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Abstract: We show that a well-known asymptotic series for the logarithm of the central binomial coefficient
is strictly enveloping in the sense of Pólya and Szegö, so the error incurred in truncating the series is of
the same sign as the next term, and is bounded in magnitude by that term. We consider closely related
asymptotic series for Binet’s function, for ln Γ(z + 1

2 ), and for the Riemann-Siegel theta function, and make
some historical remarks.
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1. Introduction

L et z ∈ C and assume that <z > 0. It is well-known that

ln Γ(z) = (z− 1
2 ) ln z− z + 1

2 ln(2π) + J(z), (1)

where J(z) can be written as

J(z) =
1
π

∫ ∞

0

z
η2 + z2 ln

(
1

1− e−2πη

)
dη . (2)

The analytic function J(z) is known as Binet’s function and has several equivalent expressions; see for example,
Henrici [1, (8.5-7)].

Binet’s function has an asymptotic expansion

J(z) ∼ β0

z
− β1

z3 +
β2

z5 − · · · , (3)

or more precisely, for non-negative integers k,

J(z) =
k−1

∑
j=0

(−1)j β j

z2j+1 + rk(z), (4)

where

βk =
1
π

∫ ∞

0
η2k ln

(
1

1− e−2πη

)
dη (5)

and

rk(z) =
(−1)k

πz2k−1

∫ ∞

0

η2k

z2 + η2 ln
(

1
1− e−2πη

)
dη . (6)

It may be shown that

βk =
2(2k)!

(2π)2k+2 ζ(2k + 2) =
(−1)k

(2k + 1)(2k + 2)
B2k+2 , (7)
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where B2k+2 is a Bernoulli number (B2 = 1/6, B4 = −1/30, etc.). Proofs of these results are given in Henrici’s
book [1, §11.1].1 As far as possible, we have followed Henrici’s notation.

Substituting (4) into (1) gives an asymptotic expansion for ln Γ(z) that is usually named after James
Stirling, although some credit is due to Abraham de Moivre. For the history and early references, see Dutka [2].
It is interesting to note that de Moivre started (about 1721) by trying to approximate the central binomial
coefficient (2n

n ), not the factorial (or Gamma) function – see Dutka [2, pg. 227].
It is easy to see from (5) and (6) that

rk(z) = θk(z) (−1)k βk

z2k+1
, (8)

where

θk(z) =
∫ ∞

0

z2 η2k

z2 + η2 ln
(

1
1− e−2πη

)
dη

/ ∫ ∞

0
η2k ln

(
1

1− e−2πη

)
dη . (9)

Suppose now that z is real and positive. Since z2/(z2 + η2) ∈ (0, 1) and the logarithmic factors in (9) are
positive for all η ∈ (0, ∞), we see that

θk(z) ∈ (0, 1). (10)

Thus, the remainder rk(z) given by (8) has the same sign as the next term (−1)kβk/z2k+1 in the asymptotic
series, and is smaller in absolute value. In the terminology used by Pólya and Szegö [3, Ch. 4], the asymptotic
series for ln Γ(z) strictly envelops2 the function ln Γ(z).3

§2 shows that we can deduce a strictly enveloping asymptotic series for ln(Γ(2z + 1)/Γ(z + 1)2) or
equivalently, if z = n is a positive integer, for the logarithm of the central binomial coefficient (2n

n ). The series
itself is well known, but we have not found the enveloping property or the resulting error bound mentioned in
the literature. Henrici was aware of it, since in his book [1, §11.2, Problem 6] he gave the special case k = 3 as an
exercise, along with a hint for the solution. Hence, we do not claim any particular originality. Our purpose is
primarily to make some useful asymptotic series and their associated error bounds readily accessible. Related
results and additional references may be found, for example, in [4–6].

In §2 we consider the central binomial coefficient and its generalisation to a complex argument. Then, in
§3, we consider some closely related asymptotic series that we can prove to be strictly enveloping. In §4 we
make some remarks on asymptotic series that are not enveloping. An Appendix gives numerical values of the
coefficients appearing in three of the asymptotic series.

Finally, we remark that it is possible to give asymptotic series related to Γ(z + 1
2 )/Γ(z) and (2n

n ), but in
general these series do not alternate in sign. See, for example, [7], [8], [9, ex. 9.60 and pg. 602], [10], and [11].

