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Topics

● CP3 is the twistor space of S4,

● Penrose transform on CP3,

● Funk-Radon transform on RP2,

● X-ray transform on RP3,

● X-ray transform on CP2,

● Penrose transform on CP2,

● X-ray transform on CP3,

● BGG-like complexes on CP3.

} classical twistor theory

} with round metric

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
with Fubini-Study metric

Bernstein-Gelfand-Gelfand
✻

& CR geometry❍❍❍❨
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Conformal foliations

U = unit vector field on Ωopen ⊆ R3.

✑

✑

✑

✑

●

✻
✑✑ ✑✑

U is (transversally) conformal
⇔LU preserves the conformal
metric orthogonal to its leaves

××Öh
C

isothermal
coördinates ↝ h = f + ig ⟨∇f,∇g⟩ = 0

∥∇f∥ = ∥∇g∥
conjugate functions
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Conjugate functions on R3

f = f(q, r, s) g = g(q, r, s) s.t. { ⟨∇f,∇g⟩ = 0

∥∇f∥ = ∥∇g∥
● f = r g = s

● f = q2 − r2 − s2 g = 2q
√

r2 + s2

● f = r
q2 + r2 + s2

r2 + s2
g = s

q2 + r2 + s2

r2 + s2

●
f = (1 − q2 − r2 − s2)r + 2qs

r2 + s2

g = (1 − q2 − r2 − s2)s − 2qr

r2 + s2

R3 ↪ S3

↓
R2 ← S2 ∖ {∗}

Hopf
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Almost Hermitian structures

NB: J(p, q, r, s) ∶ R4 → R4 satisfies

● J2 = −Id

● J ∈ SO(4)
⇐⇒ J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −u −v −w
u 0 −w v

v w o −u
w −v u 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u2 + v2 +w2 = 1, two-sphere

Consider R3 = {(p, q, r, s) ∈ R4 ∣ p = 0} ⊂ R4

NB: U ≡ (J ∂
∂p) ∣R3

= (u ∂
∂q + v ∂

∂r +w ∂
∂s) ∣R3

unit vector field

also ↝ two-sphere
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Sphere bundles

Q○ ⊂ Z○××Ö ××Ö
R3 ⊂ R4

bundle of
unit vectors

❅❅❘

τ

bundle of almost
Hermitian structues

��✠

section
↕

unit vector field

¹

section
↕

almost Hermitian structure

Á
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Hermitian structures

Lemma

J is integrableÔ⇒ U ≡ (J ∂
∂p) ∣R3

is conformal

Conversely??
NB: J integrableÔ⇒ J real-analytic

Question: U conformalÔ⇒ U real-analytic??

Answer: NO!

However: U real-analytic and conformalÔ⇒ U extends uniquely to an integrable J .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
WHY?
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Twistor geometry

Q○ ⊂ Z○××Ö ××Ö
R3 ⊂ R4

compactify
↪

Q ⊂ CP3××Ö τ
××Ö

S3 ⊂ S4

Q = {[Z] ∈ CP3 ∣ ∣Z1∣2 + ∣Z2∣2 = ∣Z3∣2 + ∣Z4∣2}
≡ Levi-indefinite hyperquadric

CP3

�� ✡✡

✡✡

✡✡
Q

(cf. saddle)
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Twistor results

Q ⊂ CP3××Ö τ
××Ö

S3 ⊂ S4

CP3

�� ✡✡

✡✡

✡✡
Q

τÐ→

Theorem A section S4 ⊇ openΩ
J→ CP3 of τ defines

an integrable Hermitian structure if and only if
M̃ ≡ J(Ω) is a complex submanifold.

Theorem A section S3 ⊇ openΩ
U→ Q of τ ∶ Q→ S3 defines a

conformal foliation if and only if
M ≡ U(Ω) is a CR submanifold.
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CR submanifolds and functions

M ⊂ Q ⊂ CP3 is a ‘CR submanifold’?

It means: TM ∩ JTQ is preserved by J .

It does not mean: M = {f = 0} where f is a

CR function: (X + iJX)f = 0 ∀X ∈ Γ(TQ ∩ JTQ).
Implicit function theorem

is false in the CR category

● CR functions on Q are real-analytic.● conformal foliations on S3 need not be.
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CR functions

{[Z] ∈ CP2 ∣ ∣Z1∣2 + ∣Z2∣2 = ∣Z3∣2} = three-sphere

CP2

✫✪
✬✩

.............
.........

