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We show that, on the Riemann hypothesis, lim supX→∞ I(X)/
X2 � 0.8603, where I(X) =

∫ 2X
X

(ψ(x) − x)2 dx. This proves 
(and improves on) a claim by Pintz from 1982. We also show 
unconditionally that 1.86 · 10−4 � I(X)/X2 for sufficiently 
large X, and that the I(X)/X2 has no limit as X → ∞.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let ψ(x) =
∑

n�x Λ(n) where Λ(n) is the von Mangoldt function. By the prime 
number theorem we have ψ(x) ∼ x. Littlewood (see [8, Thm. 15.11]) showed that ψ(x) −
x = Ω±(x1/2 log log log x) as x → ∞. In view of Littlewood’s result, it is of interest that, 
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assuming the Riemann hypothesis (RH), the mean square of (ψ(x) −x)/x1/2 is bounded. 
Under RH we have

ψ(x) − x � x1/2 log2 x,

2X∫
X

(ψ(x) − x)2 dx � X2. (1)

Note that using the first bound in (1) does not yield the second bound. Define

I(X) :=
2X∫
X

(ψ(x) − x)2 dx. (2)

Unconditionally, it is known that I(X) � X2. Indeed Popov and Stechkin [16, Thms. 
6–7] showed that

2X∫
X

|ψ(x) − x| dx >
X3/2

200 , (3)

where X is sufficiently large. On using Cauchy–Schwarz, this shows that I(X)/X2 �
1/(40 000).

Pintz wrote a series of papers giving bounds on the constant in (3): [10] has an 
ineffective constant, [12, Cor. 1] has (22000)−1 and [11, Cor. 1] has 400−1. Under RH, 
Cramér [3] proved that I(X) � cX2 for sufficiently large X. Pintz [12,11] claims that 
one may take c = 1 for all X sufficiently large. We are unaware of a proof of this, or of 
any similar results in the literature.

It follows from the above discussion that there exist positive constants A1 and A2
for which A1 � I(X)X−2 � A2, for sufficiently large X. Actually the upper bound is 
conditional on RH whereas the lower bound is unconditional. The purpose of this article 
is to give what we believe to be the best known bounds on A1 and A2.

Theorem 1. Assume the Riemann hypothesis and let I(X) be defined in (2). Then, for 
X sufficiently large we have 1.86 · 10−4 � I(X)X−2 � 0.8603.

Presumably, both bounds in Theorem 1 could be improved. We computed I(X) for 
X at every integer ∈ [1, 1011] and include two plots showing its short term behaviour 
as Figs. 1 and 2. One can see by Fig. 1 that I(X)/X2 exhibits erratic behaviour; Fig. 2
shows a large jump around X = 5 · 1010. We are not aware of any conjectured results on 
the limiting behaviour of I(X)/X2. Hence we prove the following (possibly surprising) 
result.

Theorem 2. With I(X) defined by (2), we have that limX→∞ I(X)/X2 does not exist.
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Fig. 1. Plot of I(X)/X2 vs. X for X ∈ [106, 1011].

Fig. 2. Plot of I(X)/X2 vs. X sampled every 105.

If RH is false, then I(X)/X2 is unbounded. Hence, we assume RH except where noted 
(e.g. RH is not necessary in §2). Let

B :=
∑
ρ1,ρ2

∣∣∣∣ 22+i(γ1−γ2) − 1
ρ1ρ2(2 + i(γ1 − γ2))

∣∣∣∣ , (4)

where ρj = 1
2 +iγj denotes a nontrivial zero of ζ(s). Following along the lines of [8, Thm. 

13.5], one can show that

lim sup
X→∞

I(X)
X2 � B .

Corollary 2 shows that B � 0.8603. This proves the upper bound in Theorem 1, which 
proves Pintz’s claim and provides a significant improvement.

A natural question arises as to the behaviour of higher moments of ψ(x) −x. For k � 1
define Ik(X) =

∫ 2X
X

(ψ(x) −x)2k dx so that I1(X) = I(X). We have not investigated the 
existence of the limit Ik(X)/Xk+1 but suggest this as an avenue of future research.
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The outline of this paper is as follows. In §2 we give some variations on a well-known 
lemma of Lehman that is useful for estimating bounds on sums over nontrivial zeros of 
ζ(s). We then give several such bounds that are used in the proof of Theorem 3. In §3
we prove Theorem 3, which bounds the tail of the sum in (4), and in Corollary 2 we 
deduce bounds on B. In §4 we prove the lower bound in Theorem 1. Finally, in §5 we 
prove Theorem 2.

Throughout this paper we write ϑ to denote a complex number with modulus at most 
unity. Also, expressions such as T/2π should be interpreted as T/(2π), and logk x as 
(log x)k. The symbols γ, γ1, γ2 denote the ordinates of generic nontrivial zeros β + iγ

of ζ(s). If we wish to refer to the k-th such γ > 0 we denote it by γ̂k. For example, 
γ̂1 = 14.13472514 · · · . Finally, we define L = log T and L̂ = log(T/2π).

2. Preliminary results

The results in this section are unconditional.
We state a well-known result due to Backlund [1], with the constants1 improved by 

several authors, most notably by Rosser [14, Thm. 19], Trudgian [19, Thm. 1, Cor. 1], 
and Platt and Trudgian [13, Cor. 1].

Lemma 1. For all T � 2πe,

N(T ) = T

2π log T

2π − T

2π + 7
8 + Q(T ),

where

|Q(T )| � 0.137 log T + 0.443 log log T + 1.588 + 0.2/T .

