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Let F(C3) denote the space of flags in C
3:







(L, P ) where L is a 1-dimensional linear subspace of C3,
P is a 2-dimensional linear subspace of C3,

and L ⊂ P






.

Equip C3 with its standard inner product and define τ : F(C3) → CP2 by

(L, P ) 7−→ L⊥ ∩ P , the orthogonal complement of L in P.

Though F(C3) and CP2 are complex manifolds and the fibres of τ in F(C3)
are complex submanifolds, τ itself is not holomorphic. In fact, F(C3) is

the twistor space of CP2 (as described, for example, in [2]). The Penrose
transform interprets analytic cohomology on F(C3) in terms of differential

equations on CP2. The aim of this lecture is to explain this transform and
how it may be used to derive results concerning the integral geometry of
geodesics in CP2 with respect to the Fubini-Study metric. This is joint work

with Toby Bailey at the University of Edinburgh.
A Penrose transform may be constructed in the following circumstances.

Suppose Z is a complex manifold, X is a smooth manifold, and τ : Z → X
is a smooth mapping of maximal rank with compact complex fibres. (In

fact, Z need only had a formally integrable or involutive structure, namely a
complex subbundle T 0,1 of its complexified tangent bundle, closed under Lie

bracket. Again the fibres of τ would be required to be compact and we would
insist that T 0,1 restrict to a complex structure in the usual sense on each
of these fibres.) Roughly speaking, the construction is as follows. Suppose

V is a holomorphic vector bundle on Z, and ω ∈ Hr(Z,O(V )). Then we
may consider ω|τ−1(x) as an element of the finite-dimensional vector space

Hr(τ−1(x),O(V |τ−1(x))). As x ∈ X varies, these vector spaces typically

†ARC Senior Research Fellow, University of Adelaide.
A talk presented at the RIMS conference, Kyoto University, on
‘Analysis and Geometry in Several Complex Variables,’ 30th June 1997.



define a smooth vector bundle τ∗V on X and ω|τ−1(x) is then a smooth

section of this bundle. This would be the Penrose transform Pω of ω.
Usually, Pω is subject to certain differential equations as a result of arising

in this way. The machinery for identifying these equations is as follows.
Let Λ0,1 denote the vector bundle of (0, 1)-forms on Z and Λ0,1

τ the (0, 1)-
forms along the fibres of τ . The short exact sequence of vector bundles

0 → B1 −→ Λ0,1 −→ Λ0,1
τ → 0

defines B1. It induces a filtration of the Dolbeault complex Λ0,• which the
∂-operator respects. In particular, there is a differential operator

∂τ : B1 −→ Λ0,1
τ ⊗B1

which endows B1 with a partially holomorphic structure—it is a holomor-

phic vector bundle along each fibres of τ . The exterior powers Bp of B1 are
also partially holomorphic and the spectral sequence of this filtered complex
reads

Ep,q
1 = Γ(X, τ q

∗B
p) =⇒ Hp+q(Z,O).

If we suppose that the dimension of the Dolbeault cohomology along the

fibres of τ

ker ∂τ : Γ(τ−1(x),Λ0,q
τ ⊗ Bp) −→ Γ(τ−1(x),Λ0,q+1

τ ⊗ Bp)

im ∂τ : Γ(τ−1(x),Λ0,q−1
τ ⊗ Bp) −→ Γ(τ−1(x),Λ0,q

τ ⊗ Bp)

is independent of x ∈ X, then τ q
∗B

p is simply the smooth vector bundle on
X with these spaces as fibres. As a minor variation on this theme, if V is

a holomorphic vector bundle on Z, then the bundles Bp ⊗ V are partially
holomorphic and there is a spectral sequence

Ep,q
1 = Γ(X, τ q

∗ (B
p ⊗ V )) =⇒ Hp+q(Z,O(V )).

The fibres of τ : F(C3) → CP2 are easily identified. Over x ∈ CP2, the
fibre is {

(L, P ) ∈ F(C3) s.t. L ⊂ x⊥ or,
equivalently, P ⊃ x

}

as in the following diagram.



x

x⊥

L

P

Either as P(x⊥) or P(C3/x), this is just CP1 whose cohomology is easily

computed. In fact, the fibration τ : F(C3) → CP2 is homogeneous under
the obvious action of U(3) and all the bundles we will be concerned with
are homogeneous under this action. This reduces the computation of these

cohomologies to an elementary exercise in representation theory (applying
the Bott-Borel-Weil theorem).

