
AN IMPLEMENTATION OF A GENERAL-PURPOSE
PARALLEL SORTING ALGORITHM�

ANDREW TRIDGELL and RICHARD P. BRENTy

Computer Sciences Laboratory
Australian National University
Canberra, ACT 0200, Australia

Report TR-CS-93-01
February 1993

ABSTRACT
A parallel sorting algorithm is presented for general purpose internal sorting on MIMD machines.
The algorithm initially sorts the elements within each node using a serial sorting algorithm, them
proceeds with a two-phase parallel merge. The algorithm is comparison-based and requires additional
storage of order the square root of the number of elements in each node. Performance of the algorithm
is examined on two MIMD machines, the Fujitsu AP1000 and the Thinking Machines CM5.
Keywords: Batcher's merge-exchange sort, distributed memory, Fujitsu AP1000, parallel sorting,
sorting, Sparc, Thinking Machines CM5.

1. The Parallel Sorting Task. Many papers have discussed the task of sorting on
parallel computers. See, for example, [1, 2, 9]. Most of these papers have dealt with the
problem from a theoretical point of view, neglecting many issues which are important in
a practical implementation of a parallel sorting algorithm [3, 8]. This report introduces a
practical parallel sorting algorithm which is suitable for e�cient general-purpose internal
sorting.

An overview of the algorithm is given in Section 2. Considerably more details are given in
Section 3. Finally, the performance of our implementations on two MIMD parallel machines
is discussed in Section 4.

1.1. Nomenclature. P is the number of nodes (also called cells or processors) available
on the parallel machine, and N is the total number of elements to be sorted. Np is the number
of elements in a particular node p (0 � p < P ). To avoid double subscripts we abbreviate
Npj to Nj where no confusion should arise.

Elements within each node of the machine are referred to as Ep;i, for 0 � i < Np and
0 � p < P . We may write Ej;i instead of Epj ;i if no confusion will arise.

When giving \big O" time bounds we usually assume that P is �xed. Thus, we do not
usually distinguish between O(N) and O(N=P ).

The only operation assumed for elements is binary comparison, written with the usual
comparison symbols. For example, A < B means that element A precedes element B. The

� Copyright c 1993, the authors.
y E-mail addresses: ftridge,rpbg@cslab.anu.edu.au rpb140tr typeset using LaTEX



elements are considered sorted when they are in non-decreasing order in each node, and non-
decreasing order between nodes. More precisely, this means that Ep;i � Ep;j for all relevant
i < j and p, and that Ep;i � Eq;j for 0 � p < q < P and all relevant i; j.

The speedup o�ered by a parallel algorithm for sorting N elements is de�ned as the ratio
of the time to sort N elements with the fastest known serial algorithm (on one node of the
parallel machine) to the time taken by the parallel algorithm on the parallel machine.

1.2. Aims of the Algorithm. In designing the algorithm we had several aims.
� Speed.
� Good memory utilisation. The number of elements that can be sorted should closely

approach the physical limits of the machine.
� Flexibility, so that no restrictions are placed on N and P . In particular N should

not need to be a multiple of P or a power of 2, which are common restrictions in
parallel sorting algorithms [2].

In order for the algorithm to be truly general purpose we restricted ourselves to algorithms
which relied only on binary comparisons between elements. This rules out methods such as
radix sort [3, 10], which can be very fast in some applications, but whose runtime depends
on the key length and (to some extent) on the data distribution.

We restricted ourselves to algorithms for sorting elements of a �xed size, because of the
di�culties of pointer representations between nodes in a MIMD machine. In short, we were
aiming to produce a parallel equivalent of the qsort() C library function.

To obtain good memory utilisation when sorting small elements, we avoided representa-
tions using linked lists. Thus, the lists of elements referred to below are implemented using
arrays, without any storage overhead for pointers.

The algorithm starts with a number of elements N assumed to be distributed over P
processing nodes. No particular distribution of elements is assumed and the only restrictions
on the size of N and P are the physical constraints of the machine.

The algorithm presented here is similar in many respects to parallel shellsort [4], but
contains a number of new features. For example, the memory overhead of the algorithm is
considerably reduced.

1.3. Hardware. For purposes of illustration we examine the performance of implemen-
tations of the parallel sorting algorithm on two parallel MIMD computers.

The �rst machine is a Fujitsu AP1000 [5]. This machine contains 128 Sparc scalar nodes
connected on an 8 by 16 torus. Node to node communication is performed by hardware,
using wormhole routing. Each node has 16Mb of local memory and all are connected to a
host workstation via a relatively slow connection.

The second machine is a Thinking Machines CM5 [11]. This machine contains 32 Sparc
scalar nodes connected by a communication network that has the topology of a tree. Each
Sparc node has two vector processors which are time-sliced to emulate four virtual vector
processors. Each virtual vector processor controls a bank of 8Mb of memory, giving the
Sparc node access to a total of 32 Mb of memory. In our algorithm no use is made of the
vector processors other than as memory controllers.

Both machines support a general message-passing model as well as a wealth of broadcast
and other communications primitives. Our implementation of parallel sorting only uses a
subset of message passing primitives common to both machines, and for this reason it should
be relatively easy to port to other MIMD machines.

There are a number of small implementation di�erences in the individual nodes of the
two machines which are signi�cant for our algorithm.

� The clock speed is 32 Mhz on the CM5, and 25 Mhz on the AP1000.

2



� The cache line size is 32 bytes on the CM5, and 16 bytes on the AP1000.
� The cache size is 64KB on the CM5, and 128KB on the AP1000.

It will be apparent from the description below that our algorithm is ideally suited to a
machine with a hypercube topology. Neither the CM5 nor the AP1000 has this topology,
so communication patterns which would not cause network contention on a hypercube may
cause contention on the CM5 or the AP1000. It turns out that this does not have a serious
impact on performance (see Section 4.5).

