
On Parallel Implementation of the One-sided Jacobi Algorithm
for Singular Value Decompositions�

B. B. Zhou and R. P. Brent
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia
fbing,rpbg@cslab.anu.edu.au

Abstract

In this paper we give evidence to show that in one-
sided Jacobi SVD computation the sorting of column
norms in each sweep is very important. Two paral-
lel Jacobi orderings are described. These orderings
can generate n(n� 1)=2 di�erent index pairs and sort
column norms at the same time. The one-sided Ja-
cobi SVD algorithm using these parallel orderings con-
verges in about the same number of sweeps as the se-
quential cyclic Jacobi algorithm. Some experimental
results on a Fujitsu AP1000 are presented. The issue
of equivalence of orderings is also discussed.

1 Introduction

Let A be a real m � n matrix. Without loss of
generality we assume that m � n. The singular value
decomposition (SVD) of A is its factorization into a
product of three matrices

A = U�V T ;

where U is an m�n matrix with orthonormal columns,
V is an n�n orthogonal matrix, and � is an n�n non-
negative diagonal matrix, say � = diag(�1; � � � ; �n).

There are various ways to compute the SVD [11].
Two of the most commonly used classes of algorithms
are QR-based and Jacobi-based. In sequential com-
puting the QR-based algorithms are usually preferred
because they are faster than the Jacobi-based algo-
rithms. However, the Jacobi-based algorithms may
be more accurate [6]. The Jacobi-based algorithms
have recently attracted a lot of attention as they have
�Appeared in Proceedings Euromicro Workshop on Parallel

and Distributed Processing (San Remo, Italy, January 25-27,
1995), IEEE Computer Society Press, 1995, 401-408. Copyright
c
 1995, IEEE. rpb154 typeset using LaTEX

a higher degree of potential parallelism. There are
two varieties of Jacobi-based algorithms, one-sided
and two-sided. The two-sided Jacobi algorithms are
computationally more expensive than the one-sided
algorithms, and not so suitable for vector pipeline
computing. Thus, to achieve e�cient parallel SVD
computation the best approach may be to adopt the
Hestenes one-sided transformation method [13] as ad-
vocated in [4, 5].

The Hestenes method generates an orthogonal ma-
trix V such that

AV = H;

where the columns of H are orthogonal. The nonzero
columns ~H of H are then normalised so that

~H = Ur�r

with UTr Ur = Ir, �r = diag(�1; � � � ; �r) and r � n is
the rank of A.

The matrix V can be generated as a product of
plane rotations. As in the traditional Jacobi algo-
rithm, the rotations are performed in a �xed sequence
called a sweep, each sweep consisting of n(n � 1)=2
rotations, and every column in the matrix is orthog-
onalised with every other column exactly once per
sweep. The iterative procedure terminates if one com-
plete sweep occurs in which all columns are orthogonal
to working accuracy and no columns are interchanged.
If the rotations in a sweep are chosen in a reasonable,
systematic order, the convergence rate is ultimately
quadratic [9, 11]. Exceptional cases in which cycling
occurs are easily avoided by the use of a threshold
strategy [23].

It is known that one Jacobi plane rotation opera-
tion only involves two columns. Therefore, there are
disjoint operations which can be executed simultane-
ously. In a parallel implementation, we want to per-
form as many non-interacting operations as possible
at each parallel time step. Many parallel orderings



have been introduced in the literature [3, 4, 5, 7, 8,
10, 14, 16, 17, 18]. These orderings were mainly de-
signed for parallel eigenvalue decompositions. Special
care has to be taken in order to achieve high e�ciency
for parallel SVD computations.