It would take us too far astray to describe the general computations.
Instead, there follow some typical results, suppressing all details of their

derivation. If V is taken to be the canonical bundle Ω3 on F(C3), then the
E1-level of spectral sequence reads

|

Γ(CP2,Λ
1,1
⊥ ) → Γ(CP2,Λ

3) → Γ(CP2,Λ
4) 0

|

0 0 0 0

where Λp is the bundle of complex-valued p-forms and Λ1,1
⊥ the (1,1)-forms

orthogonal to the Kähler form. Exterior differentiation provides the differ-
entials of this spectral sequence. These computations hold over any open

subset X of CP2 and, in particular, the Penrose transform gives an isomor-
phism

P : H1(τ−1(X),Ω3) ∼=−→ {ω ∈ Γ(X,Λ1,1
⊥ ) s.t. dω = 0}.

This follows our earlier rough description with the transform itself obtained
simply by restriction to the fibres τ−1(x) as x ∈ X varies. Though the

global isomorphism

P : H1(F(C3),Ω3) ∼=−→ {ω ∈ Γ(CP2,Λ
1,1
⊥ ) s.t. dω = 0}

is valid, both sides vanish, the left hand side by the Bott-Borel-Weil theorem
and the right hand side by Hodge theory.



If V is the trivial bundle, the Penrose transform is not simply obtained by

restriction to the fibres (since, H1(CP1,O) = 0). Nevertheless, the spectral
sequence is still valid. It reads

|

0 0 0 0
|

Γ(CP2,Λ
0) Γ(CP2,Λ

1) Γ(CP2,Λ
1,1
⊥ ) 0

The resulting isomorphism

P : H1(F(C3),O) ∼=−→
ker d1,1

⊥ : Γ(CP2,Λ
1) → Γ(CP2,Λ

1,1
⊥ )

im d : Γ(CP2,Λ0) → Γ(CP2,Λ1)

is, again, simply a confirmation that both sides vanish. (A non-linear ver-
sion of this isomorphism was used by Buchdahl [2] to classify the instantons

on CP2.)
A less trivial example is obtained by taking V to be Θ, the holomorphic

tangent bundle. In this case, the spectral sequence, after some preliminary
cancellation, reads

|

0 0 0 0
|

Γ(CP2,Λ
1) Γ(CP2,

⊙2
◦ Λ1) Γ(CP2,⊞

2,2
◦⊥Λ1) 0

which needs some further explanation as follows. The bundle
⊙2

◦ Λ1 is

the symmetric trace-free two-tensors and ⊞Λ1 is the bundle of tensors with
Riemann symmetries, ⊞◦Λ

1 the totally trace-free subbundle, ⊞
2,2
◦ Λ1 those of

type (2, 2), and, finally, ⊞
2,2
◦⊥Λ1 the (irreducible five-dimensional) subbundle

orthogonal to the Kähler form. The differentials are

ωa 7−→ the trace-free symmetric part of ∇aωb

and
θab 7−→ the ⊞

2,2
◦⊥ part of ∇a∇bθcd

where ∇a is the Levi-Civita connection for the Fubini-Study metric. Though

Θ is not an irreducible homogeneous bundle on F(C3), the Bott-Borel-Weil
theorem applies to its irreducible subquotients and H1(F(C3),Θ) is easily
shown to vanish. We have proved the following:



Theorem 1 Suppose θab is a smooth symmetric two-tensor on CP2 whose

⊞
2,2
◦⊥ part of ∇a∇bθcd vanishes. Then, there is a smooth one-form ωa on CP2

such that

θab = ∇(aωb) + ψgab,

for some smooth one-form ωa and function ψ. The round brackets here

mean to take the symmetric part and gab denotes the Fubini-Study metric.