On RH we have Q(T ) = O(log T/ log log T ), see [8, Cor. 14.4], and indeed, this has 
been made explicit in recent work by Simonič [15]. Since the bound on Q(T ) in [15] only 
improves on that in Lemma 1 for very large T , we do not use this result in what follows.

Corollary 1. For all T � 2π,

N(T ) = T

2π log T

2π − T

2π + 7
8 + (0.28ϑ) log T.

Proof. By Lemma 1, the result holds for all T � T1 := 7.7 · 108. For T ∈ [2π, T1), it has 
been verified by an interval-arithmetic computation, using the nontrivial zeros β + iγ of 
ζ(s) with γ ∈ (0, T1). �
1 Of the results mentioned here, the sharpest are from [19] and [13]. However, as pointed out by Patel [9], 

these results rely on an incorrect lemma by Cheng and Graham. This was corrected in [9]; new constants 
have been worked out by Hasanalizade, Shen, and Wong [5]. We have used the constants from Rosser’s work 
[14] in Lemma 1 since these have been checked independently by Trudgian in [18].
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Let A be a constant such that

N(T ) = T

2π log T

2π − T

2π + 7
8 + (ϑA) log T

holds for all T � 2π. By Corollary 1, we can assume that A � 0.28. We remark here 
that there is only a little room for improvement in the bound for A. Indeed, the function 
Q(T )/ log T appears to take its maximum just after T = γ̂1, whence one has A � 0.208. 
It is possible that the results of [5], and a further interval-arithmetic computation, could 
improve very slightly on A and hence on the subsequent results in this article.

We state a lemma of Lehman [7, Lem. 1]. We have generalised Lehman’s wording, but 
the original proof still applies.

Lemma 2 (Lehman-decreasing). If 2πe � T1 � T2 and φ : [T1, T2] �→ [0, ∞) is monotone 
non-increasing on [T1, T2], then

∑
T1<γ�T2

φ(γ) = 1
2π

T2∫
T1

φ(t) log(t/2π) dt + Aϑ

⎛⎝2φ(T1) log T1 +
T2∫

T1

φ(t)
t

dt

⎞⎠.

In Lemma 2, we can let T2 → ∞ if the first integral converges. Lemma 2 does not 
apply if φ(t) is increasing. In this case, Lemma 3 provides an alternative.

Lemma 3 (Lehman-increasing). If 2πe � T1 � T2 and φ : [T1, T2] �→ [0, ∞) is monotone 
non-decreasing on [T1, T2], then

∑
T1<γ�T2

φ(γ) = 1
2π

T2∫
T1

φ(t) log(t/2π) dt + Aϑ

⎛⎝2φ(T2) log T2 +
T2∫

T1

φ(t)
t

dt

⎞⎠.

Proof. We follow the proof of [7, Lem. 1] with appropriate modifications. �
We need to apply a Lehman-like lemma to a function φ(t) which decreases and then 

increases. Hence we state the following lemma.

Lemma 4 (Lehman-unimodal). Suppose that 2πe � T1 � T2, and that φ : [T1, T2] �→
[0, ∞). If there exists θ ∈ [T1, T2] such that φ is non-increasing on [T1, θ] and non-
decreasing on [θ, T2], then

∑
T1<γ�T2

φ(γ) = 1
2π

T2∫
T1

φ(t) log(t/2π) dt

+ Aϑ

⎛⎝2φ(T1) log T1 + 2φ(T2) log T2 +
T2∫
φ(t)
t

dt

⎞⎠ .
T1
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Proof. Apply Lemma 2 on [T1, θ] and Lemma 3 on [θ, T2]. �
We need some elementary integrals. For k � 0, T � 1 let

Ik := T

∞∫
T

logk t
t2

dt.

Then I0 = 1 and Ik satisfies the recurrence Ik = Lk + kIk−1 for k � 1. Thus I1 = L + 1, 
I2 = L2 + 2L + 2, I3 = L3 + 3L2 + 6L + 6, etc.

We also need

T 2
∞∫
T

log t
t3

dt = 2L + 1
4 (5)

and

T 2
∞∫
T

log2 t

t3
dt = 2L2 + 2L + 1

4 , (6)

which may be found in a similar fashion to I1 and I2 respectively.
We now state some lemmas that will be used in §3. Lemmas 5–8 are applications of 

Lemma 2.

Lemma 5. If T � 2πe, then

∑
γ>T

1
γ2 � L

2πT .

Proof. We apply Lemma 2 with φ(t) = 1/t2, T1 = T , and let the upper limit T2 → ∞. 
Using the integral I1 above, this gives

∑
γ>T

1
γ2 = 1

2π

∞∫
T

log(t/2π)
t2

dt + Aϑ

⎛⎝2L
T 2 +

∞∫
T

dt

t3

⎞⎠
= L + 1 − log(2π)

2πT + Aϑ

(
4L + 1
2T 2

)
� L

2πT ,

where the final inequality uses T � 2πe and A � 0.28. �
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Lemma 6. If T � 4πe, then

∑
γ>T

log(γ/2π)
γ2 � L2 − L

2πT .