2. Asymptotic series for central binomial coefficients

Define

Γ̃(z) :=
Γ(2z + 1)
Γ(z + 1)2

,

J̃(z) :=J(2z)− 2J(z),

r̃k(z) :=rk(2z)− 2rk(z),

and

β̃k := (2− 2−2k−1)βk = (−1)k (1− 4−k−1)

(k + 1)(2k + 1)
B2k+2 . (11)

As noted above, the central binomial coefficient (2n
n ) is simply Γ̃(n).

Using elementary properties of the Gamma function, we have

Γ̃(z) =
2
z

Γ(2z)
Γ(z)2

. (12)

1 There is an error in Henrici’s equation (11.1-13): 2−2πη should be replaced by e−2πη .
2 We refer to the English translation. In the original it is “in engerem Sinne umhüllen”.
3 When testing the enveloping property, we only consider the nonzero terms in the asymptotic series. See [3, Problem 142, footnote 1].
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Thus, from (1) and the same equation with z 7→ 2z, we have

ln Γ̃(z) = ln
(

4z
√

πz

)
+ J̃(z). (13)

Also, from (4) and the definition of J̃(z), we have an asymptotic series for J̃(z), namely:

J̃(z) = −
k−1

∑
j=0

(−1)j β̃ j

z2j+1 + r̃k(z). (14)

Since (2n
n ) = Γ̃(n), equations (13)–(14) give an asymptotic series for ln (2n

n ). Lemma 1 shows that the remainder
r̃k(z) can be expressed as an integral analogous to the integral (6) for rk(z).

Lemma 1. For z ∈ C,<z > 0, and k a non-negative integer,

β̃k = −
1
π

∫ ∞

0
η2k ln tanh(πη)dη , (15)

r̃k(z) =
(−1)k

πz2k−1

∫ ∞

0

η2k

z2 + η2 ln tanh(πη)dη , (16)

and
J̃(z) = r̃0(z). (17)

Proof. Making the change of variables z 7→ 2z and η 7→ 2η in (6), we obtain

rk(2z) =
(−1)k

πz2k−1

∫ ∞

0

η2k

z2 + η2 ln
(

1
1− e−4πη

)
dη .

Now

ln
(

1
1− e−4πη

)
− 2 ln

(
1

1− e−2πη

)
= ln

(
1− e−2πη

1 + e−2πη

)
= ln tanh(πη),

so (16)–(17) follow from the definitions of r̃k(z) and J̃(z). The proof of (15) is similar.

Corollary 1 gives a result analogous to Equations (8)–(9).

Corollary 1. For z ∈ C,<z > 0, and k a non-negative integer,

r̃k(z) = θ̃k(z)(−1)k+1 β̃k

z2k+1
, (18)

where

θ̃k(z) =
∫ ∞

0

z2 η2k

z2 + η2 ln tanh(πη)dη

/ ∫ ∞

0
η2k ln tanh(πη)dη . (19)

Proof. This is straightforward from Equations (15)–(16) of Lemma 1.

Corollary 2 gives a result analogous to the bound (10).

Corollary 2. If z is real and positive, then θ̃k(z) ∈ (0, 1).

Proof. We write (19) as

θ̃k(z) =

∫ ∞

0

z2 η2k

z2 + η2 ln coth(πη)dη∫ ∞

0
η2k ln coth(πη)dη

. (20)

Observe that coth(y) = cosh(y)/ sinh(y) > 1 for y ∈ (0, ∞), so ln coth(y) > 0 for y = πη > 0. Since
z2/(z2 + η2) ∈ (0, 1) for real positive z and η, the result follows.
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Corollary 3. If z is real and positive, then the asymptotic series (14) for J̃(z) is strictly enveloping.

Proof. This is immediate from Corollary 2.

Remark 1. We may compare Corollary 2 with (the proof of) Lemma 2.7 of [12]. The latter, after allowing for
different notation, gives the bound

−1
4k+1 − 1

< θ̃k(z) <
4k+1

4k+1 − 1
.

This is clearly weaker than the bound of Corollary 2, and not sufficient to prove Corollary 3.

3. Some related asymptotic series

Lemma 2. If z ∈ C,<z > 0, then

J̃(z) = ln

(
Γ(z + 1

2 )

z1/2Γ(z)

)
.

Proof. This follows from Equations (12)–(13) and the duplication formula Γ(z)Γ(z + 1
2 ) = 21−2zπ1/2Γ(2z).

