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Abstract

We consider the sum
∑

1/γ, where γ ranges over the ordinates of non-
trivial zeros of the Riemann zeta-function in an interval (0, T ], and
consider the behaviour of the sum as T → ∞. We show that, af-
ter subtracting a smooth approximation 1

4π log2(T/2π), the sum tends
to a limit H ≈ −0.0171594 which can be expressed as an integral.
We calculate H to high accuracy, using a method which has error
O((log T )/T 2). Our results improve on earlier results by Hassani and
other authors.

1 Introduction

Let the nontrivial zeros of the Riemann zeta-function ζ(s) be denoted by
ρ = σ+ iγ. In order of increasing height, the ordinates of these zeros in the
upper half-plane are γ1 ≈ 14.13 < γ2 < γ3 < · · · . Define

G(T ) :=
∑

0<γ6T

1/γ,

where multiple zeros (if they exist) are weighted according to their multiplic-
ity. We consider the behaviour of G(T ) as T → ∞. Answering a question
of Hassani [7], we show in Theorem 1 of §2 that there exists

H := lim
T→∞

(
G(T )− log2(T/2π)

4π

)
. (1)
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There is an analogy with the harmonic series
∑

1/n, which appears in
the usual definition of Euler’s constant:

C := lim
N→∞

(
N∑
n=1

1

n
− logN

)
= 0.577215 · · · .

It is well-known that one can compute C accurately using Euler–Maclaurin
summation or faster algorithms, see [1, 2, 5] and the references given there.
However, it is not so easy to compute H accurately, because of the irregular
spacing of the nontrivial zeros of ζ(s), for which see [9].

In §4 we consider numerical approximation of H, after giving some pre-
liminary lemmas in §3. If the definition (1) is used directly with the zeros
up to height T , then the error is O((log T )/T ). In Theorem 2 we show how
to improve this, without much extra computation, to O((log T )/T 2). In
Corollary 1 we give an explicit bound on H with error of order 10−18.

Finally, in §5, we comment briefly on related results in the literature.

2 Existence of the limit

Before proving Theorem 1, we define some notation. Let F denote the
set of positive ordinates of zeros of ζ(s). Following Titchmarsh [11, §9.2–
§9.3], if 0 < T 6∈ F , then we let N(T ) denote the number of zeros β + iγ
of ζ(s) with 0 < γ 6 T , and S(T ) denote the value of π−1 arg ζ(12 + iT )
obtained by continuous variation along the straight lines joining 2, 2 + iT ,
and 1

2 + iT , starting with the value 0. If T ∈ F , we could take S(T ) =
limδ→0[S(T − δ) + S(T + δ)]/2, and similarly for N(T ), but we avoid this
exceptional case. Note that N(T ) and S(T ) are piecewise continuous, with
jumps at T ∈ F .

By [11, Thm. 9.3], we have N(T ) = L(T ) +Q(T ), where

L(T ) =
T

2π

(
log

(
T

2π

)
− 1

)
+

7

8
, and Q(T ) = S(T ) +O(1/T ).

An explicit bound from Trudgian [13, Cor. 1] is

Q(T ) = S(T ) +
0.2ϑ

T
(2)

where (here and elsewhere) ϑ ∈ R satisfies |ϑ| 6 1.

Let S1(T ) :=
∫ T
0 S(t) dt. By [11, Thm. 9.4 and Thm. 9.9(A)], we have

S(T ) = O(log T ) and S1(T ) = O(log T ), and it follows from (2) that
Q(T ) = O(log T ) also.
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Explicit bounds on S1(T ) are known. For certain constants c, A0 > 0,
A1 > 0, and T0 > 0, there is a bound

|S1(T )− c| 6 A0 +A1 log T for all T > T0. (3)

From [12, Thm. 2.2], we could take c = S1(168π), A0 = 2.067, A1 = 0.059,
and T0 = 168π. However, a small computation shows that (3) also holds for
T ∈ [2π, 168π]. Hence, we take T0 = 2π in (3).

Our first result is the following.

Theorem 1. The limit H in (1) exists. Also,

H =

∫ ∞
2π

Q(t)

t2
dt− 1

16π
,

where Q(T ) = N(T )− L(T ) is as above.

Proof. Suppose that 2π 6 T 6∈ F . Using Stieltjes integrals, and noting that
γ1 > 2π and Q(2π) = 1

8 , we have

G(T ) =
∑

0<γ6T

1

γ
=

∫ T

2π

dN(t)

t
=

∫ T

2π

dL(t)

t
+

∫ T

2π

dQ(t)

t

=
1

2π

∫ T

2π

log(t/2π)

t
dt+

[
Q(t)

t
+

∫
Q(t)

t2
dt

]T
2π

=
log2(T/2π)

4π
+
Q(T )

T
− 1

16π
+

∫ T

2π

Q(t)

t2
dt . (4)

Thus

G(T )− log2(T/2π)

4π
=

∫ T

2π

Q(t)

t2
dt− 1

16π
+O((log T )/T ).

Letting T →∞, the last integral converges, so the limit of the left-hand-side
exists, and we obtain

H = lim
T→∞

(
G(T )− log2(T/2π)

4π

)
=

∫ ∞
2π

Q(t)

t2
dt− 1

16π
.

This completes the proof.
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3 Two lemmas

We now give two lemmas that are used in the proof of Theorem 2.

Lemma 1. If 2π 6 T 6∈ F , then∫ T

2π

Q(t)

t2
dt = G(T )− Q(T )

T
+

1

16π
− log2(T/2π)

4π
.

Proof. This is just a rearrangement of (4) in the proof of Theorem 1.