In this paper we show that sorting the column
norms in each sweep of the SVD computation is a
very important issue. If a parallel ordering does not
include a proper sorting procedure, it results in too
many sweeps when adopted in a one-sided Jacobi SVD
algorithm. We introduce two parallel Jacobi orderings
and show that both orderings can generate n(n�1)=2
di�erent index pairs, and also sort n elements into or-
der, where n is the problem size. The �rst ordering is a
novel ring ordering, while the second is a combination
of the well-known odd-even index ordering and odd-
even transposition sort. We have implemented one-
sided Jacobi SVD using each ordering on a distributed
memory MIMD machine, the Fujitsu AP1000. Our ex-
perimental results show that the new algorithms can
achieve the same e�ciency as the sequential cyclic Ja-
cobi algorithm for SVDs, i.e. the same total number
of sweeps to convergence.

The paper is organised as follows. x2 discusses
sequential algorithms. Three di�erent rotation algo-
rithms for generating plane rotation parameters are
described. In x3 we consider parallel implementation
of one-sided Jacobi SVD using index sorting and show
the e�ciency obtained (in terms of the total number
of sweeps) is not as good as that of the sequential
cyclic Jacobi algorithm. Our parallel Jacobi orderings
(with experimental results) are then described in x4
and x5. The issue on equivalence of orderings for one-
sided Jacobi is also discussed in x6. Some conclusions
are given in x7.

2 Sequential Algorithms

There are two important implementation details
which determine the speed of convergence of the one-
sided Jacobi method for computing the SVD. The
�rst is the method of ordering, i.e., how to order the
n(n�1)=2 rotations in one sweep of computation. Var-
ious orderings have been introduced in the literature.
In sequential computation, the most commonly used
is the cyclic Jacobi ordering (cyclic ordering by rows
or by columns) [9, 12]. When discussing sequential
Jacobi algorithms in this paper, we assume that the
cyclic ordering by rows is applied.

The second important detail is the method for gen-
erating the plane rotation parameters c and s in each
iteration. For the one-sided Jacobi method there are

three main rotation algorithms, which we now de-
scribe.

Rotation Algorithm 1 This algorithm is derived
from the standard two-sided Jacobi method for the
eigenvalue decomposition of the matrix B = ATA.

Suppose that after k sweeps we have the up-
dated matrix A(k) =

h
a(k)

1 a(k)
2 � � � a(k)

n

i
: To

annihilate the o�-diagonal element b(k)
ij of B(k) =

(A(k))TA(k) in the (k + 1)th sweep, we �rst need to
compute b(k)

ii , b(k)
ij and b(k)

jj , that is,

b(k)
ii = (a(k)

i )Ta(k)
i = ka(k)

i k2;

b(k)
ij = (a(k)

i )Ta(k)
j

and
b(k)
jj = (a(k)

j )Ta(k)
j = ka(k)

j k2:
where kxk is the 2-norm of the vector x. The plane
rotation factors c and s, which are used to orthogo-
nalise the corresponding two columns, are then gener-
ated based on the two-sided Jacobi method. It can be
proved that the value of b(k)

ii is increased and the value
of b(k)

jj is decreased after a plane rotation operation if
b(k)
ii > b(k)

jj . Otherwise, b(k)
ii is decreased and b(k)

jj is
increased.

Rotation Algorithm 2 The second algorithm, in-
troduced by Hestenes [13], is the same as the Algo-
rithm 1 except that the columns a(k)

i and a(k)
j are to

be swapped if ka(k)
i k < ka(k)

j k for i < j before the
orthogonalization of the two columns. Therefore, we
always have b(k+1)

ii � b(k+1)
jj . When the cyclic ordering

by rows is applied, the computed singular values will
be sorted in a nonincreasing order.

Rotation Algorithm 3 The third algorithm was
derived by Nash [19] and implemented on the IL-
LIAC IV by Luk [16]. To determine the rotation pa-
rameters c and s for orthogonalising two columns i
and j, one extra condition has to be satis�ed in this
algorithm, that is,

ka(k+1)
i k2 � ka(k)

i k2 = ka(k)
j k2 � ka(k+1)

j k2 � 0:

With this extra condition the rotation parameters are
chosen so that ka(k+1)

i k is greater than ka(k+1)
j k after

the orthogonalization, without explicitly exchanging
the two columns. As in Algorithm 2, the computed
singular values will appear in a nonincreasing order if
the cyclic ordering by rows is applied.