Proof. We apply Lemma 2 with φ(t) = log(t/2π)/t2, T1 = T , and let the upper limit 
T2 → ∞. Since log(t/2π)/t2 is decreasing on [4πe, ∞), Lemma 2 is applicable. Making 
use of the integrals I2 and (5) above, we obtain

∑
γ>T

log(γ/2π)
γ2 = 1

2π

∞∫
T

log2(t/2π)
t2

dt

+ Aϑ

⎛⎝2 log(T/2π) logT
T 2 +

∞∫
T

log(t/2π)
t3

dt

⎞⎠
= L̂2 + 2L̂ + 2

2πT + Aϑ

(
2LL̂
T 2 + 2L̂ + 1

4T 2

)
� L2 − L

2πT ,

where the final inequality uses T � 4πe and A � 0.28. �
Lemma 7. If T � 100, then

∑
γ>T

log2(γ/2π)
γ2 � L3 − 1.39L2

2πT .

Proof. We apply Lemma 2 with φ(t) = log2(t/2π)/t2, T1 = T , and T2 → ∞. Since φ(t) is 
monotonic decreasing on [100, ∞), Lemma 2 is applicable. Using the integrals I3 and (6)
above, we obtain

∑
γ>T

log2(γ/2π)
γ2 = 1

2π

∞∫
T

log3(t/2π)
t2

dt

+ Aϑ

⎛⎝2 log2(T/2π) logT
T 2 +

∞∫
T

log2(t/2π)
t3

dt

⎞⎠
= L̂3 + 3L̂2 + 6L̂ + 6

2πT + Aϑ

(
8LL̂2 + 2L̂2 + 2L̂ + 1

4T 2

)

� L3 − 1.39L2

2πT ,

where the final inequality uses T � 100 and A � 0.28. �
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The following lemma improves on the upper bound of [4, Lem. 2.10].

Lemma 8. If T � 4πe, then

∑
0<γ�T

1
γ
� L̂2

4π . (7)

Proof. Suppose that T � T1, where T1 � 4πe will be determined later. Using Lemma 2
with φ(t) = 1/t, we obtain

∑
T1<γ�T

1
γ

= 1
2π

T∫
T1

log(t/2π)
t

dt + Aϑ

⎛⎝2 log T1

T1
+

T∫
T1

dt

t2

⎞⎠
= 1

4π

(
L̂2 − log2(T1/2π)

)
+ Aϑ

(
2 log T1 + 1

T1

)
. (8)

Thus, including a sum over γ � T1, we have

∑
0<γ�T

1
γ
� L̂2

4π + ε(T1),

where

ε(T1) =
∑

0<γ�T1

1
γ
− log2(T1/2π)

4π + A

(
2 log T1 + 1

T1

)
.

Using A � 0.28, and summing over the first 80 nontrivial zeros of ζ(s), shows that 
ε(202) < 0. Thus, we take T1 = 202, whence (7) holds for T � T1 = 202. We can verify 
numerically that (7) also holds for T ∈ [4πe, T1). �
Remark 1. The motivation for our proof of Lemma 8 is as follows. Define

H := lim
T→∞

⎛⎝ ∑
0<γ�T

1
γ
− log2(T/2π)

4π

⎞⎠ .

It is easy to show, using (8), that the limit defining H exists. A computation shows that 
H ≈ −0.0171594. Since H is negative, we expect that ε(T1) should be negative for all 
sufficiently large T1. See also [6], and [2].
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3. Bounding the tail in the series for B

We are now ready to bound the tail of the series (4). Our main result is stated in 
Theorem 3. Bounds on B are deduced in Corollary 2.

Theorem 3. Assume RH. If T � 100, L = log T , and B is defined by (4), then

B �
∑

|γ1|�T,|γ2|�T

∣∣∣∣ 22+i(γ1−γ2) − 1
ρ1ρ2(2 + i(γ1 − γ2))

∣∣∣∣ + 10L3 + 11L2

π2T
.

Proof. Initially, we ignore the numerators |22+i(γ1−γ2) − 1| in (4), since they are easily 
bounded. Define

S(T ) :=
∑

|γ1|�T,|γ2|�T

∣∣∣∣ 1
ρ1ρ2(2 + i(γ1 − γ2))

∣∣∣∣ , (9)

and S∞ := limT→∞ S(T ), with S∞ ≈ 0.217. We refer to E(T ) := S∞ − S(T ) as the tail of 
the series with parameter T . Thus, the tail is the sum of terms with max(|γ1|, |γ2|) > T . 
Comparing with (4), and using |22+i(γ1−γ2) − 1| � 5, we see that the error caused by 
summing (4) with max(|γ1|, |γ2) � T is at most 5E(T ).

We consider bounding sums of the tail terms. By using the symmetry (γ1, γ2) →
(−γ1, −γ2), i.e. complex conjugation, we can assume that γ1 > 0 (but we must multiply 
the resulting bound by 2). We can also use the symmetry (γ1, γ2) → (γ2, γ1) if γ2 > 0, 
and (γ1, γ2) → (−γ2, −γ1) if γ2 < 0, to reduce to the case that |γ2| � γ1 (again doubling 
the resulting bound). Terms on the diagonal γ1 = γ2 and anti-diagonal γ1 = −γ2 are 
given double the necessary weight, but this does not affect the validity of the bound.

For each γ1 > 0, possible γ2 satisfy γ2 ∈ [−γ1, γ1]. Since γ2 is the ordinate of a 
nontrivial zero of ζ(s), it is never zero, in fact |γ2| > 14.

We now bound the terms 1/|ρ1ρ2(2 + i(γ1 − γ2))| and various sums. Our strategy is 
to fix γ1 and sum over all possible γ2, then allow γ1 to vary and sum over all γ1 > T . 
Since |γ1| < |ρ1| and |γ2| < |ρ2|, we actually bound

t(γ1, γ2) := 1
|γ1γ2(2 + i(γ1 − γ2))|

,

which is only slightly larger, since 1 � |ρj/γj | � 1 + 1/8γ2
j � 1.001.

