
NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYMichael EastwoodyThese notes are in no way meant to be comprehensive, neither in treatment nor inreferences to the extensive literature. They are merely meant as an introduction to asmall selection of topics in the �eld. They were presented as a series of four lectures atthe 15th Winter School on Geometry and Physics, Srn��, Czech Republic, January 1995.Lecture OneRecall that a Riemannian manifold M is really a pair (M;g) consisting of a smoothmanifold M and a metric g, a smooth and everywhere positive de�nite section ofJ2 T �M , the symmetric tensor product of the cotangent bundle. Following standardpractise, we shall usually write gab instead of g and, more generally, we shall adorntensors with upper and lower indices in correspondence with the tangent or cotangentbundle. We shall also use the Einstein summation convention to denote the naturalpairing of vectors and covectors. Thus, V a denotes a tangent vector or a vector �eldand gabV aV b denotes the square of its length with respect to g. We shall often `raiseand lower indices' without comment|if V a is a vector �eld then Va � gabV b is thecorresponding 1-form. (More precisely, this is Penrose's abstract index notation|see[19] for details.)A conformal manifold M is a pair (M; [g]) where [g] is a Riemannian metric de�nedonly up to scale. In other words, [g] is a section of R(J2 T �M), the bundle of raysin J2 T �M such that a representative g is positive de�nite. In yet other words,a conformal manifold is an equivalence class of Riemannian manifolds where twometrics gab and bgab are said to be equivalent if bgab is a multiple of gab. In this caseit is convenient to write bgab = 
2gab for some smooth function 
. On a conformalmanifold, one can measure angles between vectors but not lengths.This paper is in �nal form and no version of it will be submitted for publication elsewhere.yARC Senior Research Fellow, University of Adelaide



MICHAEL EASTWOODFor example, in two dimensions an oriented conformal manifold is precisely a Riemannsurface, i.e. a one-dimensional complex manifold. Certainly, ifM is a Riemann surfacewith local co�ordinate z = x+iy, then dx2+dy2 is a Riemannian metric and ifw = u+ivis another, then the Cauchy Riemann equations@u@x = @v@y @u@y = �@v@ximply du2 + dv2 =  @u@xdx + @u@ydy!2 +  @v@xdx+ @v@ydy!2= 24 @u@x!2 +  @v@x!235 (dx2 + dy2):Conversely, there is a theorem of Korn and Lichtenstein which says that any Rieman-nian metric in two dimensions may be written locally in the form
2(dx2 + dy2)for some smooth function 
 and suitable co�ordinates (x; y) (chosen compatible withthe orientation). Taking z = x + iy de�nes a local complex co�ordinate and anyother choice is holomorphically related. Indeed, the Cauchy Riemann equations areprecisely that the Jacobian matrix8>>>>>: @u=@x @u=@y@v=@x @v=@y 9>>>>>;is proportional to an orthogonal one.Notice that a conformal manifold in two dimensions has no local invariants|allRiemann surfaces are locally indistinguishable. The only local invariant of a two-dimensional Riemannian manifold is its scalar curvature and this has been eliminatedby the freedom to scale the metric. In higher dimensions it is reasonable to expectsome of the rigidity of Riemannian geometry. This is indeed the case and evidence inits favour can be found as follows.Firstly, let is consider rigid motions of Rn, i.e. the connected component of the groupof isometries of Rn with its usual metric. Of course, this is well-known to be generatedby translations and rotations. One way of seeing this is to consider an in�nitesimalmotion, i.e. a vector �eld V a on Rn with the property thatV ab � @V a@xb 2 so(n), i.e. Vab = V[ab]where square brackets around indices denote taking the skew part. Consider nowV abc � @V a@xb@xc 2 so(n)(1), i.e. Vabc = V[ab]c and Vabc = Va(bc)