Size Alg. 1 Alg. 2 Alg. 3
80 11 9 9
100 12 8 8
120 11 9 9
140 12 9 9
160 12 9 9
180 12 9 9
200 12 9 10

Table 1: Sweeps to convergence for the cyclic Jacobi
ordering on a Sun workstation.

It is known from numerical experiments that an im-
plementation which uses Rotation Algorithm 2 or 3 is
more e�cient than the one using Rotation Algorithm 1
when the cyclic ordering is applied.

It is easy to verify that implicit in the cyclic order-
ing is a sorting procedure which can sort the values of
n elements into nonincreasing (or nondecreasing) or-
der in n(n� 1)=2 steps. Since Rotation Algorithms 2
and 3 always increase b(k)

ii and decrease b(k)
jj for i < j

when orthogonalising the two columns, the column
norms tend to be sorted after each sweep of computa-
tions. Therefore, the columns and their norms tend to
be approximately determined after a few sweeps and
only change by a small amount during each sweep.
Since the column norms are not sorted during each
sweep when using Rotation Algorithm 1, it is possi-
ble that the norm of column i may be increased when
two columns i and j are orthogonalised in a sweep,
but norm of column j will be increased when the two
columns meet again in the next sweep. Thus there
are oscillations in column norms and (empirically) it
takes more sweeps for the same problem to converge.
This e�ect was also noted in [6, 20]. It is probably the
main reason why applying Rotation Algorithm 2 or 3
is more e�cient than applying Rotation Algorithm 1.

In order to compare the performance in terms of the
total number of sweeps with parallel implementations
which are described in the following sections, we give
in Table 1 some experimental results obtained on a
(sequential) Sun Sparc workstation.

3 A Parallel Implementation Using In-
dex Sorting

Many parallel Jacobi orderings have been intro-
duced in the literature. Any of these orderings may
be adopted to implement the one-sided Jacobi method

8

7

6

5

4

3

2

1
step 1:

87

32 1

64

5
step 2:

7 8

3

6

4 2 1

5
step 3:

7 8

16 4 2

5 3
step 4:

8

7 26 4

5 3 1
step 5:

8

7 6 4

1

5

3 2
step 6:

8

7 6

41 2

53
step 7:

Figure 1: The round robin ordering

Size Algorithm 1 Algorithm 2 Algorithm 3
T S T S T S

200 14.43 12 19.31 16 19.11 16
400 72.74 13 97.59 17 94.45 16
600 226.4 14 290.4 17 291.6 17
800 519.6 15 645.5 17 641.9 17
1000 994.4 15 1255 18 1228 17
1200 1811 16 2219 18 2207 18
1400 2978 18 3495 18 3439 18

Table 2: Results for the round robin ordering, with
index sorting, on an AP1000 with 100 processors or-
ganised as a linear array (T = time (sec.), S = sweeps).

in parallel. However, care has to be taken in order to
achieve the desired e�ciency. In this section we give
some results from our experiments and show that op-
timal e�ciency may not be obtained without a proper
procedure for sorting the column norms in each sweep.
For simplicity we assume from now on that n (the
number of columns of A) is even.

In our experiment the well-known round robin or-
dering is applied. This ordering is depicted in Fig. 1.
When Rotation Algorithm 2 or 3 described in the x2
is applied, we always increase the norm of a column
associated with smaller index when orthogonalising a
pair of columns. Since the indices are placed in a
nondecreasing order, the �nal results should be in a
nonincreasing order.

In the experiment on a Fujitsu AP1000 both sin-
gular values and singular vectors are calculated using
100 PEs which are organised as a one-dimensional ar-
ray. The results are given in Table 2. It can be seen



from Table 2 that the results from using Rotation Al-
gorithm 2 or 3 are not as good as those from using
Rotation Algorithm 1 in terms of both time and the
number of sweeps. This is inconsistent with the con-
clusion obtained in sequential computation using the
cyclic ordering by rows. The main reason, which will
become more clear in the following sections, is that the
round robin ordering cannot sort the elements prop-
erly in a nonincreasing (or nondecreasing) order in one
sweep (or n� 1 steps).