2. Overview of the Algorithm. The algorithm has four distinct
phases (pre-balancing, serial sorting, primary merging, and cleanup). The primary merging
and cleanup phases both use the merge-exchange operation. In Sections 2.1 to 2.5 below, we
outline the purpose and implementation of each phase, and of the merge-exchange operation.

The pre-balancing and primary merging phases are logically unnecessary, and could in
principle be omitted. They are included to improve the performance. Without them, the
algorithm would still sort, but much more slowly.

2.1. Pre-Balancing. The pre-balancing phase moves elements between the nodes so as
to achieve as close to an even distribution as possible. This phase is desirable to minimise
the load imbalance between nodes in later phases of the algorithm. The balancing is achieved
by exchanging elements between pairs of nodes. The communication pattern corresponds to
the edges of a hyper-cube in the case that the number of nodes is a power of 2. This method
produces approximately N=P elements in each node, with an error of order logP for each
node if the number of nodes is a power of 2.

The details of the pre-balance are discussed in Section 3.2, along with a method for
reducing the cost of this process by tokenising the movement of the elements. In practice,
the pre-balancing phase usually consumes only a small proportion of the overall sorting time.

2.2. Serial Sorting. In the serial sorting phase there is no communication between
nodes, but a fast comparison-based serial sorting algorithm is applied to the elements in each
of the nodes. At the end of this phase the data is in the form of P sorted lists of elements,
with approximately N=P elements in each list.

After some experimentation, the serial sorting method chosen was a combination of
quicksort and insertion sort. The implementation is a highly optimised adaptation of code
written by the Free Software Foundation for the GNU project. It was found to perform up
to twice as fast as the standard C library function qsort().

2.3. Primary Merging. The aim of the primary merging phase of the algorithm is to
almost completely sort the data in a very e�cient manner. The data is considered almost
sorted if it is possible to complete the sorting process in a small proportion of the overall
time for the algorithm. This phase maintains the balancing of the lists between the nodes,
and each of the lists remains sorted.

The communication pattern of the primary merging phase is similar to that of the pre-
balancing phase. A merge-exchange operation is performed between nodes in a pattern that
reduces to the edges of a hypercube if P is a power of 2. This means that each node must
perform logP merge-exchange operations. The use of this hypercube pattern of merging
guarantees that each node has about the same amount of work to do at each step. In practice
this reduces the load imbalance between the nodes almost to nil and allows the algorithm to
achieve a high parallel e�ciency.

It is possible to omit the primary merging phase, but this increases the overall sorting
time.

3



2.4. Cleanup. The aim of the cleanup phase is to guarantee that the data is completely
sorted, while consuming very little time for data that is almost sorted. The algorithm chosen
was Batcher's merge-exchange algorithm [6] (not to be confused with Batcher's bitonic sorting
algorithm). The algorithm is actually a generalisation of Batcher's merge-exchange algorithm
(as usually described), in that it operates on lists of elements rather than on single elements.
The generalisation is straightforward, and the proof of its correctness is given in [7]. The
algorithm de�nes a pattern of merge-exchange operations which will merge already-sorted
lists of elements into completely sorted order. The algorithm takes O((logP )2) steps on
each of the nodes, and uses the same merge-exchange algorithm that is used for the primary
merging phase.

For reasons described in Section 3.6, the algorithm is very e�cient if the data is almost
sorted. Thus, in practice the cleanup is found to take only a small proportion of the total
time (see Section 4.4).

2.5. Merge-Exchange. Suppose that p1 < p2. A merge-exchange between nodes p1
and p2 results in node p1 having all its elements less than or equal to those in the node p2, while
maintaining the ordering of elements within the nodes. The e�ciency of the merge-exchange
algorithm has a large inuence on the overall e�ciency of the parallel sorting algorithm.

The number of elements in each of the nodes must be controlled for the algorithm to
function correctly. The number is determined by a method called \in�nity padding" (Sec-
tion 3.1), which in practice leads to only minor changes to the distribution produced by the
pre-balancing phase.

It is important that the merge-exchange algorithm should not use an excessive amount of
temporary storage, which would severely limit the number of elements that could be sorted
on a given hardware con�guration. Our algorithm requires 3

p
N=P elements of temporary

storage, which is a trivial amount in practice.
The �rst part of the merge-exchange algorithm is to determine exactly how many elements

from node p2 will be required by node p1 and vice versa. This is completed in at most
log (N=P ) steps, where each step requires one comparison and the transfer of one element
from node p2 to p1.

The next part is to transfer the elements between the nodes. This must be done so that
the space freed by moving elements from p1 to p2 can be used to contain the elements coming
from p2. The results of the �rst part allow this to be performed without the allocation of
additional memory.

Finally, the merge itself is performed. Although it is a trivial matter to merge two sorted
lists into one if a generous amount of additional storage is assumed, it is more di�cult to
merge them with minimal additional storage. We developed an algorithm which operates on
lists of blocks of elements. This algorithm requires approximately N=P memory movements
and 3

p
N=P elements of additional storage. An important special case occurs when the sizes

of the two lists are very di�erent. Our algorithm is designed to be particularly fast in this
case. Details of this algorithm are discussed in Section 3.5.

3. Implementation Details. In this section we describe in more detail the implemen-
tation of each phase of the algorithm.

3.1. In�nity Padding. In order for a parallel sorting algorithm to be useful as a
general-purpose routine, arbitrary restrictions on the number of elements that can be sorted
must be removed. It is unreasonable to expect that the number of elements N should be a
multiple of the number of nodes P .