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYwhere round brackets denote the symmetric part. However, this �rst prolongationso(n)(1) vanishes:Vabc = �Vbac = �Vbca = Vcba = Vcab = �Vacb = �Vabc: (1)By integration the result concerning rigid motions follows. There are some observa-tions to be made.� The calculation (1) is the principal ingredient in constructing the Levi-Civitaconnection on a Riemannian manifold.� The 
at model of Riemannian geometry is Rn as a homogeneous spaceRn = Rno SO(n)SO(n) = rigid motionsstabiliser of a point :� As an alternative proof we could show that geodesics (i.e. straight lines with unitspeed parameterisation) are preserved by isometries and, by �ring out geodesics,conclude that an isometry �xing a point to �rst order is necessarily the identity.Let us try the same technique for the conformal case in an attempt to identify theconformal motions of Rn. An in�nitesimal motion is a vector �eld satisfyingV ab � @V a@xb 2 co(n), i.e. V(ab) = �gab:Thus, V abc 2 co(n)(1), i.e. V(ab)c = �cgab and Vabc = Va(bc):This �rst prolongation co(n)(1) is no longer zero. In fact,�a $ Vabc = �cgab + �bgac � �agbcidenti�es co(n)(1) with Rn. However,V abcd 2 co(n)(2), i.e. V(ab)cd = �cdgab and Vabcd = Va(bcd)and this second prolongation co(n)(2) vanishes if the dimension n is greater than 2:n�cd = gabVabcd = gabVacbd = gab(2V(ac)bd � Vcabd)= gab(2�bdgac � Vcdab) = 2�cd � gabVcdab:So, ngcd�cd = 2gcd�cd � gabgcd�abgcd = (2 � n)gcd�cdand �cd is trace-free. Since n 6= 2, then(2� n)�cd = gabVcdab



MICHAEL EASTWOODimplies that the right hand side is symmetric in cd in which case(2� n)�cd = gabV(cd)ab = gab�abgcdwhich implies that �cd is pure trace. Now V(ab)cd = 0 and we �nd that Vabcd is zero byapplying (1) on the �rst three indices.We may conclude that a conformal motion of Rn for n � 3 which �xes the origin tosecond order is necessarily the identity. More precisely, we may identify the group Pof conformal motions �xing the identity as matrices of the form8>>>>>>>>: ��1 0 0ra mab 0��rara=2 ��ramab � 9>>>>>>>>; for � > 0; mab 2 SO(n); ra 2 Rn (2)acting on xa 2 Rn by xa 7�! 4mabxb � 2xcxcra4� � 4�ramabxb + �xcxcrbrb :It is a good exercise to check that this really is conformal, i.e. that its derivativeis everywhere proportional to an orthogonal matrix. Notice that the denominatorvanishes when xb = 2mcbrc=rara. On the other hand, this formula is forced by theprolongation argument. In order to allow non-zero r we are therefore obliged tocompactify Rn with a single point to obtain the sphere Sn = Rn [ f1g. Furtherreasoning along these lines identi�es the full group of conformal motions of the roundsphere Sn (conformally containing Euclidean Rn via stereographic projection) as theidentity connected component G of SO(n+ 1; 1). The sphere is realised as the spaceof future pointing null rays eSn = spaceof generatorsin Rn+1;1. The form of P as above is obtained by taking G to preserve the form2x0xn+1 + x12 + x22 + � � �xn2and the basepoint of Sn to be represented by the null vectore = 8>>>>>>>>>>>>>: 0...01 9>>>>>>>>>>>>>;:



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYIn summary, the 
at model of conformal geometry isSn = G=Pfor G = SO�(n+1; 1) and P a suitable parabolic subgroup. The other two observationsin the Riemannian case will turn out to have analogues in the conformal case. Weshall �nd an invariant connection (but not on the tangent bundle). In fact we shall�nd a somewhat better di�erential operator (originally found by T.Y. Thomas). Weshall also �nd analogues of geodesics in the conformal case. They are known asconformal circles because in the 
at case they coincide with the round circles on Sn(equipped with their standard projective parameterisations). Certainly, these circlesare preserved by G.Lecture TwoSo much for the 
at case. To proceed in general, the na��ve approach is to work witha metric in the conformal class and then see how things change when the metricis scaled. If gab is replaced by bgab = 
2gab, then the Levi-Civita connection ra, isreplaced by the connection cra acting on 1-forms according tocra!b = ra!b ��a!b ��b!a +�c!cgabwhere �a � 
�1ra
. Indeed, this formula surely de�nes a torsion-free connectionand inducescra!bc = ra!bc � 2�a!bc ��b!ac ��c!ba +�d!dcgab +�d!bdgacon contravariant 2-tensors !ab, clearly annihilating bgab. Correspondingly, the newconnection on vector �elds iscraV b = raV b +�aV b ��bVa +�cV c�abwhere �ab is the Kronecker delta. It is convenient to introduce a line bundle E[1] onM as follows. If a metric gab in the conformal class is chosen, then E[1] is identi�edwith the trivial bundle E. Equivalently, a local section � of E[1] may be regarded as afunction, say f . If, however, gab is replaced by bgab = 
2gab, then the function bf repres-enting � with respect to the metric bgab, is given by bf = 
f . The wth power of E[1] willbe denoted by E[w] and its sections called conformally weighted functions of weight w.Such a section may be represented by a function scaling according to bf = 
wf . Weshall write Ea and Ea for the tangent and cotangent bundle respectively. Other tensorbundles will be denoted by adorning E with the corresponding indices. The conformalmetric may be regarded as an invariantly de�ned section of Eab[2]. Raising and lower-ing indices de�nes a canonical isomorphism of Ea[w] with Ea[w+2] for any weight w.Choosing a metric induces a connection on E[w] which transforms according tocra� = ra�+ w�a�



MICHAEL EASTWOODunder scaling of the metric.The Riemann curvature is de�ned by(rarb �rbra)V c = RabcdV dand transforms bybRabcd = 
2(Rabcd � �acgbd + �bcgad � �bdgac + �adgbc) (3)under scaling of the metric where�ab � ra�b ��a�b + 12�c�cgab:In particular, the variation is entirely through traces. The totally trace-free part Cabcdof Rabcd is therefore invariant and (3) suggests that we write the remaining part interms of a symmetric tensor Pab according toRabcd = Cabcd + Pacgbd � Pbcgad + Pbdgac � Padgbc:Then the Weyl curvature Cabcd has weight 2 and is conformally invariant whilst theRho-tensor Pab has weight 0 and (3) implies thatbPab = Pab �ra�b +�a�b � 12�c�cgab:The Rho-tensor is a trace-adjusted multiple of the Ricci tensor Rbd � Rabad:Pab = 1n� 2  Rab + R2(1 � n)gab!where R � Raa is the scalar curvature.Without further ado, we can now introduce the conformally invariant connectionalluded to earlier. Further details and motivation can be found in [3]. It is a connectionon a vector bundle EA which we now de�ne. In the presence of a metric gab in theconformal class, it may be identi�ed as a direct sumEA = E[1]� Ea[�1]� E[�1]but if gab is replaced by bgab = 
2gab, then a local section (�; �a; �) is identi�ed withits counterpart (b�; b�a; b�) in the new scale according to8>>>>>>>>: b�b�ab� 9>>>>>>>>; = 8>>>>>>>>: ��a +�a����b�b � 12�b�b� 9>>>>>>>>; :It is easy to check that this is an equivalence relation and hence that the bundleEA is well-de�ned. We shall use the term tractor for tensor powers of this bundleand their sections (by analogy with the term tensor in Riemannian geomtry). The