Although the natural order of the indices is restored
after each sweep, large norms will not necessarily go
with small indices when rotation algorithm 2 is ap-
plied. The exchange of columns is then inevitable.
Consequently certain pairs of columns may not be gen-
erated in the sweep. This degrades the overall perfor-
mance. When Rotation Algorithm 3 is adopted, there
is no need to swap columns. Since we always increase
the norm of the column associated with the smaller
index in orthogonalising a pair of columns, the val-
ues of some large norms (which should be increased)
will be decreased in the next sweep because the cor-
responding columns are placed in the positions asso-
ciated with the larger indices in the index pairs. As a
consequence, more sweeps are required for computing
a given problem.

In the next two sections we introduce two Jacobi
ordering and show that more e�cient results may be
obtained if a proper sorting of columns norms in each
sweep is considered.

4 The Ring Jacobi Ordering

In this section we describe a parallel ring ordering.
This ordering can not only generate the required index
pairs in a minimum number of steps, but also sort
column norms at the same time.

Our Jacobi ordering consists of two procedures,
forward sweep and backward sweep, as illustrated in
Fig. 2. They are applied alternately during the com-
putation.

In either forward or backward sweep the n indices
are organised into two rows. Any two indices in the
same column at a step form one index pair. One index
in each column is then shifted to another column as
shown by the arrows so that di�erent index pairs can
be generated at the next step. The up-and-down arrow
in Fig. 2 indicates the exchange of two indices in the
column before one is shifted. Each sweep (forward or
backward), taking n�1 steps, can generate n(n�1)=2
di�erent Jacobi pairs, as well as sort the values of n
elements into nonincreasing (or nondecreasing) order.

step 1:

step 2:

step 3:

step 4:

step 5:

step 6:

step 7:

4 6 2

1 3 5

6

1 3 5

1 3

6

31

1

1

7

8

7 8 4

2

7 5

8

4

2

7685

4 2

7 563

8 4 2

7 5 38

6 4 2

1 3 5

2 4 6 8

78

1

2

7 5

46

3

2

18

4

5

67

3

4

1

6

2 5

78

3

6

12

74

38

5

7

1

5

2 4

86

3

5

12

3

4

67

8

3

1

8

2 4

75

6

(b)(a)

Figure 2: The ring Jacobi ordering. (a) forward sweep
and (b) backward sweep.

We outline a proof that n(n � 1)=2 di�erent Ja-
cobi pairs can be generated in n� 1 steps by either a
forward or backward sweep. To do this, we �rst per-
mute the initial positions of n indices for the round
robin ordering [5] and then show that the orderings
can generate the same index pairs at any step. Since
it is well known that the round robin ordering gener-
ates n(n � 1)=2 di�erent index pairs in n � 1 steps,
this shows the correctness of our claim. The detailed
proof is tedious and is omitted.

It can easily be veri�ed that the forward sweep and
the backward sweep are essentially the same, except
that one sorts the elements into nondecreasing order
and the other sorts the elements into nonincreasing
order. Thus we only use the forward sweep as an ex-
ample to show the procedure on how to sort n elements
into nondecreasing order. (For detailed proof see [24].)

If the numbers in Fig. 2(a) are not considered as
indices, but as the values of n elements, the �gure gives
an example of sorting n elements from nonincreasing
order to nondecreasing order. In each step the smaller



element in each column is placed on the top except in
even steps the larger element is placed on the top if
the column has a up-and-down arrow in it. Since the
up-and-down arrow indicates the exchange of the two
elements in the column, these arrows can be removed
in even steps by letting the smaller elements be placed
at the top of the corresponding columns. Thus, we
may describe the sorting procedure as follows:

One forward sweep can be applied to sort n ele-
ments in a nondecreasing order. Each step in the
sweep consists of two substeps. The �rst substep com-
pares the two elements in each column and places the
smaller one on the top and the larger one at the bot-
tom. The second substep then shifts the elements lo-
cated at the bottom to the next column according to
the arrows which form a ring, as depicted in Fig. 2(a).
At each odd step the two elements in the column with
a up-and-down arrow have to exchange their positions
before the shift takes place. For n elements they are
sorted in a nondecreasing order after n�1 such steps.