From Lemma 2 and (14) we immediately obtain an asymptotic expansion

ln

(
Γ(z + 1

2 )

Γ(z)

)
∼ ln z

2
+ ∑

j≥0
(−1)j+1 β̃ j

z2j+1 (21)

which is strictly enveloping if z is real and positive.
Define

β̂ j = β̃ j − β j = (1− 2−2j−1)β j. (22)

Using the asymptotic expansion for ln Γ(z) given by Equations (1) and (3), we see from (21) that ln Γ(z + 1
2 )

has an asymptotic expansion

ln Γ(z + 1
2 ) ∼ z ln z− z + 1

2 ln(2π) + ∑
j≥0

(−1)j+1 β̂ j

z2j+1
. (23)

In fact, the expansion (23) was already obtained by Gauss [13, Eqn. [59] of Art. 29] in 1812. However, Gauss
did not explicitly bound the truncation error. Writing (23) as

ln Γ(z + 1
2 ) = z ln z− z + 1

2 ln(2π) +
k−1

∑
j=0

(−1)j+1 β̂ j

z2j+1 + r̂k(z) , (24)

we have an unsurprising result for the truncation error r̂k(z): the error is of the same sign as the first
neglected term (−1)k+1 β̂k/z2k+1, and is bounded in magnitude by this term. This is shown in Lemma 3 and
Corollaries 4–5 below.

Lemma 3. For z ∈ C,<z > 0, and k a non-negative integer,

β̂k =
1
π

∫ ∞

0
η2k ln

(
1 + e−2πη

)
dη (25)

and

r̂k(z) =
(−1)k+1

πz2k−1

∫ ∞

0

η2k

z2 + η2 ln
(

1 + e−2πη
)

dη . (26)

Proof. This is similar to the proof of Lemma 1.

Corollary 4. For z ∈ C,<z > 0, and k a non-negative integer,

r̂k(z) = θ̂k(z)(−1)k+1 β̂k

z2k+1
, (27)
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where

θ̂k(z) =
∫ ∞

0

z2 η2k

z2 + η2 ln
(

1 + e−2πη
)

dη

/ ∫ ∞

0
η2k ln

(
1 + e−2πη

)
dη . (28)

Proof. This is a straightforward consequence of Lemma 3.

Corollary 5. If z is real and positive, then the asymptotic expansion for ln Γ(z + 1
2 ) given in (24) is strictly enveloping.

Proof. From (28) we have θ̂k(z) ∈ (0, 1).

Remark 2. If we make the change of variables z 7→ n + 1
2 in (23), and assume that n is a positive integer, we

obtain an asymptotic series for n! in negative powers of (n + 1
2 ):

ln n! ∼ (n + 1
2 ) ln(n + 1

2 )− (n + 1
2 ) +

1
2 ln(2π) + ∑

j≥0
(−1)j+1 β̂ j

(n + 1
2 )

2j+1
. (29)

In fact, (29) was stated (without proof) by de Moivre [14,15] as early as 1730, see Dutka [2, (5), pg. 233].

4. Non-enveloping asymptotic series

Lest the reader has gained the impression that all “naturally occurring” asymptotic series are enveloping
(for real positive arguments), we give two classes of examples to show that this is not the case. In fact,
enveloping series are the exception, not the rule. Our first class of examples is given by the following Lemma.

Lemma 4. Let x ∈ (0,+∞) and f (x) := J(x) + exp(−bx) for some constant b ∈ (0, 2π). Then f (x) has an
asymptotic series

f (x) ∼
∞

∑
j=0

(−1)j β j

x2j+1
. (30)

However, the series (30) does not envelop f .

Proof. For all k ≥ 0, exp(−bx) = O(x−2k−1) as x → +∞. Thus, it follows from (4) that f (x) has the claimed
asymptotic series (in fact the same series as the Binet function J.) This proves the first claim.

To prove the final claim, suppose, by way of contradiction, that the series (30) envelops f . For each integer
k > 0, define xk := k/π. From (7), the βk grow like (2k)!/(2π)2k, and from Stirling’s approximation we see
that

βk/x2k+1
k = O(exp(−2πxk)) as k→ ∞. (31)

Since the same series envelops both f and J, (31) implies that

| f (xk)− J(xk)| = O(exp(−2πxk)) as k→ ∞.

Since exp(−2πx) = o(exp(−bx)), it follows that, for sufficiently large k,

| f (xk)− J(xk)| < exp(−bxk).

