
it is necessary to know that the VP 2200/10 has
two load/store pipes which communicate between
memory and the vector registers. Each pipe can
load or store one 64-bit word per cycle. A cycle
is 3.2 nsec. There is a vector unit with two mul-
tiply/add pipelines, so potentially two multiplies
and two adds can be performed each cycle. In Ta-
ble 2, “cycles” is the number of clock cycles per
random number generated, using large lags r and
s. The results show that we save about 0.6 cycles
per number by persuading the compiler to use
both load/store pipes (otherwise memory band-
width is halved) and another 0.4 cycles if one of
the multipliers α, β is 1. Performance is no better
if α = β = 1 than if α = 1, β > 1 because one
multiplication instruction is “free”, using a vec-
tor instruction which performs a multiplication
and addition. Loop unrolling saves another 0.1
cycles if α = 1 but not if α > 1, β > 1.

At 2.21 cycles per number we can generate
141 million numbers per second on the Fujitsu
VP 2200/10. This is about 2.6 times faster than a
vectorized implementation of the linear congruen-
tial method (with unacceptably small period 231)
and 34 times faster than a method which shuffles
the output of a linear congruential generator but
does not vectorize.

The number of cycles per number for the 4-
term recurrence method is about 0.6 more than
for the corresponding 3-term recurrence method.
In this case loop unrolling is worthwhile and up
to two multiplications are “free”.

The computations required during initializa-
tion (described in the next section) can be vec-
torized without difficulty.

8 Initialization

For both the 3-term and 4-term generalized
Fibonacci methods, an important aspect is the
initialization of U0, . . . , Ur−1. This is often done
using another generator, e.g. a linear conguential
generator. However, this introduces a source of
confusion, loss of portability, and possible statis-
tical problems. It seems better to avoid the use of
any other generator. We outline how this may be
done, and how the requirements given in Section 1
can be satisfied.

The idea is that the user will provide a single-
precision integer seed, and the initialization will
guarantee that any two different seeds will give
non-overlapping (sub-)sequences for all practical
purposes. On a parallel machine, different pro-
cessors need only ensure that they use different
seeds. The key point is that the least significant
bits satisfy a recurrence mod 2, and by polyno-
mial squaring we can efficiently “skip” along the
sequence of least significant bits. If the least sig-
nificant bits in two subsequences differ, then be-
cause of carries the higher bits are also sure to
differ. Our implementation of the 3-term method
has r > 90 and skips past seed× 260 elements of
the sequence, so subsequences of 260 > 1018 el-
ements are guaranteed to be different so long as
they are initiated with different seeds.

To be more specific, consider the three-term
generator

Un = αUn−r + βUn−s mod 2w, (1)

where α and β are odd. (In practice, we work with
un = Un/2w, but this makes no essential differ-
ence.) The least-significant bits xn = Un mod 2
satisfy the recurrence

xn = xn−r + xn−s mod 2. (2)

We assume that at least one of U0, . . . , Ur−1 is
odd, so at least one of x0, . . . , xr−1 is nonzero.
For simplicity we may as well assume that

x0 = 1, x1 = · · · = xr−1 = 0.

Let
Q(t) = tr − tr−s − 1.

From the theory [5, 11] of linear recurrences
(mod 2), if

tn =
r−1∑
j=0

an,jt
j mod (2, Q(t)),

then

xn =
r−1∑
j=0

an,jxj mod 2.

Suppose we want to “skip” to xn, where n is large,
so we do not want to generate all of the interven-
ing sequence. We can compute tn mod (2, Q(t))
in O(log n) steps using the “binary method”
(see [16], Sec. 4.6.3). Arithmetic on the coeffi-
cients is always performed mod 2, and at each
step a reduction mod Q(t) is performed. Because
Q(t) is a trinomial, squaring (mod 2) and reduc-
tion take only O(r) operations, so xn can be com-
puted with O(r log n) operations. The working
space required is only about 2r bits.