The proof given in [7] shows that sorting networks will correctly sort lists of elements
provided the number of elements in each list is equal, and the comparison-exchange operation

4



procedure hypercube_balance(integer base, integer num)
if num = 1 return
for all i in [0..num/2)
pair_balance (base+i, base+i+(num+1)/2)

hypercube_balance (base+num/2, (num+1)/2)
hypercube_balance (base, num - (num+1)/2)
end

Fig. 1. Pseudo-code for load balancing

is replaced with a merge-exchange operation. The restriction to equal-sized lists is necessary,
as small examples show. However, a simple extension of the algorithm, which we call in�nity
padding, can remove this restriction.

First let us de�ne M to be the maximum number of elements in any one node. It is clear
that it would be possible to pad each node with M �Np dummy elements so that the total
number of elements would become M � P . After sorting is complete the padding elements
could be found and removed from the tail of the sorted list.

In�nity padding is a variation on this theme. We notionally pad each node with M �Np
\in�nity" elements. These elements are assumed to have the property that they compare
greater than any elements in any possible data set. If we now consider one particular step in
the sorting algorithm, we see that these in�nity elements need only be represented implicitly.

Say nodes p1 and p2 have N1 and N2 elements respectively before being merged in our
algorithm, with node p1 receiving the smaller elements. Then the addition of in�nity padding
elements will result in M �N1 and M �N2 in�nity elements being added to nodes p1 and p2
respectively. We know that, after the merge, node p2 must contain the largest M elements,
so we can be sure that it will contain all of the in�nity elements up to a maximum of M .
From this we can calculate the number of real elements which each node must contain after
merging. If we designate the number of real elements after merging as N 01 and N 02 then we
�nd that

N 02 = max(0; N1 +N2 �M)

and

N 01 = N1 +N2 �N 02
This means that if at each merge phase we give node p1 the �rst N 01 elements and node

p2 the remaining elements, we have implicitly performed padding of the nodes with in�nity
elements, thus guaranteeing the correct behavior of the algorithm.

3.2. Balancing. The aim of the balancing phase of the algorithm is to produce a dis-
tribution of the elements on the nodes that approaches as closely as possible N=P elements
per node.

The algorithm chosen for this task is one which reduces to a hypercube for values of P
which are a power of 2. Pseudo-code is shown in Figure 1.

When the algorithm is called, the base is initially set to the index of the smallest node
in the system and num is set to the number of nodes, P . The algorithm operates recursively
and takes logP steps to complete. When the number of nodes is not a power of 2, the e�ect
is to have one of the nodes idle in some phases of the algorithm. Because the node which
remains idle changes with each step, all nodes take part in a pair-balance with another node.

As can be seen from the code for the algorithm, the actual work of the balance is per-
formed by another routine called pair balance. This routine is designed to exchange elements

5



between a pair of nodes so that both nodes end up with the same number of elements, or as
close as possible. If the total number of elements shared by the two nodes is odd then the
node with the lower node number gets the extra element. Consequently if the total number
of elements N is less than the number of nodes P , then the elements tend to gather in the
lower numbered nodes.

A slight modi�cation can be made to the balancing algorithm in order to improve the per-
formance of the merge-exchange phase of the sorting algorithm. As discussed in Section 3.1,
in�nity padding is used to determine the number of elements to remain in each node after
each merge-exchange operation. If this results in a node having less elements after a merge
than before then this can lead to complications in the merge-exchange operation and a loss
of e�ciency.

To ensure that this never happens we can take advantage of the fact that all merge
operations in the primary merge and in the cleanup phase are performed in a direction such
that the node with the smaller index receives the smaller elements, a property of the sorting
algorithm used. If the node with the smaller index has more elements than the other node,
then the virtual in�nity elements are all required in the other node, and no transfer of real
elements is required. This means that if a �nal balancing phase is introduced where elements
are drawn from the last node to �ll the lower numbered nodes equal to the node with the
most elements, then the in�nity padding method is not required and the number of elements
on any one node need not change.

As the number of elements in a node can be changed by the pair balance routine it
must be possible for the node to extend the size of the allocated memory block holding the
elements. This leads to a restriction in the current implementation to the sorting of blocks
of elements that have been allocated using the standard memory allocation procedures. It
would be possible to remove this restriction by allowing elements within one node to exist
as two non-contiguous blocks of elements, and applying an un-balancing phase at the end
of the algorithm. This idea has not been implemented because its complexity outweighs its
relatively minor advantages.

In the current version of the algorithm elements may have to move up to logP times
before reaching their destination. It might be possible to improve the algorithm by arrang-
ing that elements move only once in reaching their destination. Instead of moving elements
between the nodes, tokens would be sent to represent blocks of elements along with their
original source. When this virtual balancing was completed, the elements could then be dis-
patched directly to their �nal destinations. This tokenised balance has not been implemented,
primarily because the balancing is su�ciently fast without it.

3.3. Serial Sorting. The aim of the serial sorting phase is to order the elements in
each node in minimum time. For this task, the best available serial sorting algorithm has
been used, subject to the restriction that the algorithm must be comparison based.

If the number of nodes is large then another factor must be taken into consideration in
the selection of the most appropriate serial sorting algorithm. A serial sorting algorithm is
normally evaluated using its average case performance, or sometimes its worst case perfor-
mance. The worst case for algorithms such as quicksort is very rare, so the average case
is more relevant in practice. However, if there is a large variance, then the serial average
case can give an over-optimistic estimate of the performance of a parallel algorithm. This is
because a delay in any one of the nodes may cause other nodes to be idle while they wait for
the delayed node to catch up.