It is useful to define D := 1/t(γ1, γ2). We assume that T � T0 = 100. Since we 
eventually sum over γ1 > T , we also assume that γ1 � T0.

First suppose that γ2 is positive. In this case, we have 0 < γ2 � γ1 and D �
γ1γ2 max(2, γ1 − γ2). Thus the terms t(γ1, γ2) are bounded by φ(γ2)/γ2

1 , where, writ-
ing T = γ1,
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φ(t) :=

⎧⎪⎪⎨⎪⎪⎩
T

t(T − t) = 1
t

+ 1
T − t

if t ∈ (0, T − 2];

T/2
T − 2 = 1

2 + 1
T − 2 if t ∈ (T − 2, T ].

Note that φ(t) is positive, decreasing on the interval (0, T/2], increasing on the interval 
(T/2, T − 2], and constant on the interval [T − 2, T ]. Thus, for summing φ(γ2) over 
γ2 ∈ (2πe, T ], Lemma 4 applies with T1 = 2πe, T2 = T � 2T1, and θ = T/2.

To apply Lemma 4, we need to bound (1/2π) 
∫ T

T1
φ(t) log(t/2π) dt (the main term), 

and also the error terms A 
∫ T

T1
(φ(t)/t) dt and 2Aφ(Tj) log(Tj) (j = 1, 2). We consider 

these in turn.
First consider the main term:

1
2π

T∫
T1

φ(t) log(t/2π) dt

= 1
2π

⎛⎝ T−2∫
T1

(
1
t

+ 1
T − t

)
log(t/2π) dt + φ(T )

T∫
T−2

log(t/2π) dt

⎞⎠

� 1
2π

⎛⎝ T∫
T1

log(t/2π)
t

dt + L̂

T−2∫
0

dt

T − t
+ L̂

(
1 + 2

T − 2

)⎞⎠
� 1

4π

(
L̂2 − 1 + 2L̂ log(T/2) + 2L̂ + 4L̂

T − 2

)

� 1
4π

(
3L̂2 + 2L̂(2 + log π) − 0.88

)
.

Now consider the error terms. We have

T∫
T1

φ(t)
t

dt =
T−2∫
T1

φ(t)
t

dt + φ(T )
T∫

T−2

dt

t

=
T−2∫
T1

(
1
t2

+ 1
T

(
1
t

+ 1
T − t

))
dt + φ(T )

T∫
T−2

dt

t

� 1
T1

− 1
T

+ log(T/T1) + log(T/2)
T

+ T

(T − 2)2 � 0.12 .

Also,

2φ(T1) log T1 = 2 log T1
(

T
)

� 0.41,

T1 T − T1
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and

2φ(T2) log T2 �
(

1 + 2
T − 2

)
log T � L̂ + log(2π) + 2 log T

T − 2 � L̂ + 1.94 .

Thus, Lemma 4 gives

∑
T1<γ�T

φ(γ) � 3L̂2 + 2L̂(2 + log π) − 0.88
4π + Aϑ

(
0.41 + L̂ + 1.94 + 0.12

)

� 3L̂2 + 9.81L̂ + 7.82
4π .

Since γ̂1 < T1 < γ̂2, we have to treat φ(γ̂1) separately. We have

φ(γ̂1) = T

γ̂1(T − γ̂1)
< 0.083 ,

and thus

∑
0�γ�T

φ(γ) � 3L̂2 + 9.81L̂ + 8.87
4π .

Hence, we have shown that

∑
0<γ2�γ1

t(γ1, γ2) �
3 log2(γ1/2π) + 9.81 log(γ1/2π) + 8.87

4πγ2
1

. (10)

We now consider the case that γ2 is negative, whence 0 < −γ2 � γ1. We could use 
Lemma 2, but we adopt a simpler approach that gives the same leading term.2

Assuming that γ2 < 0, we have D � γ1|γ2|(γ1 + |γ2|) � γ2
1 |γ2|, and the terms are 

bounded by

t(γ1, γ2) �
1

γ2
1 |γ2|

.

Summing over γ2 satisfying 0 < −γ2 � γ1, using Lemma 8, gives the bound

∑
−γ1�γ2<0

t(γ1, γ2) �
log2(γ1/2π)

4πγ2
1

. (11)

We now combine the results for positive and negative γ2. Adding the bounds (10)
and (11) gives

2 This is not surprising, since we use Lemma 8, whose proof depends on Lemma 2.
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∑
−γ1�γ2�γ1

t(γ1, γ2) �
log2(γ1/2π) + 2.46 log(γ1/2π) + 2.22

πγ2
1

. (12)

Finally, we sum (12) over all γ1 > T and use Lemmas 5–7, giving

∑
γ1>T, |γ2|�γ1

t(γ1, γ2) �
(L3 − 1.39L2) + 2.46(L2 − L) + 2.22L

2π2T

� L3 + 1.1L2

2π2T
. (13)

Allowing a factor of 4 for symmetry, and a factor of 5 to allow for the numerator 
in (4), the tail bound 5E(T ) is 20 times the bound (13), so

5E(T ) � 10L3 + 11L2

π2T
, (14)

which proves the theorem. �
It is possible to avoid the use of Lemma 4 in the proof of Theorem 3, by summing 

the tail terms in a different order, so that the terms in the inner sums are monotonic 
decreasing and Lemma 2 applies. However, the resulting integrals are more difficult to 
bound than those occurring in our proof of Theorem 3. Both methods give the same 
leading term.

