BATEMAN’S FORMULA
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In 1904, well before integral geometry as such was contemplated, Bateman [2, p. 457]
wrote down the following formula:—

1) dwzyz) = 74 F((w + i) + (i + 2)C, (iy — 2) + (w — i2)C, O)de

for f a holomorphic function of three variables. He observed that differentiation under
the integral sign implies that ¢ is harmonic and asserted that (1) gives the general
harmonic function of four variables. By contemporary standards, the formulation is
imprecise—where, for example, should f be defined? A precise formulation and proof
of Bateman’s assertion did not emerge for more than seventy years!

In 1938, John [4] wrote down the following formula:—

(2) o(w,z,y,2) = /_OO flw+azs,y+ zs,s)ds

for f a smooth function of three variables. He observed that differentiation under
the integral sign implies that 9%¢/0wdz = 8*¢/dxdy. Not only that, but he gave a
geometric interpretation of (2) and showed that this differential equation characterises
the ¢ arising in this way. The geometric interpretation stems from the form of the
integrand. Most straight lines in R? can be written in the form s — (w+xs,y+wz, s).
One may view and extend (2) as L — [, f for straight lines L in R®. This is one of
the most basic transforms in real integral geometry. Nowadays, it is often called the
‘X-ray transform’ owing to its interpretation as describing the attenuation of X-rays
encountering a patient with density 1/f. Medical imaging calls for the inversion of
transforms such as this.

The key to (1) is a similar geometric interpretation of the integrand. The Hopf
fibration RP; — S? has a higher dimensional version CP; = S* sometimes known
as the ‘twistor fibration’. Any open U C R* may be viewed as a subset of S* under
stereographic projection and the ‘Penrose transform’ gives an isomorphism

(3) HY(r7Y(U), 0(-2)) = {harmonic ¢ on U}.

The holomorphic function f in Bateman’s formula is interpreted as a Cech co-cycle
representing a cohomology class on the left hand side of (3). See, for example, [6] for
details of this isomorphism and many variations on this theme.

The evident formal analogy between (1) and (2) may be traced to geometry: we
may view these formulae as arising from two different real forms of the complex
correspondence between CP3 and Gry(C*). More precise links are, however, quite
subtle. One possibility is discussed in [1], another in [3]. Nevertheless, the results are
similar: in both cases the range of an integral geometric transform is charaterised by
a differential equation. Determining the range of such transforms is a common goal
in integral geometry.

There are similar results in higher dimensions but the story is most satisfactory
in four dimensions. This is really because two stories coalesce, as reflected in the



isomorphism of Lie groups Spin(6,C) = SL(4,C). In fact, this coincidence was one
of the primary motivations for Penrose’s ‘twistor theory’ [5, 6] as a physical theory:
it is specific to the dimension of space-time.
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