This suggests that it may be safest to choose a serial sorting algorithm such as heapsort,
which has worst case equal to average case performance. However, we found that the parallel
algorithm performed better on average when the serial sort was quicksort (for which the

6



procedure primary_merge(integer base, integer num)
if num = 1 return
for all i in [0..num/2)
merge_exchange (base+i, base+i+(num+1)/2)

primary_merge (base+num/2, (num+1)/2)
primary_merge (base, num - (num+1)/2)
end

Fig. 2. Pseudo-code for primary merge

average performance is good and the variance small) than when the serial sort was heapsort.
Our �nal choice is a combination of quicksort and insertion sort. The basis for this

selection was a number of tests carried out on implementations of several algorithms. The
care with which the algorithm was implemented was at least as important as the choice of
abstract algorithm.

Our implementation is based on code written by the Free Software Foundation for the
GNU project. Several modi�cations were made to give improved performance For example,
the insertion sort threshold was tuned to provide the best possible performance for the Sparc
architecture.

3.4. Primary Merge. The aim of the primary merge phase of the algorithm is to
almost sort the data in minimum time. For this purpose an algorithm with a very high
parallel e�ciency was chosen to control merge-exchange operations between the nodes. This
led to signi�cant performance improvements over the use of an algorithm with lower parallel
e�ciency that is guaranteed to completely sort the data (for example, Batcher's algorithm
as used in the cleanup phase).

The pattern of merge-exchange operations in the primary merge is identical to that used
in the pre-balancing phase of the algorithm. The pseudo-code for the algorithm is given in
Figure 2. When the algorithm is called the base is initially set to the index of the smallest
node in the system and num is set to the number of nodes, P .

This algorithm completes in logP steps per node, with each step consisting of a merge-
exchange operation. As with the pre-balancing algorithm, if P is not a power of 2 then a
single node may be left idle at each step of the algorithm, with the same node never being
left idle twice in a row.

If P is a power of 2 and the initial distribution of the elements is random, then at each
step of the algorithm each node has about the same amount of work to perform as the other
nodes. In other words, the load balance between the nodes is very good. The symmetry is
only broken due to an unusual distribution of the original data, or if P is not a power of 2.
In both these cases load imbalances may occur.

3.5. Merge-Exchange Operation. The aim of the merge-exchange algorithm is to
exchange elements between two nodes so that we end up with one node containing elements
which are all smaller than all the elements in the other node, while maintaining the order
of the elements in the nodes. In our implementation of parallel sorting we always require
the node with the smaller node number to receive the smaller elements. This would not be
possible if we used Batcher's bitonic algorithm instead of his merge-exchange algorithm.

Secondary aims of the merge-exchange operation are that it should be very fast for data
that is almost sorted already, and that the memory overhead should be minimised.

Suppose that a merge operation is needed between two nodes, p1 and p2, which initially
contain N1 and N2 elements respectively. We assume that the smaller elements are required

7



procedure merge(list dest, list source1, list source2)
while (source1 not empty) and (source2 not empty)
if (top_of_source1 < top_of_source_2)

put top_of_source1 into dest
else

put top_of_source2 into dest
endif

endwhile
while (source1 not empty)
put top_of_source1 into dest

endwhile
while (source2 not empty)
put top_of_source2 into dest

endwhile
end

Fig. 3. Pseudo-code for a simple merge

in node p1 after the merge.
In principle, merging two already sorted lists of elements to obtain a new sorted list is

a very simple process. The pseudo-code for the most natural implementation is shown in
Figure 3

This algorithm completes in N1 + N2 steps, with each step requiring one copy and one
comparison operation. The problem with this algorithm is the storage requirements implied
by the presence of the destination array. This means that the use of this algorithm as part of
a parallel sorting algorithm would restrict the number of elements that can be sorted to the
number that can �t in half the available memory of the machine. The question then arises
as to whether an algorithm can be developed that does not require this destination array.

In order to achieve this, it is clear that the algorithm must re-use the space that is freed
by moving elements from the two source lists. We now describe how this can be done. The
algorithm has several parts, each of which is described separately.

The principle of in�nity padding is used to determine how many elements will be required
in each of the nodes at the completion of the merge operation. If the complete balance
operation has been performed at the start of the whole algorithm then the result of this
operation must be that the nodes end up with the same number of elements after the merge-
exchange as before. We assume that in�nity padding tells us that we require N 01 and N 02
elements to be in nodes p1 and p2 respectively after the merge.

Find-Exact Algorithm. When a node takes part in a merge-exchange with another
node, it will need to be able to access the other nodes elements as well as its own. The
simplest method for doing this is for each node to receive a copy of all of the other nodes
elements before the merge begins.

A much better approach is to �rst determine exactly how many elements from each node
will be required to complete the merge, and to transfer only those elements. This reduces
the communications cost by minimising the number of elements transferred, and at the same
time reduces the memory overhead of the merge.

The �nd-exact algorithm allows each node to determine exactly how many elements are
required from another node in order to produce the correct number of elements in a merged
list.

When a comparison is made between element E1;A�1 and E2;N 01�A then the result of the

8



comparison determines whether node p1 will require more or less than A of its own elements
in the merge. If E1;A�1 is greater than E2;N 01�A then the maximum number of elements that
could be required to be kept by node p1 is A�1, otherwise the minimum number of elements
that could be required to be kept by node p1 is A.

The proof that this is correct relies on counting the number of elements that could be
less than E1;A�1. If E1;A�1 is greater than E2;N 01�A then we know that there are at least
N 01 � A + 1 elements in node p2 that are less than E1;A�1. If these are combined with the
A� 1 elements in node p1 that are less than E1;A�1, then we have at least N 01 elements less
than E1;A�1. This means that the number of elements that must be kept by node p1 must
be at most A� 1.

A similar argument can be used to show that if E1;A�1 � E2;N 01�A then the number of
elements to be kept by node p1 must be at least A. Combining these two results leads to
an algorithm that can �nd the exact number of elements required in at most logN1 steps by
successively halving the range of possible values for the number of elements required to be
kept by node p1.

Once this result is determined it is a simple matter to derive from this the number of
elements that must be sent from node p1 to node p2 and from node p2 to node p1.