Lemma 2. If T > 2π and

E2(T ) :=

∫ ∞
T

Q(t)

t2
dt, (5)

then

|E2(T )| 6 4.27 + 0.12 log T

T 2
.

Proof. To bound E2(T ) we note that, from (2),∫ ∞
T

Q(t)

t2
dt =

∫ ∞
T

S(t)

t2
dt+

0.1ϑ

T 2
. (6)

Also, using integration by parts,∫ ∞
T

S(t)

t2
dt = −S1(T )− c

T 2
+ 2

∫ ∞
T

S1(t)− c
t3

dt . (7)

Using (3), we have∣∣∣∣∫ ∞
T

S(t)

t2
dt

∣∣∣∣ 6 |S1(T )− c|
T 2

+ 2

∫ ∞
T

|S1(t)− c|
t3

dt

6
A0 +A1 log T

T 2
+ 2

∫ ∞
T

A0 +A1 log t

t3
dt

=
2A0 + 0.5A1 + 2A1 log T

T 2
. (8)

Using (6), this gives

|E2(T )| 6 2A0 + 0.5A1 + 0.1 + 2A1 log T

T 2
.

Inserting the values A0 = 2.067 and A1 = 0.059 gives the result.
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We note that the bound (8) might be improved by using a result of
Fujii [6, Thm. 2] to bound the integral of S1(t)/t

3 in (7), although we are
not aware of any explicit version of Fujii’s estimate. The bound would then
be dominated by the term −S1(T )/T 2 in (7). This term is o((log T )/T 2) iff
the Lindelöf Hypothesis (LH) is true, see [11, Thm 13.6(B) and Note 13.8].
Thus, obtaining an order-of-magnitude improvement in the bound on E2(T )
is equivalent to proving LH.

4 Numerical approximation of H

We consider two methods to approximate H numerically. The first method
truncates the sum and integral in the definition (1) at height T > 2πe, giving
an approximation with error E(T ) = O((log T )/T ). An explicit bound

H = G(T )− log2(T/2π)

4π
+Aϑ

(
2 log T + 1

T

)
(9)

follows from Lehman [8, Lem. 1]. Lehman gave A = 2, but from [3, Cor. 1]
we may take A = 0.28. Thus, we can obtain about 5 decimal places by
summing over the first 106 zeros of ζ(s), i.e. to height T = 600270. In this
manner we find H ≈ −0.01716. It is difficult to obtain many more correct
digits because of the slow convergence. However, the result is sufficient to
show that H is negative, which is significant in the proof of [3, Lem. 8].

Convergence can be accelerated using Theorem 2, which improves the
error bound E(T ) = O((log T )/T ) of (9) to E2(T ) = O((log T )/T 2). Note
that the error term E2(T ) is a continuous function of T . This is unlike E(T ),
which has jumps for T ∈ F .

Theorem 2. For all T > 2π,

H =
∑

0<γ6T

(
1

γ
− 1

T

)
− log2(T/2πe) + 1

4π
+

7

8T
+ E2(T ) , (10)

where E2(T ) is as in (5), and |E2(T )| 6 (4.27 + 0.12 log T )/T 2.

Proof. First assume that T 6∈ F . From Theorem 1 and Lemma 1,

H = G(T )− Q(T )

T
− log2(T/2π)

4π
+ E2(T ),

but Q(T ) = N(T )− L(T ), so

H =
∑

0<γ6T

(
1

γ
− 1

T

)
+

log(T/2π)− 1

2π
+

7

8T
− log2(T/2π)

4π
+ E2(T ).

5



Simplification gives (10), and a continuity argument shows that (10) holds
if T ∈ F . Finally, the bound on E2(T ) follows from Lemma 2.

Corollary 1. Let H be defined by (1). We have

H = −0.0171594043070981495 + ϑ(10−18).

Proof. This follows from Theorem 2 by an interval-arithmetic computation
using the first n = 1010 zeros, with T = γn ≈ 3293531632.4 .

To illustrate Theorem 2, we give some numerical results in Table 1. The
first column (n) gives the number of zeros used, and the second column is
the estimate of H obtained from (10), using T = γn. The first incorrect
digit of each entry is underlined.

n H estimate

10 −0.017372393877
100 −0.017159765533
1000 −0.017159603500
10000 −0.017159404875
100000 −0.017159404244
1000000 −0.017159404307

Table 1: Numerical estimation of H using Theorem 2.

5 Related results in the literature

Büthe [4, Lem. 3] gives the inequality

G(T ) 6
log2(T/2π)

4π
for T > 5000. (11)

In [3, Lem. 8], we give a different proof of (11), and show that it holds for
T > 4πe.

Hassani [7] shows (in our notation) that

G(T ) =
log2(T/2π)

4π
+O(1),

and gives numerical bounds for the “O(1)” term. A similar bound is given
in [10, Lem. 2.10]. Hassani does not prove existence of the limit (1), but asks
(see [7, p. 114]) whether it exists. We have answered this in our Theorem 1.
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In fact, Hassani works with

∆N :=
N∑
n=1

1

γn
−
(

1

4π
log2 γN −

log(2π)

2π
log γN

)
,

so in our notation

∆N = G(γN )− log2(γN/2π)

4π
+

log2(2π)

4π
.

Thus, the (hypothetical) limit to which Hassani refers is, in our notation,

H +
log2(2π)

4π
= 0.2516367513127059665 + ϑ(10−18).

This is consistent with the value 0.25163 that Hassani gives based on his
calculations using 2 · 106 nontrivial zeros. Hassani also uses an averaging
technique to obtain values in the range [0.2516372, 0.2516375], but appar-
ently decreasing, without an obvious limit. The acceleration technique of
Theorem 2 is more effective, and has the virtue of giving a rigorous error
bound.
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