To start generating the sequence from
index n we need not only xn but also
xn+1, . . . , xn+r−1. To obtain these we may com-
pute tn, tn+1, . . . , tn+r−1 mod (2, Q(t)) or, per-
haps simpler, compute xr, . . . , x2r−2 from the re-
currence (2) and use

xn+k =
r−1∑
j=0

an,jxj+k mod 2

for k = 0, . . . , r − 1.
Assuming, as above, that no more than 260

consecutive random numbers will be required, we
take

n = 260seed

and generate xn, . . . , xn+r−1 as described. Now
use these values as starting values for a sequence
satisfying the recurrence (1). Because the last bits
differ (for at least 260 terms) from those obtained
from any other seed, the “disjoint subsequence”
requirement of Section 1 is satisfied.

In practice it is unsatisfactory to use the first
few numbers generated in this way, because only
their low order bits are nonzero (recall that un =
Un/2w). We need to generate O(rw) numbers, us-
ing the recurrence (1), and discard them. The fol-
lowing adaptive scheme takes a negligible amount
of time and appears to be satisfactory: gener-
ate batches of r numbers (say v0, . . . , vr−1) un-
til 10v0 > 1 and 10r min(v0, . . . , vr−1) > 1; then
generate and discard 10 more batches of r num-
bers.

9 Conclusion

We have considered the requirements for uni-
form pseudo-random number generators on mod-
ern vector and parallel machines, and considered
the advantages and disadvantages of various pop-
ular classes of methods, including linear congru-
ential and generalized Fibonacci. We have argued
that generalized Fibonacci generators (with a
suitable choice of parameters) have good statisti-
cal properties and can be implemented efficiently

on vector processors and parallel machines. A
good scheme for the initialization of these gener-
ators has been outlined, and the results of an im-
plementation on a Fujitsu VP 2200/10 vector pro-
cessor have been described. Our implementation
appears to satisfy the requirements of uniformity,
independence, long period, repeatability, porta-
bility, disjoint subsequences for different seeds,
and efficiency.

Acknowledgements

Thanks are due to Dr A. Cleary, Dr R. Gin-
gold, Dr M. Hegland and Dr P. Price for their as-
sistance. The ANU Supercomputer Facility pro-
vided time on the VP 2200/10 for the develop-
ment and testing of our implementation. This
work was supported in part by a Fujitsu-ANU re-
search agreement.

References

[1] S. L. Anderson, “Random number gener-
ators on vector supercomputers and other
advanced architectures”, SIAM Review 32
(1990), 221-251.

[2] R. P. Brent, “Algorithm 488: A Gaussian
pseudo-random number generator (G5)”,
Communications of the ACM 17 (1974), 704-
706.

[3] R. P. Brent (editor), CAP Workshop 1991 –
Proceedings of the Second Fujitsu-ANU CAP
Workshop, Australian National University,
Canberra, November 1991.

[4] R. P. Brent, Uniform Random Number Gen-
erators for Vector and Parallel Computers,
Technical Report TR-CS-92-02, Computer
Sciences Laboratory, ANU, March 1992.

[5] R. P. Brent, On the Periods of General-
ized Fibonacci Recurrences, Technical Re-
port TR-CS-92-03, Computer Sciences Lab-
oratory, ANU, March 1992.

[6] H. S. Bright and R. L. Enison, “Quasi-
random number sequences from a long-
period TLP generator with remarks on appli-
cation to cryptography”, Computing Surveys
11 (1979), 357-370.

[7] P. L’Ecuyer, “Efficient and portable com-
bined random number generators”, Commu-
nications of the ACM 31 (1988), 742.

[8] G. S. Fishman and L. R. Moore, “An ex-
haustive analysis of multiplicative conguen-
tial random number generators with modu-
lus 231 − 1 ”, SIAM J. Sci. Stat. Computing
7 (1986), 24-45.

[9] P. Frederickson, R. Hiromoto and J. Larson,
“A parallel Monte Carlo transport algorithm
using a pseudo-random tree to guarantee re-
producibility”, Parallel Computing 4 (1987),
281-290.