On a machine with a high message latency, this algorithm could be costly, as a relatively
large number of small messages are transferred. The cost of the algorithm can be reduced,
but with a penalty of increased message size and algorithm complexity. To do this the nodes
must exchange more than a single element at each step, sending a tree of elements with each
leaf of the tree corresponding to a result of the next several possible comparison operations.
This method has not been implemented as the practical cost of the �nd-exact algorithm was
found to be very small on the CM5 and AP1000.

We assume for the remainder of the discussion on the merge-exchange algorithm that
after the �nd exact algorithm has completed it has been determined that node p1 must retain
L1 elements and must transfer L2 elements from node p2.

Transferring Elements. After the exact number of elements to be transferred has
been determined, the actual transfer of elements can begin. The transfer takes the form of
an exchange of elements between the two nodes. The elements that are sent from node p1
leave behind them spaces which must be �lled with the incoming elements from node p2. The
reverse happens on node p2 so the transfer process must be careful not to overwrite elements
that have not yet been sent.

The implementation of the transfer process was straightforward on the CM5 and AP1000
because of appropriate hardware/operating system support. On the CM5 a routine called
CMMD send and receive does just the type of transfer required, in a very e�cient manner.
On the AP1000 the fact that a non-blocking message send is available allows for blocks of
elements to be sent simultaneously on the two nodes, which also leads to a fast implementa-
tion.

If this routine were to be implemented on a machine without a non-blocking send then
each element on one of the nodes would have to be copied to a temporary bu�er before being
sent. The relative overhead that this would generate would depend on the ratio of the speeds
of data transfer within nodes and between nodes.

After the transfer is complete, the elements on node p1 are in two contiguous sorted lists,
of lengths L1 and N 01�L1. In the remaining steps of the merge-exchange algorithm we merge
these two lists so that all the elements are in order.

Unbalanced Merging. Before considering the algorithm that has been devised for min-
imum memory merging, it is worth considering a special case where the result of the �nd-exact

9



algorithm determines that the number of elements to be kept on node p1 is much larger than
the number of elements to be transferred from node p2.

In this case the task which node p1 must undertake is to merge two lists of very di�erent
sizes. There is a very e�cient algorithm for this special case.

Suppose that L1 is much greater than L2. This may occur if the data is almost sorted,
for example, near the end of the cleanup phase. We proceed as follows.

First we determine, for each of the L2 elements that have been transferred from p1, where
it belongs in the list of length L1. This can be done with at most L2 logL1 comparisons using
a method similar to the �nd-exact algorithm. As L2 is small, this number of comparisons is
small, and the results take only O(L2) storage.

Once this is done we can copy all the elements in list 2 to a temporary storage area and
begin the process of slotting elements from list 1 and list 2 into their proper destinations. This
takes at most L1 + L2 element copies, but in practice it often takes only about 2L2 copies.
This is explained by the fact that when only a small number of elements are transferred
between nodes there is often only a small overlap between the ranges of elements in the two
nodes, and only the elements in the overlap region have to be moved. Thus the unbalanced
merge performs very quickly in practice, and the overall performance of the sorting procedure
is signi�cantly better than it would be if we did not take advantage of this special case.

Blockwise Merging. The blockwise merge is a solution to the problem of merging two
sorted lists of elements into one, while using only a small amount of additional storage. The
�rst phase in the operation is to break the two lists into blocks of an equal size B. The exact
size of B is unimportant for the functioning of the algorithm and only makes a di�erence to
the e�ciency and memory usage of the algorithm. We assume that B is O(

p
L1 + L2), which

is small relative to the memory available on each node. To simplify the exposition we also
assume, for the time being, that L1 and L2 are multiples of B.

The merge takes place by merging from the two blocked lists of elements into a destination
list of blocks. The destination list is initially primed with two empty blocks which comprise
a temporary storage area. As each block in the destination list becomes full the algorithm
moves on to a new, empty block, choosing the next one in the destination list. As each block
in either of the two source lists becomes empty they are added to the destination list.

As the merge proceeds there are always exactly 2B free spaces in the three lists. This
means that there must always be at least one free block for the algorithm to have on the
destination list, whenever a new destination block is required. Thus the elements are merged
completely with them ending up in a blocked list format controlled by the destination list.

The algorithm actually takes no more steps than the simple merge outlined earlier. Each
element moves only once. The drawback, however, is that the algorithm results in the ele-
ments ending up in a blocked list structure rather than in a simple linear array.

The simplest method for resolving this problem is to go through a re-arrangement phase
of the blocks to put them back in the standard form. This is what has been done in the
implementation of our parallel sorting algorithm. It would be possible, however, to modify
the whole algorithm so that all references to elements are performed with the elements in this
block list format. At this stage the gain from doing this has not warranted the additional
complexity, but if the sorting algorithm is to attain its true potential then this would become
necessary.

As mentioned earlier, it was assumed that L1 and L2 were both multiples of B. In
general this is not the case. If L1 is not a multiple of B then this introduces the problem
that the initial breakdown of list 2 into blocks of size B will not produce blocks that are
aligned on multiples of B relative to the �rst element in list 1. To overcome this problem we
must make a copy of the L1 mod B elements on the tail of list 1 and use this copy as a �nal

10



source block. Then we must o�set the blocks when transferring them from source list 2 to
the destination list so that they end up aligned on the proper boundaries. Finally we must
increase the amount of temporary storage to 3B and prime the destination list with three
blocks to account for the fact that we cannot use the partial block from the tail of list 1 as a
destination block.

Consideration must �nally be given to the fact that in�nity padding may result in a gap
between the elements in list 1 and list 2. This can come about if a node is keeping the larger
elements and needs to send more elements than it receives. Handling of this gap turns out to
be a trivial extension of the method for handling the fact that L1 may not be a multiple of
B. We just add an additional o�set to the destination blocks equal to the gap size and the
problem is solved.

