Numerical Stability of Some Fast Algorithms for Structured Matrices (invited paper)*

Richard P. Brent
Computer Sciences Laboratory
Australian National University
Richard.Brent@anu.edu.au
March 1997

*Presented at Workshop on Scientific Computing 97, CUHK, Hong Kong, 12 March 1997. Dedicated to Gene Golub on the occasion of his 65th birthday.
Copyright © 1997, R. P. Brent.
rpb173r typeset using \LaTeX

Abstract
We consider the numerical stability/instability of fast algorithms for solving systems of linear equations or linear least squares problems with a low displacement-rank structure. For example, the matrices involved may be Toeplitz or Hankel. In particular, we consider algorithms which incorporate pivoting without destroying the structure, such as the GKO algorithm, and describe some recent results by Sweet and Brent, Ming Gu, Michael Stewart and others on the stability of these algorithms. It is interesting to compare these results with the corresponding stability results for algorithms based on the seminormal equations and for the well known algorithms of Schur/Bareiss and Levinson.

Outline
- Structured matrices
 - Displacement structure
 - Cauchy-like matrices
 - Toeplitz-like matrices
 - Toeplitz ↔ Cauchy
- Partial pivoting algorithms
 - Possible growth of generators
 - Improvements of Gu and Stewart
- Positive definite structured matrices
 - Schur/Bareiss algorithms
 - Comparison with Levinson
 - Generalized Schur algorithm
- Orthogonal factorization
 - Weak stability
 - The problem of computing Q

Because of shortage of time, I will not consider look-ahead algorithms or iterative algorithms.

Acronyms

- $BBH =$ Bojanczyk, Brent & de Hoog.
- $BBHS =$ BBH & Sweet.
- $GKO =$ Golberg, Kailath & Olshevsky.

Notation

R is a structured matrix,
T is a Toeplitz or Toeplitz-type matrix,
P is a permutation matrix,
L is lower triangular,
U is upper triangular,
Q is orthogonal.

Error Bounds

In error bounds $O_n(\varepsilon)$ means $O(\varepsilon f(n))$, where $f(n)$ is a polynomial in n.
Displacement Structure

Structured matrices R satisfy a Sylveste equation which has the form

$$\nabla (A_f, A_b)(R) = A_f R - RA_b = \Phi \Psi,$$

where A_f and A_b have some simple structure (usually banded, with 3 or fewer full diagonals), Φ and Ψ are $n \times \alpha$ and $\alpha \times n$ respectively, and α is some (small) integer.

The pair of matrices (Φ, Ψ) is called the (A_f, A_b)-generator of R.

α is called the (A_f, A_b)-displacement rank of R.

We are interested in cases where α is small (say at most 4).

Example – Cauchy

Particular choices of A_f and A_b lead to definitions of basic classes of matrices. Thus, for a Cauchy matrix

$$C(t, s) = \begin{bmatrix} 1 & t_{ij} \\ t_i - s_j \\ \end{bmatrix},$$

we have

$$A_f = D_t = \text{diag}(t_1, t_2, \ldots, t_n),$$

$$A_b = D_s = \text{diag}(s_1, s_2, \ldots, s_n)$$

and

$$\Phi^T = \Psi = [1, 1, \ldots, 1].$$

More general matrices, where Φ and Ψ are any rank-α matrices, are called Cauchy-type.

Example – Toeplitz

For a Toeplitz matrix $T = [t_{ij}] = [a_{i-j}]$

$$A_f = Z_1 = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix},$$

$$A_b = Z_{-1} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix},$$

$$\Phi = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ a_0 & a_1 + a_1 & \cdots & a_{-1} + a_{-1} \end{bmatrix}^T,$$

and

$$\Psi = \begin{bmatrix} a_{n-1} - a_{-1} & \cdots & a_1 - a_{1-n} & a_0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}.$$
Structured Gaussian Elimination

The key to structured Gaussian elimination is the fact that the displacement structure is preserved under Schur complementation, and that the generators for the Schur complement R_{k+1} can be computed from the generators of R_k in $O(n)$ operations.

Partial Pivoting

Row and/or column interchanges destroy the structure of matrices such as Toeplitz matrices. However, if A_f is diagonal (which is the case for Cauchy and Vandermonde type matrices), then the structure is preserved under row permutations.

This observation leads to the GKO-Cauchy algorithm for fast factorization of Cauchy-type matrices with partial pivoting (and many recent variations on the theme by Boros, Gobberg, Ming Gu, Heinig, Kailath, Olshevsky, M. Stewart, etc).