Corollary 2. The constant B defined by (4) satisfies 0.8520 � B � 0.8603.

Proof. The bounds on B follow from Theorem 3 by taking T = 260877 and evaluating the 
finite double sum, which requires the first 4 ·105 nontrivial zeros of ζ(s). The evaluation, 
using interval arithmetic, shows that the finite sum is in the interval [0.852089, 0.852098], 
so the lower bound 0.8520 stated in the corollary is correct. The tail bound (14) is �
0.008199, and 0.852098 +0.008199 = 0.860297. This proves the stated upper bound. �
Remark 2. Since the proof of Corollary 2 uses T = 260877, but Theorem 3 and Lemma 7
assume only that T � 100, it is natural to ask if the bounds can be improved if we assume 
that T is sufficiently large. This is indeed the case. For T � 80000, the bound (13) can 
be improved to (L3 +0.4L2)/(2π2T ), and it follows that the upper bound in Corollary 2
can be improved to B � 0.8599. The coefficient of L2 in the bound (13) can be replaced 
by c(T ) = 4 − 3 log 2 − 5

2 log π + πA + O(1/L) � −0.06 + O(1/L), and a bound on the 
O(1/L) term shows that c(T ) � 0 for T � 1042. The coefficient of L3 is, however, the 
best that can be attained by our method.
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4. Lower bound on I(X)

Stechkin and Popov [16, Thm. 7] showed that, if RH were false, then lim infX→∞ I(X)/
X2 = ∞. Given this, we may as well assume RH in this section. Stechkin and Popov 
[16, Thm. 6] showed that we have for X large enough

2X∫
X

|ψ(u) − u| du >
X

3
2

200 , (15)

which by Cauchy–Schwarz leads immediately to I(X)/X2 � (40 000)−1. The bound in 
(15) follows from showing under the same assumptions that

H(X) :=
X+ log 2

2∫
X− log 2

2

∣∣∣∣∣∣
∑
n �=0

exp(iγnt)
ρn

∣∣∣∣∣∣ dt > X
3
2

200 , (16)

where, throughout this section only, for k � 1 we define γk (resp. γ−k) to be the ordinate 
of the kth non-trivial zero of ζ(s), above (resp. below) the real axis. We interpret the 
sum in (16), which is not absolutely convergent, as

lim
N→∞

N∑
n=1

(
exp(iγnt)

ρn
+ exp(iγ−nt)

ρ−n

)
.

The key result we need is the following.

Lemma 9. Let g(z) be such that g(0) = 1 and

δ = 1
ρ1

−
∑
n�2

∣∣∣∣g(γn − γ1)
ρn

∣∣∣∣− ∑
n�1

∣∣∣∣g(−γn − γ1)
ρn

∣∣∣∣
exists and is finite. Additionally, assume that

ĝ(y) = 1
2π

∫
R

g(z) exp(−izy) dz

exists and is supported on [−1
2 log 2, 12 log 2]. Then we have

|H(X)| � δ

max
y∈R

ĝ(y) .

Proof. This follows from displays (15.4) to (17.4) of [16, Sec. 4]. �
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Lemma 10. Let α = log 2
6 and λ > 0. Define

g(z) =
(

sin(αz)
αz

)3 (
1 − z

λ

)
and

ĝ(y) = 1
2π

∫
R

g(z) exp(−izy) dz.

Then g(0) = 1 and ĝ(y) is supported on [−1
2 log 2, 12 log 2]. Furthermore, for real y, |ĝ(y)|

attains its maximum of 9
4 log 2 at y = 0.

We note that Stechkin and Popov used the fourth power of the sinc function in place 
of our cube. Almost certainly better choices of the function g(z) are possible: we leave 
this to future researchers, in the hope that they can thereby improve the lower bound 
in Theorem 1.

Lemma 11. Let g be as defined in Lemma 10. For T > max(γ1 +λ, 2πe) not the ordinate 
of a zero of ζ set

δT,λ =
∑
γ>T

|g(γ − γ1)| + |g(−γ − γ1)|
ρ

.

Then

δT,λ �
∞∫
T

hλ(t) log t

2π dt + 0.56hλ(T ) log T + 0.28
∞∫
T

hλ(t)
t

dt

where

hλ(t) = t− λ− γ1

t(α(t− γ1))3
+ t + λ + γ1

t(α(t + γ1))3
.

Proof. This is a straightforward application of Corollary 1 and Lemma 2. �
Corollary 3. Let δT,λ be as in Lemma 11, with T = 446 000 and λ = 10.876. Then

δT,λ � 3.5 · 10−9.

We can now compute the contribution to δ from the 721 913 nontrivial zeros with 
imaginary part less than 446 000, using λ = 10.876. We find

1
|ρ1|

−
721 913∑ g(γn − γ1)

ρn
−

721 913∑ g(−γn − γ1)
ρn

� 4.428 225 55 · 10−2,

n=2 n=1
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so we have δ � 0.044 282 252.
Appealing to Lemmas 9 and 10 we can now claim

|H(X)| � 0.044 282 2524 log 2
9 � 0.013 641 83,

and the lower bound of Theorem 1 results.