3.6. Cleanup. The cleanup phase of the algorithm is similar to the primary merge
phase, but it must be guaranteed to complete the sorting process. The method that has
been chosen to achieve this is Batcher's merge-exchange algorithm. This algorithm has some
useful properties which make it ideal for a cleanup operation.

The pseudo-code for Batcher's merge-exchange algorithm is given in [6]. The algorithm
de�nes a pattern of comparison-exchange operations which will sort a list of elements of any
length. The way the algorithm is normally described, the comparison-exchange operation
operates on two elements and exchanges the elements if the �rst element is greater than the
second. In the application of the algorithm to the cleanup operation we generalise the notion
of an element to include all elements in a node. This means that the comparison-exchange
operation must make all elements in the �rst node greater than all elements in the second.
This is identical to the operation of the merge-exchange algorithm. A proof that it is possible
to make this generalisation while maintaining the correctness of the algorithm is given in [7].

Batcher's merge-exchange algorithm is ideal for the cleanup phase because it is very fast
for almost sorted data. This is a consequence of a unidirectional merging property: the
merge operations always operate in a direction so that the lower numbered node receives the
smaller elements. This is not the case for some other �xed sorting networks, such as the
bitonic algorithm [4]. Algorithms that do not have the unidirectional merging property are
a poor choice for the cleanup phase as they tend to unsort the data (undoing the work done
by the primary merge phase), before sorting it. In practice the cleanup time is of the order
of 1 or 2 percent of the total sort time if Batcher's merge-exchange algorithm is used and the
merge-exchange operation is implemented e�ciently.

4. Performance.

4.1. Estimating the Speedup. An important characteristic of any parallel algorithm
is how much faster the algorithm performs than an algorithm on a serial machine. Which
serial algorithm should be chosen for the comparison? Should it be the same as the parallel
algorithm (running on a single node), or the best known algorithm?

The �rst choice gives what which we call the parallel e�ciency of the algorithm. This is
a measure of the degree to which the algorithm can take advantage of the parallel resources
available to it.

The second choice gives the fairest picture of the e�ectiveness of the algorithm itself. It
measures the advantage to be gained by using a parallel approach to the problem. Ideally a
parallel algorithm running on P nodes should complete a task P times faster than the best
serial algorithm running on a single node of the same machine. It is even conceivable, and
sometimes realisable, that caching e�ects could give a speedup of more than P .

A problem with both these choices is apparent when we attempt to time the serial
algorithm on a single node. If we wish to consider problems of a size for which a the use of a

11



0.0

2.0

4.0

6.0

8.0

10.0

105 106 107 108 109

Number of Elements

Sorting 32-bit integers on the 128-node AP1000

Elements per
second �106 projected serial rate

serial rate �128 3333333333333333
333333333333333333333

parallel rate +

+++++++
++++++

++++++
+++

+++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Fig. 4. Sorting 32-bit integers on the AP1000

large parallel machine is worthwhile, then it is likely that a single node cannot complete the
task, because of memory or other constraints.

This is the case for our sorting task. The parallel algorithm only performs at its best for
values of N which are far beyond that which a single node on the CM5 or AP1000 can hold.
To overcome this problem, we have extrapolated the timing results of the serial algorithm to
larger N .

The quicksort/insertion-sort algorithm which we have found to perform best on a serial
machine is known to have an asymptotic average run time of order N logN . There are,
however, contributions to the run time that are of order 1, N and logN . To estimate these
contributions we have performed a least squares �t of the form:

time(N) = a+ b logN + cN + dN logN:

The results of this �t are used in the discussion of the performance of the algorithm to
estimate the speedup that has been achieved over the use of a serial algorithm.

4.2. Timing Results. Several runs have been made on the AP1000 and CM5 to ex-
amine the performance of the sorting algorithm under a variety of conditions. The aim of
these runs is to determine the practical performance of the algorithm and to determine what
degree of parallel speedup can be achieved on current parallel computers.

The results of the �rst of these runs are shown in Figure 4. This �gure shows the
performance of the algorithm on the 128-node AP1000 as N spans a wide range of values,
from values which would be easily dealt with on a workstation, to those at the limit of
the AP1000s memory capacity (2 Gbyte). The elements are 32-bit random integers. The
comparison function has been put inline in the code, allowing the function call cost (which
is signi�cant on the Sparc) to be avoided.

The results give the number of elements that can be sorted per second of real time. This
time includes all phases of the algorithm, and gives an overall indication of performance.

Shown on the same graph is the performance of a hypothetical serial computer that
operates P times as fast as the P individual nodes of the parallel computer. This performance
is calculated by sorting the elements on a single node and multiplying the resulting elements

12



0.0

0.5

1.0

1.5

105 106 107 108 109

Number of Elements

Sorting 16-byte strings on the 128-node AP1000
Elements per
second �106 projected serial rate �128

serial rate �128 333333333333333333333333
parallel rate +

++
++++

++++
+++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++

Fig. 5. Sorting 16-byte strings on the AP1000

per second result by P . An extrapolation of this result to larger values of N is also shown
using the least squares method described in Section 4.1.

The graph shows that the performance of the sorting algorithm increases quickly as the
number of elements approaches 4 million, after which a slow fallo� occurs which closely follows
the pro�le of the ideal parallel speedup. The rollo� point of 4 million elements corresponds
to the number of elements that can be held in the 128KB cache of each node. This indicates
the importance of caching to the performance of the algorithm.

It is encouraging to note how close the algorithm comes to the ideal speedup of P for
a P -node machine. The algorithm achieves 75% of the ideal performance for a 128-node
machine.