Theorem (H. Lewy 1956)
CR⇒ holomorphic extension

{[Z] ∈ CP3 ∣ ∣Z1∣2 + ∣Z2∣2 = ∣Z3∣2 + ∣Z4∣2} = Q

CP3

✣✢
✤✜
........................................
.................................

Corollary
CR⇒ holomorphic extension

Hence, a CR function on Q is real-analytic!
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Smooth conjugate functions

Eikonal equation: (∂f

∂r
)2 + (∂f

∂s
)2 = 1

Plenty of non-analytic solutions:

✲

✻

r

s

Γ

✐ ✫✪
✬✩

f = signed distance to Γ

f(q, r, s) = f(r, s)
g(q, r, s) = q

}⇒ ⟨∇f,∇g⟩ = 0

∥∇f∥ = ∥∇g∥ QED
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Penrose transform

τ−1(U) ⊆ CP3 H1(τ−1(U),O(−2))××Ö τ
××Ö ↝ ××Ö≀

Uopen ⊆ S4 {φ∶U → C ∣ (∆ −R/6)φ = 0}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conformal Laplacian

homogeneous
vector
bundle

❅❅■ ��✒

F1,2(C3) ∋ L ⊂ P H1(F1,2(C3),Θ)
τ
××Ö

z→ ↝ ××Ö≀
CP2 ∋ L⊥ ∩ P

Γ(CP2,⊙
2
○
Λ1)→ Γ(CP2,⊞2,2

○⊥
Λ1)

Γ(CP2,Λ1)→ Γ(CP2,⊙
2
○
Λ1)☇

Fubini-Study metric
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Funk-Radon transform on RP2

RP2

F1,2(R3)

Gr2(R3)
�

�✠
❅

❅❘
= RP

∗

2

projective duality

R2 ↪

γ

S2

φ(γ) = ∮
γ
f

Theorem (Funk 1913) C∞(RP2) ≃Ð→ C∞(RP
∗

2)
Better Theorem Γ(RP2,E(−2)) ≃Ð→ Γ(RP

∗

2, Ẽ(−1))

GL(3,R)-invariant

✛

❅
❅

❅
❅

❅
❅

❅❅■
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X-ray transform on RP3

RP3

F1,2(R4)

Gr2(R4)
�

�✠
❅

❅❘ ↪
CP3

F1,2(C4)

Gr2(C4)
�

�✠
❅

❅❘

⊃ S4

Spin(5, 1)-orbitGL(4,R)↪ GL(4,C)
Theorem (cf. John 1938)

Γ(RP3,E(−2)) ≃Ð→ ker ∶ Γ(Gr2(R4), Ẽ[−1]) ◻Ð→ Γ(Gr2(R4), Ẽ[−3])
X-ray transform

ultra-hyperbolic wave operator

◻̃∣S4 = ∆ −R/6
Hayama Symposium on Complex Analysis in Several Variables XVII – p. 15/19



Machinery for the X-ray transform

Complex analysis comes into play in two ways:

● constructing a spectral sequence,

● computing with the spectral sequence.

More generally:

F1,2(Cn+1)

CPn Gr2(Cn+1)
�

�✠
❅

❅❘
µ ν ⊃

∪

Gr2(Rn+1)
❅

❅❘

F1,2(Rn+1)

RPn

�
�✠

Gr2(Rn+1)
❅

❅❘
τ

ν−1(Gr2(Rn+1))
dimR = 2n

❍

CPn

�
�✠
η

❉
❉
❉
❉❉

≡ F

a correspondence
✒

A but not a double fibrationA
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Real blow up

F =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(L,P) s.t.

L ⊂ Cn+1 is a complex line
P ⊂ Rn+1 is a real plane
R(L) ⊆ P (generic equality)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭×××Öη
×××Ö

CPn = {L s.t. L ⊂ Cn+1 is a complex line}

F ⊃ F1,2(Rn+1)×××Öη
×××Ö

CPn ⊃ RPn

Real blow up of
CPn along RPn

!
F inherits an
involutive structure
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X-ray transform on CP2 and CP3

CPn

γ

RPn

RPn ↪ CPn induced
by Rn+1 ↪ Cn+1 is
totally geodesic.

Translates by SU(n + 1) too!↑ ‘Model Embeddings’ µ

● The X-ray transform on RPn is well-understood.

● Pullback of tensors under µ is well-understood.

● Suitable global techniques on CPn are available:-

n = 2§ Penrose transform of H1(F1,2(C2),Θ) = 0 etc.

n ≥ 3© BGG-like: 0→ Λ1 →⊙2Λ1 →⊞⊥Λ1 etc.
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THE END

THANK YOU
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