5. Non-convergence of I(X)/X2

Our aim now is to show that I(X)/X2 does not tend to a limit as X → ∞. It is more 
convenient to work with

J(X) :=
X∫

0

(ψ(x) − x)2 dx, (17)

and deduce results for I(X). In Theorems 4 and 5 we show that there exist effectively 
computable constants c1 and c2, satisfying c1 < c2, such that

lim sup
X→∞

2
X2 J(X) � c2, lim inf

X→∞

2
X2 J(X) � c1.

Hence J(X)/X2 cannot tend to a limit as X → ∞. In Theorem 2 we deduce that 
I(X)/X2 cannot tend to a limit X → ∞.

5.1. Some constants

In sums over zeros, each zero ρ is counted according to its multiplicity mρ. More 
precisely, a term involving ρ is given a weight mρ. In double sums, a term involving ρ1
and ρ2 is given a weight mρ1mρ2 .

We now define three real constants that are needed later. First, a constant that appears 
in [8, Thm. 13.6 and Ex. 13.1.1.3] and our Theorem 5:

c1 :=
∑
ρ

mρ

|ρ|2 ≈ 0.046. (18)

Second, we define a constant that occurs in Theorem 4:

c2 :=
∑
ρ1,ρ2

2
ρ1ρ2(1 + ρ1 + ρ2)

≈ 0.104 . (19)

Observe that, assuming RH, the “diagonal terms” (i.e. those with ρ1 = ρ2) in (19) sum 
to c1.
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Third, a constant that will be used in §5.3:

c3 :=
∑
γ>0

1
γ2 � 0.023 105, (20)

where this estimate has been computed to high accuracy previously (see, e.g. [4]). We 
can replicate this result by summing numerically over zeros below 3.72146 ·108 and using 
Lemma 5 for the tail.

5.2. The limsup result

We use the explicit formula for ψ(x) (see, e.g., [8, Thm. 12.5]) in the form

ψ(x) − x = −
∑
|γ|�T

xρ

ρ
+ O

(
x log2 x

T

)

for T � T0, x � X0, and x � T .

Theorem 4. With J(X) as in (17) and c2 as in (19),

lim sup
X→∞

2J(X)
X2 � c2.

Proof. Fix some small ε > 0. We can assume RH, since otherwise J(X)/X2 is un-
bounded. Proceeding as in the proof of [8, Thm. 13.5], but with the integral over [T, X]
instead of [X, 2X], and using the Cauchy–Schwartz inequality for the error term, we 
obtain

X∫
T

(ψ(x) − x)2 dx =
X∫

T

∑
|γ1|�T, |γ2|�T

x1+i(γ1−γ2)

ρ1ρ2
dx + O

(
X5/2 log2 X

T

)
,

provided X � T � max(T0, X0). We also have, from [8, Thm. 13.5],

T∫
0

(ψ(x) − x)2 dx � T 2.

Thus

X∫
0

(ψ(x) − x)2 dx =
X∫

T

∑
|γ1|�T, |γ2|�T

x1+i(γ1−γ2)

ρ1ρ2
dx

+ O
(
T 2 + X5/2(logX)2/T

)
.
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Now, from [8, (13.16)], 
∑
ρ1,ρ2

∣∣∣∣ 1
ρ1ρ2(2 + i(γ1 − γ2)

∣∣∣∣ � 1.

Thus, if we exchange the order of integration and summation (valid since the sum is 
finite), and normalise by X2, we obtain

J(X)
X2 =

∑
|γ1|�T, |γ2|�T

Xi(γ1−γ2)

ρ1ρ2(2 + i(γ1 − γ2))
+ O

(
T 2

X2 + X1/2 log2 X

T

)
.

Choosing T = X5/6, and assuming that X � X
6/5
0 so T � X0, the error term be-

comes O(X−1/3(logX)2). Now, choosing X � log6(1/ε)/ε3, the error term is O(ε). 
To summarise, we obtain error O(ε) provided that T = X5/6 and X � X1, where 
X1 = max(X6/5

0 , T 6/5
0 , log6(1/ε)/ε3).

We shall need another parameter Y = log3(1/ε)/ε. Note that, by the conditions on T
and X, we necessarily have Y � T for ε ∈ (0, 1/e), since T = X5/6 � log(1/ε)5/ε5/2 �
log3(1/ε)/ε = Y .

It remains to consider the main sum over pairs (1/2 + iγ1, 1/2 − iγ2) of zeros with 
|γ1|, |γ2| � T . Observe that the sum is real, as we can see by grouping the term for 
(1/2 + iγ1, 1/2 − iγ2) with the conjugate term for (1/2 − iγ1, 1/2 + iγ2). Using Dirichlet’s 
theorem [17, §8.2], we can find some t � logX1, such that |{tγ/(2π)}| � ε for all zeros 
1/2 + iγ with 0 < γ � Y , where Y � T is as above.3 Set X = exp(t). Then, for all 
the (γ1, γ2) occurring in the main sum with max(|γ1|, |γ2|) � Y , we have Xi(γ1−γ2) =
1 + O(ε). Hence, for this choice of X, we have

J(X)
X2 =

∑
|γ1|�Y, |γ2|�Y

1
ρ1ρ2(2 + i(γ1 − γ2))

+ R(Y ) + O(ε),

where

|R(Y )| �
∑

max(|γ1|,|γ2|)>Y

∣∣∣∣ 1
ρ1ρ2(2 + i(γ1 − γ2))

∣∣∣∣ � log3 Y

Y

is the tail of an absolutely convergent double sum, see (9) and [8, p. 424]. Thus, with 
our choice Y = log3(1/ε)/ε, we have R(Y ) = O(ε).