A similar result for sorting of 16-byte random strings is shown in Figure 5. In this
case the comparison function is the C library function strcmp(). The roll-o� point for best
performance in terms of elements per second is observed to be 1 million elements, again
corresponding to the cache size on the nodes.

The performance for 16-byte strings is approximately 6 times worse than for 32-bit inte-
gers. This is because each data item is 4 times larger, and the cost of the function call to the
strcmp() function is much higher than an inline integer comparison. The parallel speedup,
however, is higher than that achieved for the integer sorting. The algorithm achieves 85% of
the (theoretically optimal) P times speedup over the serial algorithm for large N .

4.3. Scalability. An important aspect of a parallel algorithm is its scalability, which
depends on the ability of the algorithm to utilise additional nodes. Shown in Figure 6 is the
result of sorting 100,000 16-byte strings per node on the AP1000 as the number of nodes is
varied. The percentages refer to the proportion of the ideal speedup P that is achieved. The
number of elements per node is kept constant to ensure that caching factors do not inuence
the result.

The left-most data point shows the speedup for a single node. This is equal to 1 as the
algorithm reduces to our optimised quicksort when only a single node is used. As the number
of nodes increases, the proportion of the ideal speedup decreases, as communication costs
and load imbalances begin to appear. The graph attens out for larger numbers of nodes,

13



0

20

40

60

80

100

20 40 60 80 100 120 140
Number of Nodes

Percentage of potential speedup with 105 16-byte strings per node

including all nodes 3

3
3
3

333
3

333
3
333

3

333
3
333

3
333
3
33
3

3

333
3333
3
3
33
3
333

3

3333333
3
333
3
33
3

3

3333333
3
333
3
333

3

333
3333
3
333
3
333

3

3333333
3
333
3
333
3
3333333
3
333
3
33
3

3

only powers of 2 +

+++ + + + +

Fig. 6. Scalability of sorting on the AP1000

which indicates that the algorithm should have a good e�ciency when the number of nodes
is large.

The two curves in the graph show the trend when all con�gurations are included and
when only con�gurations with P a power of 2 are included. The di�erence between these
two curves clearly shows the preference for powers of two in the algorithm. Also clear is that
certain values for P are preferred to others. In particular even numbers of nodes perform
better than odd numbers. Sums of adjacent powers of two also seem to be preferred, so that
when P takes on values of 24, 48 and 96 the e�ciency is quite high.

4.4. Where Does The Time Go ?. In evaluating the performance of a parallel sorting
algorithm it is interesting to look at the proportion of the total time spent in each of the
phases of the sort. In Figure 7 this is done over a wide range of values of N for sorting 16-byte
strings on the AP1000. The three phases that are examined are the initial serial sort, the
primary merging and the cleanup phase.

This graph shows that as N increases to a signi�cant proportion of the memory of the
machine the dominating time is the initial serial sort of the elements in each cell. This is
the case because this phase of the algorithm is O(N logN) whereas all other phases of the
algorithm are O(N) or lower. It is the fact that this component of the algorithm is able
to dominate the time while N is still a relatively small proportion of the capacity of the
machine which leads to the practical e�ciency of the algorithm. Many sorting algorithms are
asymptotically optimal in the sense that their speedup approaches P for large N , but few
can get close to this speedup for values of N which are of of interest in practice [8].

It is interesting to note the small impact that the cleanup phase has for larger values of
N . This demonstrates the fact that the primary merge does produce an almost sorted data
set, and that the cleanup algorithm can take advantage of this.

A second way of splitting the time taken for the parallel sort to complete is by task. In
this case we look at what kind of operation each of the nodes is performing, which provided
a �ner division of the time.

Figure 8 shows the result of this kind of split for the sorting of 16-byte strings on the
128-node AP1000, over a wide range of values of N . Again it is clear that the serial sorting

14



0

20

40

60

105 106 107 108

Number of Elements

Sorting 16-byte strings on the 128-node AP1000

Percentage of
total time

Serial Sort 3
3333

333
333
333
333
333
333333333

333333
33333333

3333333
3333

333333333333333
33

Primary Merge +

+++++++
++++++

++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++

Cleanup 2

2222222222222
222
222
222222222222222222222222222222222222222222222222222

Fig. 7. timing breakdown by phase

0

20

40

60

105 106 107 108

Number of Elements

Sorting 16-byte strings on the 128-node AP1000

Percentage of
total time

Serial Sorting 3

3
3
33
333
333
333
3333

3333
3333333333

3333333
33333333333

3333
33333333333333333

Merging +

+
+
++++++++

++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++

Communicating 2

2
222222222222222222222222222222222222222222222222222222222222222222222

Idle ��
�
��������������������������������������������������������������������

Rearranging 4

4444444444444444444444444444444444444444444444444444444444444444444444

Fig. 8. timing breakdown by task

15



Task CM5 time AP1000 time
Idle 0.22 0.23

Communicating 0.97 0.99
Merging 0.75 1.24

Serial Sorting 3.17 4.57
Rearranging 0.38 0.59

Total 5.48 7.62
Table 1

Sort times (seconds) for 8 million integers

dominates for large values of N , for the same reasons as before. What is more interesting is
that the proportion of time spent idling while waiting for messages and in actually commu-
nicating decreases steadily as N increases. From the point of view of the parallel speedup of
the algorithm these tasks are wasted time and need to be kept to a minimum.

4.5. CM5 vs AP1000. The results presented so far are for the 128-node AP1000. It
is interesting to compare this machine with the CM5 to see if the relative performance is
as expected. To make the comparison fairer, we compare the 32-node CM5 with a 32-node
AP1000 (the other 96 nodes are physically present but not used). Since the CM5 vector units
are not used (except as memory controllers), we e�ectively have two rather similar machines.
The same C compiler was used on both machines.