Toeplitz to Cauchy

Heinig (1994) showed that, if T is a Toeplitz-type matrix, then

$$R = FT D^{-1} F^*$$

is a Cauchy-type matrix, where

$$F = \frac{1}{\sqrt{n}} [e^{2\pi i (k-1)(j-1)/n}]_{k,j=1}^{n}$$

is the Discrete Fourier Transform matrix,

$$D = \text{diag}(1, e^{\pi i/n}, \ldots, e^{\pi i(n-1)/n})$$

and the generators of T and R are simply related.

The transformation $T \leftrightarrow R$ is perfectly stable because F and D are unitary.

Note that F is (in general) complex even if T is real.

GKO-Toeplitz

As pointed out by Heinig (1994) and exploited by GKO (1995), it is possible to convert the generators of T to the generators of R in $O(n \log n)$ operations via FFTs (we assume $a = O(1)$). R can then be factorized as

$$R = P^T L U F D$$

using GKO-Cauchy. Thus, from the factorization

$$T = F^* P^T L U F D$$

a linear system involving T can be solved in $O(n^2)$ (complex) operations.

Other structured matrices, such as Toeplitz-plus-Hankel, Vandermonde, Chebyshev-Vandermonde, etc, can be converted to Cauchy-type matrices in a similar way.

Error Analysis

Because GKO-Cauchy (and GKO-Toeplitz) involve partial pivoting, we might guess that their stability would be similar to that of Gaussian elimination with partial pivoting.

The Catch

Unfortunately, there is a flaw in the above reasoning. During GKO-Cauchy the generators have to be transformed, and the partial pivoting does not ensure that the transformed generators are small.

Sweet & Brent (1995) show that significant generator growth can occur if all the elements of $\Phi \Psi$ are small compared to those of $|\Phi||\Psi|$. This can not happen for ordinary Cauchy matrices because $\Phi^{(k)}$ and $\Psi^{(k)}$ have only one column and one row respectively. However, it can happen for higher displacement-rank Cauchy-type matrices, even if the original matrix is well-conditioned.
The Toeplitz Case

In the Toeplitz case there is an extra constraint on the selection of Φ and Ψ, but it is still possible to give examples where the normalized solution error grows like κ^2 and the normalized residual grows like κ, where κ is the condition number of the Toeplitz matrix. Thus, the GKO-Toeplitz algorithm is (at best) weakly stable.

It is easy to think of modified algorithms which avoid the examples given by Sweet & Brent, but it is difficult to prove that they are stable in all cases. Stability depends on the worst case, which may be rare and hard to find by random sampling.

Gu and Stewart’s improvements

The problem with the original GKO algorithm is growth in the generators. Ming Gu suggested exploiting the fact that the generators are not unique.

Recall the Sylvester equation

$$\nabla_{(A_f, A_b)}(R) = A_f R - RA_b = \Phi \Psi,$$

where the generators Φ and Ψ are $n \times \alpha$ and $\alpha \times n$ respectively. Clearly we can replace Φ by ΦM and Ψ by $M^{-1} \Psi$, where M is any invertible $\alpha \times \alpha$ matrix, because this does not change the product $\Phi \Psi$. Similarly at later stages of the GKO algorithm.

Ming Gu (1995) proposes taking M to orthogonalize the columns of Φ (that is, at each stage we do an orthogonal factorization of the generators). Michael Stewart proposes a (cheaper) LU factorization of the generators. In both cases, clever pivoting schemes give error bounds analogous to those for Gaussian elimination with partial pivoting.

Gu and Stewart’s error bounds

The error bounds obtained by Ming Gu and Michael Stewart involve an exponentially growing factor K^n where K depends on the ratio of the largest to smallest modulus elements in the Cauchy matrix

$$\begin{bmatrix}
\frac{1}{s_i - s_j}
\end{bmatrix}_{ij}.$$

Although this is unsatisfactory, it is similar to the factor 2^{n-1} in the error bound for Gaussian elimination with partial pivoting.

Michael Stewart (1997) gives some interesting numerical results which indicate that his scheme works well, but more numerical experience is necessary before a definite conclusion can be reached.

In practice, we can use an $O(n^2)$ algorithm such as Michael Stewart’s, check the residual, and resort to iterative refinement or a stable $O(n^3)$ algorithm in the (rare) cases that it is necessary.

Positive definite structured matrices

An important class of algorithms, typified by the algorithm of Bareiss (1969), find an LU factorization of a Toeplitz matrix T, and (in the symmetric case) are related to the classical algorithm of Schur for the continued fraction representation of a holomorphic function in the unit disk.