Recalling the definition of the constant c2 in (19), we have shown that, for any suffi-
ciently small ε > 0, there exists X = X(ε) such that

2J(X)
X2 � c2 −O(ε). (21)

Since ε can be arbitrarily small, this proves the result. �
3 Here {x} denotes the fractional part of x.
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Remark 3. The least X satisfying (21) may be bounded using [17, (8.2.1)]. The result is 
doubly exponential in 1/ε. More precisely,

X(ε) � exp(exp((1/ε)1+o(1))) as ε → 0.

5.3. A lower bound on c2

The constants c1 and c2 are of little interest, so far as the theory of ψ(x) goes, if 
RH is false. Hence, we assume RH. In Corollary 5 we show that c1 < c2. Although 
computations of c2 suggest this, they do not provide a proof unless they come with a 
(possibly one-sided) error bound. Here we show how rigorous lower bounds on c2 can 
be computed. This provides a way of proving rigorously, without extensive computation, 
that c1 < c2.

First we extract the real part of the expression (19). This leads to sharper bounds on 
the terms than if we included the imaginary parts, which must ultimately cancel.

Lemma 12. Assume RH. If c2 is defined by (19), then

c2 =
∑

γ1>0, γ2

T (γ1, γ2),

where

T (γ1, γ2) = 2(1 + 6γ1γ2 − γ2
1 − γ2

2)
(1
4 + γ2

1)(1
4 + γ2

2)(4 + (γ1 − γ2)2)
. (22)

Proof. We expand (19), using ρj = 1
2 + iγj (this is where RH is required), omit the 

imaginary parts since the final result is real, and use symmetry to reduce to the case 
γ1 > 0 (so in the resulting sum, γ1 is positive but γ2 may have either sign). �

Lemma 13 gives a region in which the terms occurring in (22) are positive.

Lemma 13. If T (γ1, γ2) is as in (22), and γ2/γ1 ∈ [3 −
√

8, 3 +
√

8], then T (γ1, γ2) > 0.

Proof. Since the denominator of T (γ1, γ2) is positive, it is sufficient to consider the 
numerator, which we write as 2P (γ1, γ2), where

P (x, y) = 1 + 6xy − x2 − y2.

Let r = y/x, so P (x, y) = 1 − (r2 − 6r + 1)x2. Now r2 − 6r + 1 = (r − 3)2 − 8 vanishes 
at r = 3 ±

√
8, and is negative iff r ∈ (3 −

√
8, 3 +

√
8). Thus P (x, y) is positive for 

r ∈ [3 −
√

8, 3 +
√

8]. Taking x = γ1, y = γ2 proves the lemma. �
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Define

S(Y ) =
∑

0<γ1�Y
−Y�γ2�Y

T (γ1, γ2).

Then c2 = limY→∞ S(Y ). Clearly S(Y ) is constant between ordinates of nontrivial zeros 
of ζ(s), and has jumps

J(γ) = lim
ε→0

(S(γ + ε) − S(γ − ε))

at positive ordinates γ of zeros of ζ(s). We shall show that all these jumps are positive, 
so S(Y ) is monotonic non-decreasing, and c2 > S(Y ) for all Y > 0. This allows us to 
prove that c2 > c1 by computing S(Y ) for sufficiently large Y (see Corollary 5).

If γ > 0 is the ordinate of a simple zero4 of ζ(s), then

J(γ) =
∑

0<γ1�γ

T (γ1, γ) +
∑

0<γ1�γ

T (γ1,−γ) +
∑

−γ<γ2<γ

T (γ, γ2)

= T (γ, γ) + T (γ,−γ) + 2
∑

−γ<γ2<γ

T (γ, γ2) . (23)

This may be seen by drawing a rectangle with vertices at (0, γ), (γ, γ), (γ, −γ), (0, −γ), 
following the north, east and south edges, and using the symmetry T (x, y) = T (y, x).

To show that J(γ) > 0, we split the last sum in (23) into three pieces, A := (−γ, 0], 
B := (0, (3 −

√
8)γ), and C := [(3 −

√
8)γ, γ). This gives

J(γ) = T (γ, γ) + T (γ,−γ)

+ 2
∑
γ2∈A

T (γ, γ2) + 2
∑
γ2∈B

T (γ, γ2) + 2
∑
γ2∈C

T (γ, γ2).

By Lemma 13, the sum with γ2 ∈ C consists only of positive terms, so

J(γ) � T (γ, γ) + T (γ,−γ) + 2
∑
γ2∈A

T (γ, γ2) + 2
∑
γ2∈B

T (γ, γ2). (24)

We now show that the diagonal term T (γ, γ) in (24) is positive, and sufficiently large 
to dominate the anti-diagonal term T (γ, −γ) and the sums over A and B.

Lemma 14 (Diagonal term). We have T (γ, γ) � 1.99/γ2.

Proof. Since γ > 0 is the ordinate of a nontrivial zero of ζ(s), we have γ > 14. Thus, 
using (22), we have T (γ, γ) = 2/(1

4 + γ2) > 1.99/γ2. �
4 For simplicity we assume here that all zeros of ζ(s) are simple, but one can modify the proofs in an 

obvious way to account for multiple zeros, if they exist.
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Lemma 15 (Anti-diagonal term and interval A). If c3 is as in (20), then

|T (γ,−γ)|
2 +

∑
−γ<γ2<0

|T (γ, γ2)| �
16c3
γ2 <

0.37
γ2 .