Since both index ordering and sorting can be done
simultaneously in either a forward or a backward
sweep, it may seem that applying these two sweeps
alternately in the SVD computation is not necessary.
The reason why we perform the two sweeps alternately
is as follows. Suppose that the n indices are initially
placed in a nonincreasing order. They will be sorted in
a nondecreasing order after a forward sweep. However,
the natural order of indices for index ordering at each
step is maintained during sorting. Thus the n(n�1)=2
di�erent index pairs are also generated after the com-
putation. Although the original (nonincreasing) order
is restored when a backward sweep is performed, the
exchange of positions of some indices is inevitable. As
a consequence some index pairs may not be produced
after the computation. This can easily be veri�ed by
an example of sorting a small number of indices (which
are initially placed in a nonincreasing order) using the
backward sweep.

We implemented our ring ordering algorithm on the
Fujitsu AP1000 at the Australian National University.
In the experiment the system is con�gured as a one-
dimensional array and both singular values and singu-
lar vectors are computed. Some of the experimental
results from applying di�erent rotation algorithms are
given in Table 3. It is easy to see from the table that
the program adopting rotation algorithm 1 is not as
e�cient as those adopting rotation algorithms 2 or 3,
especially when the problem size is large. If the total
number of sweeps is counted, these results are con-
sistent with those in Table 1 (obtained in sequential
computation using the cyclic ordering by rows). In

Size Algorithm 1 Algorithm 2 Algorithm 3
T S T S T S

200 11.58 12 10.01 10 10.02 10
400 63.35 13 57.39 11 57.42 11
600 210.8 14 187.1 12 185.6 12
800 499.5 15 416.7 12 416.3 12
1000 945.2 15 799.1 12 799.8 12
1200 1702 16 1407 12 1445 13
1400 2787 17 2280 13 2272 13

Table 3: Results for the ring Jacobi ordering on an
AP1000 with 100 processors organised as a linear array
(T = time (sec.), S = sweeps).

our experiment we also measured the sensitivity of the
performance to the di�erent number of processors used
in the computation. The results show that the total
number of sweeps required for the computation of the
same SVD will not vary as the processor number is
changed. Our experimental results are clear evidence
which shows how important it is to adopt a proper
sorting procedure in each sweep.

5 The Odd-Even Ordering

It is known that the odd-even index ordering [17]
has the same data 
ow pattern as the odd-even trans-
position sort [2]. The two procedures may be com-
bined into an e�cient algorithm for one-sided Jacobi.

To combine both sorting and index ordering we re-
quire two di�erent sweeps. For simplicity they are
called the forward sweep and the backward sweep (see
Fig. 3). These two sweeps are performed alternately
during the computation. In either sweep the n indices
are placed in a row at each step. Any two indices in
the same parentheses form an index pair. Each sweep
takes 2n steps to complete. It is easy to see that the
two sweeps are equivalent when only the index order-
ing is considered. However, the forward sweep always
places the larger index to the left in a parentheses,
and so sorts the elements into a nondecreasing order.
Similarly, the backward sweep sorts the elements into
a nonincreasing order.