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYstructure group of this bundle is the group P encountered in the discussion of the
at case. Whereas the tractor bundle corresponds to the standard representation ofG = SO�(n + 1; 1) restricted to P , the spin representation (if n is odd) or one of thetwo spin representations (if n is even) induces the local twistor bundles introducedin four dimensions by Penrose (see [20]). Recall that the 
at model of conformalgeometry is the homogeneous space G=P . The tractor bundle EA in this case is thehomogeneous bundle induced by restricting the de�ning representation of G on Rn+2to the subgroup P . It is therefore simply a product Sn �Rn+2.For a given metric, the tractor connection on EA is de�ned byrb8>>>>>>>>: ��a� 9>>>>>>>>; = 8>>>>>>>>: rb� � �brb�a + �ba� + Pba�rb�� Pba�a 9>>>>>>>>; :This de�nition is conformally invariant, as can be veri�ed by direct calculation:brb8>>>>>>>: b�b�ab� 9>>>>>>>; = 8>>>>>>>>: brbb� � b�bbrbb�a + �bab�+ bPbab�brbb�� bPbab�a 9>>>>>>>>;=8>>>>>>>>: brb� � (�b +�b�)brb(�a + �a�) + �ba(�� �c�c � 12�c�c�) + (Pba � rb�a +�b�a � 12�c�c�ba)�brb(���c�c � 12�c�c�)� (Pba � rb�a +�b�a � 12�c�cgba)(�a +�a�) 9>>>>>>>>;=8>>>>>>>>>>>: (rb + �b)� � (�b + �b�)rb(�a +�a�)� �a(�b +�b�) + �c(�c +�c�)�ba+�ba(���c�c ��c�c�) + (Pba �rb�a +�b�a)�(rb ��b)(�� �c�c � 12�c�c�)� (Pba �rb�a +�b�a � 12�c�cgba)(�a + �a�) 9>>>>>>>>>>>;=8>>>>>>>: rb� � �brb�a +�arb� ��a�b + �ba� + Pba�rb�� �crb�c � 12�c�crb� ��b�� Pba�a � Pba�a� + 12�c�c�b 9>>>>>>>;=8>>>>>>>: rb� � �brb�a + �ba�+ Pba�rb�� Pba�a 9>>>>>>>;(((((( hhhhhh :This de�nition is due to T.Y. Thomas [23]. It is equivalent to E. Cartan's conformalconnection on the associated frame bundle. Thomas's discovery was slightly laterthan though independent of Cartan's. The connection induced on the bundle of localtwistors is called local twistor transport (see [8, 20] for explicit formulae in dimensionfour).In the 
at case M = Sn = G=P , the tractor connection is the 
at connection on theproduct bundle Sn �Rn+2. In general, the curvature is given by(rarb �rbra)8>>>>>>>>: ��c� 9>>>>>>>>; = 8>>>>>>>>: 0 0 02r[aPb]c Cabcd 00 �2r[aPb]d 0 9>>>>>>>>;8>>>>>>>>: ��d� 9>>>>>>>>; : (4)



MICHAEL EASTWOODFor n � 4, the Bianchi identity r[aRbc]de = 0 implies that2r[aPb]c = 13�nrdCabcdso the tractor curvature is equivalent to the Weyl curvature. When n = 3, the Weylcurvature vanishes (by symmetry considerations) and so we may conclude that r[aPb]cis conformally invariant. This is known as the Cotton-York tensor. In any case, it isstraightforward to deduce that these tensors are precisely the obstruction to a givenconformal manifold being locally equivalent to the 
at model.The tractor bundle carries a non-degenerate symmetric form, the tractor metric, aLorentzian metric characterised byk(�; �a; �)k2 = 2��+ �a�a:It is conformally invariant and is preserved by the tractor connection. In the 
at caseit coincides with the Lorentzian metric on Rn+1;1.We are now in a position to de�ne the conformal analogues of geodesics, the so-calledconformal circles. Though it is possible to proceed directly (as in [2]), it is convenientto use tractors. More details can be found in [3].Suppose 
 is a smooth curve in M parameterised by t, a smooth function on 
 withnowhere-vanishing derivative. This determines the velocity vector Ua along 
 byrequiring that it be tangent to 
 and that Uarat = 1. De�ne u � pUaUa, a functionof conformal weight 1. De�ne the acceleration vector Ab � UaraU b. (A unit speedgeodesic is de�ned by u = 1 and Ab = 0.) Of course, the acceleration vector is notconformally invariant (in fact bAb = Ab � u2�b + 2(U c�c)U b). De�ne the velocitytractor UB and acceleration tractor AB byUB � Uara8>>>>>>>>: 00u�1 9>>>>>>>>; and AB � UaraUB:These are manifestly conformally invariant de�nitions. Calculation yieldskAk2 = 2u�2UbUaraAb + 3u�2AbAb � 6u�4(UbAb)2 + 2PabUaU b;automatically invariant! Its vanishing may be regarded as a 3rd order ordinary dif-ferential equation along 
 for the function t. This gives a preferred family of localparameterisations of 
 which we call projective. If s and t are projective parameters,then the third order ODE relating them reduces to the Schwarzian2dsdt d3sdt3 � 3 d2sdt2!2 = 0 whence s = at+ bct+ d :The curve 
 is called a projectively parameterised conformal circle if and only ifkAk2 = 0 and UaraAB = 0:



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYCertainly, this is a conformally invariant system. In fact, it reduces to a third orderODE with leading term UaraAb. See [3] for more details. The upshot of this dis-cussion is that for every velocity and acceleration vector at a point, there is a uniqueparameterised conformal circle with these as initial conditions. In the 
at case, itmay be veri�ed that these are the round circles with standard projective paramet-erisations. As indicated earlier, this gives an alternative approach to the conformalmotions of Rn. The details are left to the reader.Lecture ThreeRecall from Lecture One, that the 
at model of conformal geometry is the sphere Sn asa homogeneous space G=P where G = SO�(n+1; 1) and P is the subgroup consistingof matrices of the form (2). It is an exercise in the theory of Verma modules to classifythe G-invariant di�erential operators on Sn and this lecture will mostly be devotedto indicating this theory and how it applies. Of course, it is important to understandthe 
at model, else we cannot hope to understand the curved , i.e. general, case. Moreimportantly, it will turn out that various elements of the 
at theory generalise to thecurved case.For the following discussion, G and P can be arbitrary Lie groups. A homogeneousvector bundle on G=P is one whose total space is equipped with an action of G whichis compatible with the action on G=P and which is linear on the �bres. Such a bundlemay be reconstructed from its �bre over the identity coset. In other words, suppose� : P �! Aut(E)is a �nite-dimensional representation of P . ThenE � G �P E � G� E(g; e) � (gp; �(p�1)e)is homogeneous and this provides a 1{1 correspondence between the �nite dimen-sional representations of P and the homogeneous vector bundles on G=P . (For moredetails, see, for example, [17].) For an arbitrary smooth vector bundle E on a smoothmanifold, one has the jet bundlesJ1E � � � �� J3E � J2E � J1E � Ewhere J1E is de�ned as the inverse limit (of course, allowing an in�nite-dimensionalvector bundle in this instance). For a homogeneous vector bundle, there is the equi-valent diagram of P -modulesJ1E � � � �� J3E � J2E � J1E � E:A linear di�erential operator of order � k between arbitrary vector bundles E andF may be de�ned (see, for example, [22]) as a homomorphism of vector bundles



MICHAEL EASTWOODD : JkE ! F . In the homogeneous case, the G-invariant such operators correspondto homomorphisms of P -modules D : JkE ! F.For E, a representation of P , de�ne the Verma module V (E) to be the g-moduleU(g)
p E� � U(g)
 E�U(g)-submodule generated by fp 
 f � 1
 _��(p)fg :where _�� is the derivative of the dual representation, p is the Lie algebra of P , andg is the Lie algebra of G with universal enveloping algebra U(g). (Warning: this issomewhat non-standard terminology|see the parenthetical remark starting at thebottom of this page. The term induced module is also used (see, for example, [25]).)In fact, P also acts on V (E) in a compatible way. In the homogeneous case observethat the action of G on E induces an action of g on J1E. It is straightforward toverify that there is a natural isomorphism V (E)� = J1E as (g; P )-modules. Theuniversal enveloping algebra U(g) is �ltered by degreeR= U0(g) � U1(g) � � � � � Uk(g) � Uk+1(g) � � � � � U(g)with corresponding gradings Uk(g)Uk�1(g) = Jkg:This induces a �ltration of the Verma moduleR= V0(E) � V1(E) � � � � � Vk(E) � Vk+1(E) � � � � � V (E)which is preserved by the action of P . The corresponding gradings may be viewed asan exact sequences of P -modules0 �! Vk�1(E) �! Vk(E) �! Jk(g=p) 
 E� �! 0whose dual induces the jet exact sequence (see, for example, [22])0 �!JkT �M 
 E �! JkE �! Jk�1E �! 0:In this way, Verma modules build the P -modules JkE which arise in constructingG-invariant linear di�erential operators. However, it is usually more convenient touse the Verma modules as a whole|a G-invariant linear di�erential operator betweenthe bundles on G=P induced from representations E and F is equivalent to a homo-morphism of (g; P )-modules V (E)  � V (F):This is easily shown from a geometric point of point; in representation theory, it isknown as Frobenius reciprocity (see, for example, [25]).To proceed further it is necessary to be more speci�c concerning G, P , and E . Mat-ters are especially congenial if G is semisimple, P a parabolic subgroup, and E anirreducible representation. (The term generalised Verma module is often used for this