It is interesting to consider the numerical properties of these algorithms and compare with the numerical properties of the Levinson algorithm (which essentially finds an LU factorization of T^{-1}).
Bareiss – Positive Definite Case

BBHS (1995) have shown that the numerical properties of the Bareiss algorithm are similar to those of Gaussian elimination (without pivoting). Thus, the algorithm is stable for positive definite symmetric T.

The Levinson algorithm can be shown to be weakly stable for bounded n, and numerical results by Varah, BBHS and others suggest that this is all that we can expect. Thus, the Bareiss algorithm is (generally) better numerically than the Levinson algorithm.

Cybenko showed that if certain quantities called “reflection coefficients” are positive then the Levinson-Durbin algorithm for solving the Yule-Walker equations (a positive-definite system with special right-hand side) is stable. However, “random” positive-definite Toeplitz matrices do not usually satisfy Cybenko’s condition.

Fast Orthogonal Factorization

In an attempt to achieve stability without pivoting, and to solve m × n least squares problems, it is natural to consider algorithms for computing an orthogonal factorization

\[T = QU \]

of T. The first such \(O(n^3) \) algorithm\(^1\) was introduced by Sweet (1982–84). Unfortunately, Sweet’s algorithm is unstable.

Other \(O(n^3) \) algorithms for computing the matrices Q and U or \(U^{-1} \) were given by BBH (1986), Chun et al (1987), Cybenko (1987), and Qiao (1988), but none of them has been shown to be stable, and in several cases examples show that they are unstable.

\(^1\)For simplicity the time bounds assume \(m = O(n) \).

The generalized Schur algorithm

The Schur algorithm can be generalized to factor a large variety of structured matrices – see Kailath and Chiu (1994) or Kailath and Sayed (1995). For example, the generalized Schur algorithm applies to block Toeplitz matrices, Toeplitz block matrices, and to matrices of the form \(T^T T \) where \(T \) is rectangular Toeplitz.

It is natural to ask if the stability results of BBHS (which are for the classical Schur/Bareiss algorithm) extend to the generalized Schur algorithm. This was considered by M. Stewart and Van Dooren, and also (independently) by Chandrasekharan and Sayed (1996).

The conclusion is that the generalized Schur algorithm is stable for positive definite matrices, provided that the hyperbolic transformations in the algorithm are implemented correctly. In contrast, BBHS showed that stability of the classical Schur/Bareiss algorithm is not so dependent on details of the implementation.

The Problem – Q

Unlike the classical \(O(n^3) \) Givens or Householder algorithms, the \(O(n^3) \) algorithms do not form Q in a numerically stable manner as a product of matrices which are (close to) orthogonal.

For example, the algorithms of Bojanczyk, Brent and de Hoog (1986) and Chun et al (1987) depend on Cholesky downdating, and numerical experiments show that they do not give a Q which is close to orthogonal.

The generalized Schur algorithm, applied to \(\bar{T}^T \bar{T} \), computes the upper triangular matrix \(\bar{U} \) but not the orthogonal matrix Q.
The Saving Grace – U and Semi-Normal Equations

It can be shown (BBH, 1995) that, provided the Cholesky downdates are implemented in a certain way (analogous to the condition for the stability of the generalized Schur algorithm) the BBH algorithm computes U in a weakly stable manner. In fact, the computed upper triangular matrix U is about as good as can be obtained by performing a Cholesky factorization of $T^T T$, so

$$\|T^T T - \hat{U}^T \hat{U}\| / \|T^T T\| = O_m(\varepsilon).$$

Thus, by solving

$$\hat{U}^T \hat{U} x = T^T b$$

(the so-called semi-normal equations) we have a weakly stable algorithm for the solution of general Toeplitz systems $Tx = b$ in $O(n^2)$ operations. The solution can be improved by iterative refinement if desired.

Note that the computation of Q is avoided.

Computing Q stably

It is difficult to give a satisfactory $O(n^2)$ algorithm for the computation of Q in the factorization

$$T = QU$$

Chandrasekharan and Sayed get close – they give a stable algorithm to compute the factorization

$$T = LQU$$

where L is lower triangular, provided that T is square. Their algorithm can be used to solve linear equations but not for the least squares problem. Also, because their algorithm involves embedding the $n \times n$ matrix T in a $2n \times 2n$ matrix

$$
\begin{bmatrix}
T^T & T^T \\
T & 0
\end{bmatrix},
$$

the constant factors in the operation count are large: $59n^2 + O(n \log n)$, compared to $8n^2 + O(n \log n)$ for BBH and seminormal equations.

Some open problems

- Is there a stable (not just weakly stable) fast algorithm for the (rectangular) structured least squares problem?
- What are the best generalizations to block-structured problems, e.g. block Toeplitz with $\sqrt{n} \times \sqrt{n}$ blocks?

References