There are several special-purpose architectures in-
troduced in the literature for parallel implementation
of the odd-even Jacobi ordering algorithm, e.g., [17].
However, extra care has to be taken in order to ef-
�ciently implement the algorithm on general-purpose
distributed memory machines. There is also a pro-



(1 2) (3 4) (5 6) (7 8)

2 (1 4) (3 6) (5 8) 7

(2 4) (1 6) (3 8) (5 7)

4 (2 6) (1 8) (3 7) 5

(4 6) (2 8) (1 7) (3 5)

6 (4 8) (2 7) (1 5) 3

(6 8) (4 7) (2 5) (1 3)

8 (6 7) (4 5) (2 3) 1

1)

2

2)

4

4)

6

6)

8

(8

7

(7

5

(5

3

(3

1

7)

(8

5)

(7

3)

(5

1)

(3

(6

5)

(8

3)

(7

1)

(5

2)

5)

(6

3)

(8

1)

(7

2)

(5

(4

3)

(6

1)

(8

2)

(7

4)

3)

(4

1)

(6

2)

(8

4)

(7

(2

1)

(4

2)

(6

4)

(8

6)

(a) Forward sweep

(b) Backward sweep

Figure 3: The odd-even Jacobi ordering. (a) forward
sweep and (b) backward sweep

cedure for parallel implementation of the odd-even
transposition sort [1]. When this procedure is applied
for the purpose of the one-sided Jacobi SVD computa-
tion, we may not achieve an active/idle ratio of proces-
sors higher than 0.5 because only half the total num-
ber of PEs in the system are active at each step. In
the following we describe an improved procedure. In
this procedure almost all the PEs are active during
the computation and the communication cost can also
greatly be reduced.

To simplify the discussion we only consider sort-
ing n elements into a nonincreasing order on a par-
allel system of P PEs. We assume that 2P divides
n and that the PEs are organised as a linear array.
To distribute the n elements into the P PEs we �rst

Algorithm 2 Algorithm 3
Size odd-even ring odd-even ring

T S T S T S T S
128 17.85 11 15.98 10 17.78 11 15.99 10
256 137.5 11 130.1 11 137.5 11 130.2 11
384 472.2 11 456.3 11 472.2 11 456.5 11
512 1237 12 1156 11 1233 12 1160 11
640 2320 12 2298 13 2326 12 2242 12
768 4018 12 3888 12 4027 12 3894 12

Table 4: Comparison of odd-even and ring Jacobi or-
derings on the AP1000 with 8 processors organised as
a linear ring.

divide the numbers into 2P blocks, each block hold-
ing n=(2P ) elements. The 2P blocks are then allo-
cated evenly to the P PEs, that is, each PE stores two
blocks in its local memory. According to the ordering
described in Fig. 3(a) the computation takes 2P steps
to complete. At the beginning of the computation the
elements in each block are sorted in a nonincreasing or-
der. Afterwards, at each odd step each PE will merge
the two blocks stored in the local memory and then
transfer one block which contains n=(2P ) smaller ele-
ments to its right neighbour, while at each even step
all the PEs, except the leftmost one which holds only
one block of sorted elements, merge the two blocks
and then transfer one block holding larger elements
to their left neighbours. It is easy to see that in the
above procedure almost all the PEs are active during
the computation.

Assume that the cost for sending (or receiving) a
message of w words to (or from) a neighbouring PE
is c0 + c1w where c0 is the start up time and 1=c1 is
the transfer rate. It is easy to see that the communi-
cation cost at each step is c0 + c1n=(2P ) and the total
communication cost is 2c0P + c1n. In contrast with
the result using the conventional procedure for paral-
lel implementation of the odd-even sorting algorithm,
the total communication cost is reduced almost by
half. (The analysis of the cost required by the conven-
tional procedure is straightforward.) Therefore, our
new procedure will be more e�cient in computing the
one-sided Jacobi.

We have implemented the above procedure on the
AP1000 and obtained the same result as the ring or-
dering in terms of the number of sweeps for solving a
given SVD problem (see Table 4). It is known that the
odd-even ordering requires one more step to complete
a sweep than the ring ordering (for n even). However,
which one is more e�cient is very much dependent
upon the real machine con�guration. If all PEs are



Size Algorithm 2 Algorithm 3
T S T S

200 14.23 11 13.58 11
400 67.15 11 66.03 11
600 205.4 12 202.1 12
800 446.9 12 442.6 12
1000 848.1 12 842.9 12
1200 1522 13 1530 13
1400 2398 13 2386 13

Table 5: Results for the round robin ordering, with
consideration of sorting, on the AP1000 with 100 pro-
cessors organised as a linear array.

con�gured in a linear array without a connection be-
tween the two boundary PEs, for example, the ring
ordering would be less e�cient because of the high
cost for a message to travel from one end to the other.
The results given in Table 4 show that the ring or-
dering will be more e�cient if the PEs are physically
interconnected in a ring.

