On two theorems of Vassilev-Missana

Richard P. Brent
Mathematical Sciences Institute, Australian National University
Canberra, ACT 2600, Australia
e-mail: prime.zeta@rpbrent.com

Received: 23 March 2021
Accepted: 1 June 2021

Abstract

We show that Theorem 1 of Vassilev-Missana [this journal, 2016, 22(4), 12-15] is false, and deduce that Theorem 2 of the same paper is also false.

Keywords: Riemann zeta-function, Prime zeta-function.
2020 Mathematics Subject Classification: 11M06, 11A25.

1 Introduction

Theorem 1 of Vassilev-Missana [3] states that*, for all integer $s>1$,

$$
\begin{equation*}
2 / \zeta(s)=1+(1-P(s))^{2}-P(2 s) \tag{1}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta-function and $P(s)$ is the prime zeta-function [2]. We remark that there is no need for the assumption that s is an integer. If correct, the proof of [3, Theorem 1] would hold for all complex s with $\Re(s)>1$.

In $\S 2$ we disprove Theorem 1 using a Dirichlet series argument, and in $\S 3$ we deduce that Theorem 2 is also false. Finally, in $\S 4$ we provide numerical confirmation of these conclusions.

2 Disproof of Theorem 1

Assume that $\Re(s)>1$. Recalling that $1 / \zeta(s)=\sum \mu(n) n^{-s}$, we expand each side of (1) as a Dirichlet series $\sum a_{n} n^{-s}$. On the right-hand side (RHS), the only terms with nonzero coefficients a_{n} are for integers n of the form $p^{\alpha} q^{\beta}$, where p and q are primes, $\alpha \geq 0$, and $\beta \geq 0$. However, on the left-hand side (LHS), we find $a_{30}=2 \mu(30)=-2$, since 30 has three distinct prime factors, implying that $\mu(30)=-1$. This is a contradiction, so (1) is false.

[^0]
3 Disproof of Theorem 2

Theorem 2 of [3] states that, for all integer $s>1$,

$$
\begin{equation*}
P(s)=1-\sqrt{2 / \zeta(s)-\sqrt{2 / \zeta(2 s)-\sqrt{2 / \zeta(4 s)-\sqrt{2 / \zeta(8 s)-\cdots}}}} \tag{2}
\end{equation*}
$$

We now show that (2) is false. The proof is by way of contradiction. Assume that (2) is correct. Replacing s by $2 s$ and using the result to simplify (2), we obtain

$$
\begin{equation*}
1-P(s)=\sqrt{2 / \zeta(s)-(1-P(2 s))} \tag{3}
\end{equation*}
$$

Squaring both sides of (3) and simplifying gives (1), but we showed in $\S 2$ that (1) is false. This contradiction shows that (2) is false.

4 Numerical confirmation

To confirm the theoretical arguments above, we performed a direct numerical evaluation of each side of (1) for the case $s=2$ (and for other cases not detailed here). We used the well-known formula [2, page 188] that can be proved by Möbius inversion:

$$
\begin{equation*}
P(s)=\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log \zeta(k s) . \tag{4}
\end{equation*}
$$

For $s=2$, the LHS of (1) is $12 / \pi^{2} \approx 1.216$, and the RHS is 1.223 , with both values correct to 3 decimal places. Thus, LHS \neq RHS. This is a contradiction, confirming that (1) is false.

Similarly, we evaluated each side of (2) at $s=2$. We found that the LHS is $P(2) \approx 0.452$, and the RHS is 0.459 , with both values correct to 3 decimals. This confirms that (2) is false.

Further details regarding the numerical computations may be found in [1].

Acknowledgements

Kannan Soundararajan kindly pointed out some relevant discussion on MathOverflow, for which see http://mathoverflow.net/questions/288847/. We thank Léo Agélas and Artur Kawalec for confirming some of our computations.

References

[1] Brent, R. P. (2021). On some results of Agélas concerning the GRH and of VassilevMissana concerning the prime zeta function. arXiv 2103.09418. Available online at: https : //arxiv.org/abs/2103.09418.
[2] Fröberg, C.-E. (1968). On the prime zeta function. BIT Numerical Mathematics, 8, 187-202.
[3] Vassilev-Missana, M. (2016). A note on prime zeta function and Riemann zeta function. Notes on Number Theory and Discrete Mathematics, 22(4), 12-15.

[^0]: *For later convenience, we have made a trivial re-ordering of the terms in (1).