This contradicts the definition of f , so the assumption that the series (30) envelops f must be false.

Remark 3. Lemma 4 can be generalised. For example, the conclusion holds if f (x) = J(x) + g(x), where
g(x) = O(x−k) for all positive integers k, but g(x) 6= O(exp(−2πx)). Also, we can replace the function J(x)
by a different function that has an enveloping asymptotic series whose terms grow at the same rate as those of
J(x).

Our second class of examples involves asymptotic expansions where all (or all but a finite number) of the
terms are of the same sign (assuming a positive real argument x). Such series can not be strictly enveloping [3,
Ch. 4]. As examples, we mention the Bessel function I0(x) (see Olver and Maximon [16, §10.40.1]), the
product of two Bessel functions I0(x)K0(x) (see [16, §10.40.6] and [17, Lemma 3.1]), and the Riemann-Siegel
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theta function (see [18, §6.5]). In all these examples the terms have constant sign, so the remainder changes
monotonically as the number of terms increases with the argument x fixed. Eventually the remainder changes
sign and starts increasing in absolute value. Often the point where the remainder changes sign is close to
where the terms are smallest in absolute value, but this is not always true – see for example [19, §§4–5].

5. Concluding remarks

We have considered three different but related asymptotic series that can all be proved to be strictly
enveloping. Our proofs depend on the fact that the three relevant functions − ln(1− e−2πη), ln coth(πη), and
ln(1+ e−2πη) are positive for all η ∈ (0, ∞). We remark that these three functions are linearly dependent, since

coth(πη) =
1 + e−2πη

1− e−2πη
.

It follows that the sequences (βk)k≥0, (β̃k)k≥0 and (β̂k)k≥0 are linearly dependent. In fact, β̃k = βk + β̂k for all
k ≥ 0. A table of numerical values is given in the Appendix.

Acknowledgments: We thank an anonymous referee for simplifying the proof of Lemma 4 and for noting that the domain
of validity of (2) is the right half-plane <z > 0 (although the Binet function J(x) may be continued into the left half-plane
by analytic continuation, see [1, Thm. 8.5a]).
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Appendix: Numerical values of the coefficients

The table below gives the exact values of the coefficients βk, β̃k and β̂k for 0 ≤ k ≤ 6. The values have been
computed from equations (7), (11) and (22). We recall from the discussion above that the coefficients occur in
the asymptotic expansions

ln Γ(z) ∼ (z− 1
2 ) ln z− z + 1

2 ln(2π) +
β0

z
− β1

z3 +
β2

z5 − · · · ,

ln
(

2n
n

)
∼ ln

(
4n
√

πn

)
− β̃0

n
+

β̃1

n3 −
β̃2

n5 + · · · , and

ln Γ(z + 1
2 ) ∼ z ln z− z + 1

2 ln(2π)− β̂0

z
+

β̂1

z3 −
β̂2

z5 + · · · ,

the β̂k also occurring in de Moivre’s series (29) and, with a different sign pattern, in a series related to the
Riemann-Siegel theta function [19, eqn. (2)]: 2ϑ(t) ∼ t ln(t/2πe) − π/4 + β̂0/t + β̂1/t3 + · · · . In all but
the Riemann-Siegel theta function case the asymptotic series are strictly enveloping, so the error incurred
in truncating the series can be bounded by the first term omitted, provided that z ∈ (0, ∞) is real and that n is
a positive integer. For error bounds if z is complex, we refer to [19, §§2–3].

k βk β̃k β̂k

0 1/12 1/8 1/24
1 1/360 1/192 7/2880
2 1/1260 1/640 31/40320
3 1/1680 17/14336 127/215040
4 1/1188 31/18432 511/608256
5 691/360360 691/180224 1414477/738017280
6 1/156 5461/425984 8191/1277952

Remark 4. We note that the sequence ((−1)kβk)k≥0 is in the Online Encyclopedia of Integer Sequences
(OEIS) [20]. The (signed) numerators are sequence A046968, and the denominators are sequence A046969.
The sequence (β̂k/2)k≥0 is also in the OEIS: the numerators are sequence A036282, and the denominators
are sequence A114721. We have added the sequence ((−1)k β̃k)k≥0 to the OEIS. The (signed) numerators are
sequence A275994, and the denominators are sequence A275995. Other relevant sequences are A143503 and
A061549.
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