6 Equivalence of Orderings

Equivalence of di�erent orderings was de�ned
in [18]. In that de�nition only the order of index pairs
is considered, that is, two orderings are equivalent if
they produce the same set of index pairs at the same
step (by a relabelling of the initial indices). As we
discussed in the previous sections, however, two or-
derings satisfying only this de�nition may not share
the same convergence properties for one-sided Jacobi
since an ordering which can also sort column norms in
each sweep will certainly converge faster than the one
which cannot. In the following we give an example
to show that an ordering which cannot sort column
norms may still perform e�ciently as long as it can
generate the same index pairs at the same step as one
which does sorting.

As discussed in x4, the round robin ordering can
generate the same index pairs at the same step as the
ring ordering by a relabelling of the initial indices.
It is easy to verify that sorting column norms can
be guaranteed (although the �nal results may not be
placed in a nonincreasing or nondecreasing order) if
the round robin ordering with this initialisation of in-
dices is adopted and other details are the same as for
the application of the ring ordering.

We reimplemented the round robin ordering for the

one-sided Jacobi SVD based on the above method.
Some of the experimental results are given in Table 5.
Comparing this table with Table 2, it is easy to see
that a faster convergence rate can be achieved if a
proper sorting procedure is adopted in the computa-
tion. Thus we may modify the de�nition of a good
ordering for one-sided Jacobi as follows:

De�nition A good ordering for one-sided Jacobi is
one which

1. completes a sweep in a minimum number of steps;

2. has a simple and regular communication pattern
between steps; and

3. sorts column norms in each sweep, or generates
(by a relabelling of the initial indices) the same
index pairs at the same step as an ordering which
does sorting.

7 Conclusions

We have shown that parallel orderings without
proper consideration of sorting may fail to achieve high
e�ciency when applied to the one-sided Jacobi SVD.
Our parallel ring Jacobi ordering introduced in this
paper can do both index ordering and sorting simul-
taneously in a sweep.

We have introduced an algorithm which combines
the odd-even index ordering and the odd-even trans-
position sort, and given a procedure to e�ciently im-
plement this algorithm on general-purpose distributed
memory machines. The experimental results show
that both the ring and the modi�ed odd-even Jacobi
orderings can achieve the same convergence rate as the
sequential cyclic Jacobi ordering in terms of the total
number of sweeps.

The concept of equivalence of orderings can greatly
simplify the work involved in analysing convergence
properties of newly introduced orderings. However,
the original de�nition only considers the equivalence
of index ordering. Our experimental results show that
this is not su�cient to a�rm that two orderings give
the same convergence properties when applied to the
one-sided Jacobi SVD.

Finally, we have described how to e�ciently imple-
ment a Jacobi ordering algorithm which cannot sort,
but can generate the same set of index pairs at the
same step as an ordering which does sort.



References

[1] S. G. Akl, Parallel Sorting Algorithms, Academic
Press, Orlando, Florida, 1985.

[2] G. Baudet and D. Stevenson, \Optimal sorting
algorithms for parallel computers", IEEE Trans.
on Computers, C{27, 1978, 84{87.

[3] C. H. Bischof, \The two-sided block Jacobi
method on a hypercube", in Hypercube Multipro-
cessors, M. T. Heath, ed., SIAM, 1988, pp. 612-
618.

[4] R. P. Brent, \Parallel algorithms for digital sig-
nal processing", Proceedings of the NATO Ad-
vanced Study Institute on Numerical Linear Al-
gebra, Digital Signal Processing and Parallel Al-
gorithms, Leuven, Belgium, August, 1988, pp. 93-
110.