This is part of a series of results which have consequences in integral ge-
ometry, as follows. The X-ray transform on RPn is obtained by integrating

a smooth function over geodesics on RPn to obtain a function on the space
of geodesics. (The metric on RPn is the standard one in which all geodesics

are closed.) It is well-known that this X-ray transform is injective. The
standard embedding RPn →֒ CPn is totally geodesic and, under the action
of U(n + 1), a large family of totally geodesically embedded RPn’s are ob-

tained. In particular, every geodesic on CPn lies on one of these RPn’s. It
is immediate that the X-ray transform is injective on CPn.

A smooth one-form θ on RPn has zero energy if its integral over every
geodesic vanishes. Clearly, if θ is exact, then it has zero energy. In [6],

Michel proved the converse. In [4], Gasqui and Goldschmidt established
the corresponding result for CPn. They reason from RPn much as follows.
If θ is a zero-energy one-form on CPn, then it is zero-energy on each totally

geodesic RPn, therefore exact and, therefore, closed. This is a strong con-
straint on dθ, namely that its restriction to every such RPn vanish. It is a

straightforward matter of algebra to check that this constraint is precisely
that dθ be a smooth multiple of κ, the Kähler form. Then

∗dθ = dθ ∧ κ ∧ · · · ∧ κ
︸ ︷︷ ︸

n−2

so d∗dθ = 0

and an integration by parts

‖dθ‖2 =

∫

CPn

dθ ∧ ∗dθ =

∫

CPn

θ ∧ d∗dθ = 0

shows that θ is closed and, hence, exact. (Instead, Gasqui and Goldschmidt
use representation theory to decompose the relevant function spaces.) It

is interesting to note that, for CP2, the Penrose transform together with



the vanishing of H1(F(C3),O) provides an alternative way of finishing the

argument.
In a similar way, Theorem 1 may be used in proving the infinitesimal

Blaschke rigidity of CP2. This result, due to Tsukamoto [7], says that if a
smooth symmetric two-tensor θab on CP2 has zero energy, then it is of the
form ∇(aωb) for some smooth one-form ωa. (His proof is involves a detailed

representation theoretic analysis of the relevant function spaces.) In view
of Theorem 1, it suffices to prove that

⊞
2,2
◦⊥(∇a∇bθcd) = 0

for then, θab = ∇(aωb) + ψgab and taking the energy of both sides shows

that ψ = 0. The infinitesimal Blaschke rigidity of RPn is due to Michel [5]
(or, see [1] for a Penrose transform proof). It follows that a zero-energy θab

on CPn is subject to differential constraints when restricted to any totally

geodesic RP2. These turn out to be second order constraints, part of a
resolution due to Calabi [3] (a special case of the Bernstein-Gelfand-Gelfand

resolution). They are of the form

⊞(∇a∇bθcd + Cgabθcd)

for a suitable constant C where ∇a is the Levi-Civita connection on RP2

for gab, the standard metric. We may define a differential operator on
CP2 by exactly the same formula but using the Fubini-Study metric and

connection. We conclude that the resulting tensor vanishes upon restriction
to any totally geodesic RP2. This places further algebraic restrictions on

a tensor which, in the first instance, has Riemann symmetries. It turns
out that the only tensors to have this property are obtained by applying

the Young symmetrizer ⊞ to κ ⊗ λ where κ is the Kähler form and λ an
arbitrary two-form. Explicitly,

κabλcd
⊞

7−→ 1
2κabλcd + 1

2κcdλab + 1
4κacλbd + 1

4κbdλac −
1
4κbcλad −

1
4κadλbc.

This is more than enough to ensure that the ⊞
2,2
◦⊥ piece of ∇a∇bθcd +Cgabθcd

vanishes. However, trace-removal eliminates the Cgabθcd term and we are

left with ⊞
2,2
◦⊥(∇a∇bθcd) = 0, as required.

More generally, it is shown in [1] that a symmetric (k + 1)-form θ on
RPn is the symmetrized covariant derivative of a symmetric k-form if and



only if it has zero energy. The Penrose transform and the vanishing of

H1(F(C3),
⊙k Θ) then give a proof of the corresponding result for CP2. As

noted in [4] or [7], this is sufficient to obtain the result on CPn and also for

quaternionic projective spaces and the Cayley plane.
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