Proof. Write (22) as T (γ, γ2) = N/D, where the numerator is

N = 2(1 + 6γγ2 − γ2 − γ2
2), (25)

and the denominator is

D = (1
4 + γ2)(1

4 + γ2
2)(4 + (γ − γ2)2) > γ2γ2

2(γ − γ2)2. (26)

Thus, N/2 = 1 − (r2 −6r+1)γ2, where r = γ2/γ. Now r2−6r+1 ∈ [1, 8] for r ∈ [−1, 0]. 
Thus N/2 ∈ [1 − 8γ2, 1 − γ2], and |N | < 16γ2.

For the denominator, we have D > γ4γ2
2(1 − r)2 ∈ [γ4γ2

2 , 4γ4γ2
2 ], so D > γ4γ2

2 . 
Combining the inequalities for N and D gives

|T (γ, γ2)| <
16

γ2γ2
2
.

Now, summing over γ2 < 0, and recalling the definition of c3 in (20), gives the result. �
Lemma 16 (Interval B). We have

∑
0<γ2<(3−

√
8)γ

|T (γ, γ2)| �
(3 +

√
8)c3

2γ2 <
0.068
γ2 .

Proof. As in the proof of Lemma 15, write (22) as T (γ, γ2) = N/D, where N and D are 
as in (25)–(26). Now γ2/γ < 3 −

√
8, so 1 −γ2/γ >

√
8−2, and (γ−γ2)2 > 4(3 −

√
8)γ2. 

This gives

D > 4(3 −
√

8)γ4γ2
2 .

Also, N/2 = 1 − (r2 − 6r+ 1)γ2, where r = γ2/γ ∈ [0, 3 −
√

8]. Thus 0 � r2 − 6r+ 1 � 1
and |N | � 2γ2. The inequalities for D and N give

|T (γ, γ2)| <
2γ2

4(3 −
√

8)γ4γ2
2

= 3 +
√

8
2γ2γ2

2
.

Now, summing over γ2 > 0 gives the result. �
Lemma 17. S(Y ) is monotonic non-decreasing for Y ∈ [0, ∞), with jumps of at least 
1.11/γ2 at ordinates γ > 0 of ζ(s).
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Proof. Using the inequality (24) and Lemmas 14–16, we have

J(γ) � 1.99 − 2 · 0.37 − 2 · 0.068
γ2 >

1.11
γ2 .

Thus, S(Y ) has positive jumps at ordinates γ > 0 of zeros of ζ(s), and is constant 
between these ordinates. �
Corollary 4. Assume RH. For all Y > 0, we have c2 > S(Y ).

Proof. This follows as S(Y ) is monotonic non-decreasing with limit c2, and has positive 
jumps at arbitrarily large Y . �
Corollary 5. Assume RH. Then c1 < c2.

Proof. Take Y = 70 in Corollary 4. Computing S(70), which involves a double sum over 
first 17 nontrivial zeros in the upper half-plane, gives a lower bound c2 > S(70) > 0.0466. 
Since c1 < 0.0462, the result follows. �
Remark 4. RH is probably not necessary for Corollary 5. Any exceptional zeros off the 
critical line must have large height, and consequently they would make little difference 
to the numerical values of c1 and c2.

Remark 5. Taking Y = 74 920.83 in Corollary 4, and using the first 105 zeros of ζ(s), we 
obtain

c2 > S(Y ) > 0.104004 and c2 − c1 > 0.0578 .

This is much stronger than the bound used in the proof of Corollary 5, though at the 
expense of more computation. Our best estimate, using an integral approximation for 
the higher zeros, is c2 ≈ 0.10446.

5.4. Non-existence of a limit

First we prove a result analogous to Theorem 4, but with lim sup replaced by lim inf. 
Then we deduce that neither I(X)/X2 nor J(X)/X2 has a limit as X → ∞.

Theorem 5. Assume RH. With J(X) as in (17) and c1 as in (18),

lim inf 2J(X) � c1.

X→∞ X2
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Proof. Define

F (X) :=
X∫

1

(ψ(x) − x)2 dx = J(X) − J(1), and

G(X) :=
X∫

1

(ψ(x) − x)2 dx

x2 ∼ c1 logX.

Here the asymptotic result is given in [8, Ex. 13.1.1.3], which follows from [8, Thm. 13.6]
after a change of variables x = exp(u). Using integration by parts, we obtain

G(X) = F (X)
X2 + 2

X∫
1

F (x) dx
x3 .

Now F (X) � X2, so

2
X∫

1

F (x) dx
x3 ∼ G(X) ∼ c1 logX as X → ∞.

Dividing by 2 logX gives

X∫
1

F (x)
x2

dx

x

/ X∫
1

dx

x
∼ c1

2 as X → ∞. (27)

Now, if F (x)/x2 � c1/2 + ε for some positive ε and all sufficiently large x, we get a 
contradiction to (27). Thus, letting ε → 0, we obtain the result. �
Corollary 6. With J(X) as in (17), lim

X→∞

J(X)
X2 does not exist.

Proof. The result holds if RH is false. Hence, assume RH. From Corollary 5, c1 < c2, so 
the result is implied by Theorems 4 and 5. �

We conclude by showing the non-existence of limX→∞ I(X)X−2, thereby proving 
Theorem 2. Suppose, on the contrary, that the limit exists. Now, from the definitions (2)
and (17), we have

J(X)
X2 =

∞∑ I(X/2k)
X2 =

∞∑
4−k I(X/2k)

(X/2k)2 ,

k=1 k=1
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and the series converge since the k-th terms are O(4−k). Hence there exists
limX→∞ J(X)/X2, but this contradicts Corollary 6. Thus, our original assumption is 
false, and the result follows.
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