The AP1000 is a single-user machine and the timing results obtained on it are very
consistent. However, it is di�cult to obtain accurate timing information on the CM5. This is
a consequence of the time-sharing capabilities of the CM5 nodes. Communication-intensive
operations produce timing results which vary by a large factor from run to run. To overcome
this problem, the times reported here are for runs with a very long time quantum for the
time sharing, and with only one process on the machine at one time. Even so, we have
ignored occasional anomalous results which take much longer than usual. This means that
the results are not representative of results that are regularly achieved in a real application.
It is hoped that, with improvements in the CM5 operating system, the times shown here
would be achieved as a matter of course.

In Table 1 the speed of the various parts of the sorting algorithm are shown for the
32-node AP1000 and CM5. In this example we are sorting 8 million 32-bit integers.

For the communications operations both machines achieve very similar timing results.
For each of the computationally intensive parts of the sorting algorithm, however, the CM5
achieves times which are between 60% and 70% of the times achieved on the AP1000.

An obvious reason for the di�erence between the two machines is the di�erence in clock
speeds of the individual scalar nodes. There is a ratio of 32 to 25 in favor of the CM5
in the clock speeds. This explains most of the performance di�erence, but not all. The
remainder of the di�erence is due to the fact that sorting a large number of elements is a
very memory-intensive operation.

A major bottleneck in the sorting procedure is the memory bandwidth of the nodes.
When operating on blocks which are much larger than the cache size, this results in a high
dependency on how often a cache line must be re�lled from memory and how costly the op-
eration is. Thus, the remainder of the di�erence between the two machines may be explained
by the fact that cache lines on the CM5 consist of 32 bytes whereas they consist of 16 bytes
on the AP1000. This means a cache line load must occur only half as often on the CM5 as
on the AP1000.

The results illustrate how important minor architectural di�erences can be for the per-
16



formance of complex algorithms. At the same time the vastly di�erent network structures
on the two machines are not reected in signi�cantly di�erent communication times. This
suggests that the parallel sorting algorithm presented here can perform well on a variety of
parallel machine architectures with di�erent communication topologies.

4.6. Optimisations. Several optimisation \tricks" have been used to obtain faster per-
formance. It was found that these optimisations played a surprisingly large role in the speed
of the algorithm, producing an overall speed di�erence of about 50%.

The �rst optimisation was to replace the standard C library routine memcpy() with a
much faster version. At �rst a faster version written in C was used, but this was eventually
replaced by a version written in Sparc assembler.

The second optimisation was the tuning of the block size of sends performed when
elements are exchanged between nodes. This optimisation is hidden on the CM5 in the
CMMD send and receive() routine, but is under the programmer's control on the AP1000.

The value of the B parameter in the blockwise merge routine is important. If it is too
small then overheads slow down the program, but if it is too large then too many copies
must be performed and the system might run out of memory. The value �nally chosen was
4
p
L1 + L2.
The method of rearranging blocks in the blockwise merge routine can have a big inuence

on the performance as a small change in the algorithm can mean that data is far more likely
to be in cache when referenced, thus giving a large performance boost.

A very tight kernel for the merging routine is important for good performance. With
loop unrolling and good use of registers this routine can be improved enormously over the
obvious simple implementation.

It is quite conceivable that further optimisations to the code are possible and would lead
to further improvements in performance.

5. Conclusions. We have presented a practical general-purpose parallel internal sorting
algorithm that comes close to achieving the best possible speedup over an optimised serial
algorithm. An implementation of the algorithm on two real machines has been discussed.

The algorithm derives its generality from the fact that it is comparison-based, and allows
for a user-supplied comparison function. This corresponds to the commonly available serial
sorting procedures that are the mainstay of internal sorting on serial computers.

The algorithm is frugal in its memory requirements, which allows data to be sorted almost
to the limit of a parallel machine's memory. This is important because it is unreasonable
to expect data sets being sorted on a parallel machine to be only a small fraction of the
machine's capacity.

6. Availability. The source code for our algorithm is available via anonymous ftp from
andosl.anu.edu.au (Internet number 150.203.15.95) in the directory
pub/tridge/sorting/par sort

Acknowledgements. Support by Fujitsu Laboratories, Fujitsu Limited, and Fujitsu
Australia Limited via the Fujitsu-ANU CAP Project is gratefully acknowledged.

17



REFERENCES

[1] M. Ajtai, J. Kolmos and E. Szermeredi, \Sorting in c logn parallel steps", Combinatorica 3, 1983, 1-19.
[2] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Toronto, 1985.
[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith and M. Zagha, \A comparison

of sorting algorithms for the Connection Machine CM-2", Proc. Symposium on Parallel Algorithms
and Architectures, Hilton Head, South Carolina, July 1991.

[4] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker, Solving Problems
on Concurrent Processors, Volume 1, Prentice-Hall, Englewood Cli�s, New Jersey, 1988.

[5] H. Ishihata, T. Horie, S. Inano, T. Shimizu and S. Kato, \CAP-II Architecture", Proceedings of the First
Fujitsu-ANU CAP Workshop, Fujitsu Research Laboratories, Kawasaki, Japan, November 1990.

[6] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (second edition),
Addison-Wesley, Menlo Park, 1981, 112-113.

[7] ibid, solution to problem 5.3.4 (38).
[8] L. Natvig, \Logarithmic Time Cost Optimal Parallel Sorting is Not Yet Fast in Practice!", Proc Super-

computing 90, IEEE Press, 1990, 486-494.
[9] H. H. Reif and L. G. Valiant, \A logarithmic time sort for linear size networks", J. ACM 34, 1987, 60-76.

[10] K. Thearling and S. Smith, \An Improved Supercomputing Sorting Benchmark", Proc Supercomputing
92, IEEE Press, 1992, 14-19.

[11] CM-5 Technical Summary, Thinking Machines Corporation, October 1991.

18