[5] R. P. Brent and F. T. Luk, \The solution of
singular-value and symmetric eigenvalue prob-
lems on multiprocessor arrays", SIAM J. Sci. and
Stat. Comput., 6, 1985, pp. 69-84.

[6] J. Demmel and K. Veseli�c, \Jacobi's method is
more accurate than QR", SIAM J. Sci. Stat.
Comput., 11, 1992, pp. 1204-1246.

[7] P. J. Eberlein and H. Park, \E�cient implemen-
tation of Jacobi algorithms and Jacobi sets on
distributed memory architectures", J. Par. Dis-
trib. Comput., 8, 1990, pp. 358-366.

[8] L. M. Ewerbring and F. T. Luk, \Computing the
singular value decomposition on the Connection
Machine", IEEE Trans. Computers, 39, 1990, pp.
152-155.

[9] G. E. Forsythe and P. Henrici, \The cyclic Jacobi
method for computing the principal values of a
complex matrix", Trans. Amer. Math. Soc., 94,
1960, pp. 1-23.

[10] G. R. Gao and S. J. Thomas, \An optimal parallel
Jacobi-like solution method for the singular value
decomposition", in Proc. Internat. Conf. Parallel
Proc., 1988, pp. 47-53.

[11] G. H. Golub and C. F. Van Loan, Matrix Com-
putations, The Johns Hopkins University Press,
Baltimore, MD, second ed., 1989.

[12] P.. Henrici, \On the speed of convergence of cyclic
and quasicyclic Jacobi methods for computing
eigenvalues of Hermitian matrices", J. Soc. In-
dust. Appl. Math., 6, 1958, pp. 144-162.

[13] M. R. Hestenes, \Inversion of matrices by
biorthogonalization and related results", J. Soc.
Indust. Appl. Math., 6, 1958, pp. 51-90.

[14] T. J. Lee, F. T. Luk and D. L. Boley, Computing
the SVD on a fat-tree architecture, Report 92-
33, Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, New York, November
1992.

[15] C. E. Leiserson, \Fat-trees: Universal networks
for hardware-e�cient supercomputing", IEEE
Trans. Computers, C-34, 1985, pp. 892-901.

[16] F. T. Luk, \Computing the singular-value decom-
position on the ILLIAC IV", ACM Trans. Math.
Softw., 6, 1980, pp. 524-539.

[17] F. T. Luk, \A triangular processor array for com-
puting singular values", Lin. Alg. Applics., 77,
1986, pp. 259-273.

[18] F. T. Luk and H. Park, \On parallel Jacobi order-
ings", SIAM J. Sci. and Stat. Comput., 10, 1989,
pp. 18-26.

[19] J. C. Nash, \A one-sided transformation method
for the singular value decomposition and alge-
braic eigenproblem", Comput. J, 18, 1975, pp.
74-76.

[20] P. P. M. De Rijk, \A one-sided Jacobi Algorithm
for computing the singular value decomposition
on a vector computer", SIAM J. Sci. and Stat.
Comput., 10, 1989, pp. 359-371.

[21] R. Schreiber, \Solving eigenvalue and singular
value problems on an undersized systolic array",
SIAM. J. Sci. Stat. Comput., 7, 1986, pp. 441-
451.

[22] K. Veseli�c and V. Hari, \A note on a one-sided
Jacobi algorithm", Numerische Mathematik, 56,
1990, pp. 627-633.

[23] J. H. Wilkinson, The Algebraic Eigenvalue Prob-
lem, Clarendon Press, Oxford, 1965, pp. 277-278.

[24] B. B. Zhou and R. P. Brent, \A paral-
lel ring ordering algorithm for e�cient one-
sided Jacobi SVD computations" in Proc. Sixth
IASTED/ISMM Internat. Conf. on Parallel and
Distributed Computing and Systems, Washing-
ton, USA, October, 1994, pp. 369-372.