[10] M. Fushimi and S. Tezuka, “The k-
distribution of generalized feedback shift-
register pseudorandom numbers”, Commu-
nications of the ACM 26 (1983), 516-523.

[11] S. W. Golomb, Shift Register Sequences,
Holden-Day, San Francisco, 1967, Sections
2.5 and 3.4.

[12] B. F. Green, J. E. K. Smith and L. Klem,
“Empirical tests of an additive random num-
ber generator”, J. ACM 6 (1959), 527-537.

[13] O. Haan, RAND/VP Users Guide, Siemens
Nixdorf, Munich, 1992.

[14] D. W. Heermann and A. N. Burkitt, “Par-
allelization of the Ising model and its per-
formance evaluation”, Parallel Computing 13
(1990), 345-357.

[15] F. James, “A review of pseudorandom num-
ber generators”, Computer Physics Commu-
nications 60 (1990), 329-344.

[16] D. E. Knuth, The Art of Computer Pro-
gramming, Volume 2: Seminumerical Al-
gorithms (second edition), Addison-Wesley,
Menlo Park, 1981.

[17] Y. Kurita and M. Matsumoto. Primitive t-
nomials (t = 3, 5) over GF (2) whose degree is
a Mersenne exponent ≤ 44497. Mathematics
of Computation, 56:817-821, 1991.

[18] T. G. Lewis and W. H. Payne, “Generalized
feedback shift register pseudorandom num-
ber algorithm”, J. of the ACM 20 (1973),
456-468.

[19] G. Marsaglia, “Random numbers fall mainly
on the planes”, Proc. Nat. Acad. Sci. USA
61, 1 (1968), 25-28.

[20] G. Marsaglia, “A current view of ran-
dom number generators”, Computer Sci-
ence and Statistics: The Interface (edited
by L. Billard), Elsevier Science Publishers
B. V. (North-Holland), 1985, 3-10.

[21] G. Marsaglia and L. H. Tsay, “Matrices and
the structure of random number sequences”,
Linear Algebra and Applications 67 (1985)
147-156.

[22] G. Marsaglia, B. Narasimhan, A. Zarif, “A
random number generator for PC’s”, Com-
puter Physics Communications 60 (1990),
345-349.

[23] G. Marsaglia, A. Zaman and W. W. Tsang,
“Toward a universal random number gener-
ator”, Statist. Probab. Lett. 9 (1990), 35-39.

[24] G. Marsaglia and A. Zaman, “A new class of
random number generators”, The Annals of
Applied Probability 1 (1991), 462-480.

[25] A. De Mattheis and S. Pagnutti, “A class of
parallel random number generators”, Paral-
lel Computing 13 (1990), 193-198.

[26] J. von Neumann, “Various techniques used in
connection with random digits”, The Monte
Carlo Method, National Bureau of Stan-
dards (USA) Applied Mathematics Series 12
(1951), 36.

[27] S. K. Park and K. W. Miller, “Random num-
ber generators: good ones are hard to find”,
Communications of the ACM 31 (1988) 1192-
1201.

[28] G. E. Percus and M. H. Kalos, “Random
number generators for MIMD parallel pro-
cessors”, J. Parallel and Distributed Com-
puting 6 (1989), 477-497.

[29] W. P. Petersen, “Some vectorized random
number generators for uniform, normal, and
Poisson distributions for CRAY X-MP”,
J. Supercomputing 1 (1988), 327-335.

[30] J. F. Reiser, Analysis of Additive Ran-
dom Number Generators, Ph. D. thesis and
Technical Report STAN-CS-77-601, Stan-
ford University, 1977.

[31] R. C. Tausworthe, “Random numbers gen-
erated by linear recurrence modulo two”,
Mathematics of Computation 19 (1965), 201-
209.

[32] N. Zierler and J. Brillhart, “On primitive tri-
nomials (mod 2)”, Information and Control
13 (1968), 541-554. Part II, ibid 14 (1969),
566-569.

[33] N. Zierler, “Primitive trinomials whose de-
gree is a Mersenne exponent”, Information
and Control 15 (1969), 67-69.