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYcase (see, for example, [18]) with the term Verma module reserved for the case whenP is Borel (in which case E, being irreducible, is necessarily one-dimensional).)It is illuminating to consider the following simple example:G = SL(2;R) P = (8>>>: � r0 ��1 9>>>; s.t. � > 0; r 2 R) E = Rw = Rwith an element of P of the form shown acting on Rw as multiplication by ��w forsome w 2 R. The corresponding homogeneous bundle is denotedE(w) (as in T.N. Bailey's lectures [1]).To investigate the Verma module V (w), introduce the standard generators of sl(2;R):x = 8>>>: 0 10 0 9>>>; y = 8>>>: 0 01 0 9>>>; h = 8>>>: 1 00 �1 9>>>; :We may use the standard commutation relations to put elements of U(sl(2;R)) into astandard order (i.e. apply the Poincar�e-Birkho�-Witt procedure) and hence identifyV (w) = R[y]� where x� = 0 and h� = w�:In other words, the action of y on this polynomial algebra is by left multiplication,whilst the actions of x and h are obtained by repeated commutation to bring them tothe right whereupon they act on � as speci�ed. Thus, V (w) is a highest weight modulegenerated by �. The following calculations are typical. Consider the case w = 1. Thenxy� = [x; y]�+ yx� = h�+ 0 = �hy� = [h; y]�+ yh� = �2y�+ y� = �y�xy2� = [x; y]y�+ yxy� = hy�+ y� = �y�+ y� = 0hy2� = [h; y]y�+ yhy� = �2y2�� y2� = �3y2�:This shows that y2� is a maximal (sometimes called singular) weight vector in V (1)(i.e. an eigenvector for h that is annihilated by y). Apart from � itself, it is easilyveri�ed by similar calculations, that, up to scale, there are no other maximal weightvectors. As the weight of y2� is �3, it follows that there is a homomorphism of Vermamodules V (�3) = R[y]� �! R[y]�= V (1)with � 7! y2� (and, therefore, f(y)� 7! y2f(y)�). Equivalently, there is a secondorder linear di�erential operatorg2 : E(1) �! E(�3):More generally, these calculations show that, up to scale, the only non-trivial lineardi�erential operators on the circle which are projectively invariant (i.e. invariant underthe action of SL(2;R)), aregw+1 : E(w) �! E(�w � 2) for w 2Z�0



MICHAEL EASTWOODwhere gk is a kth-order di�erential operator (cf. [9] for the complex case). The non-linear di�erential operators in this situation are the subject of [1]. The operatorg : E ! E(�2) is the exterior derivative.Leaving this example for the moment, it is useful to note how much of this appliesin general, i.e. when G is semisimple, P parabolic, and E irreducible. Certainly,the search for G-invariant linear di�erential operators between irreducible bundleson G=P , is equivalent to the search for maximal weight vectors in V (E). WhenG=P = Sn, the 
at model of conformal geometry, these Verma modules are of theform V (E) = R[y1; y2; : : : ; yn]
 E�where y1; y2; : : : ; yn are `lowering' operators in g corresponding to the n positions in thetop row opposite the vector ra in (2). The representation E� of P , being irreducible,is generated by a highest weight vector �, unique up to scale. The entire Vermamodule is then generated by applying lowering operators from g to � (in particular,the operators y1; y2; : : : ; yn, which together with lowering operators from p, span thelowering operators of g). In this generality, the search for maximal weight vectorsin V (E) is not so amenable to direct computation. Instead, the Jantzen-Zuckermantranslation functor (see, for example, [25]) avoids these calculations and also providesan inductive method of constructing the whole family of operators from their simplestmembers (such as the exterior derivatives). They key to the translation functor is toconsider the action of the centre of U(g).Returning to our example, the centre of U(sl(2;R)) contains the elementC � h2 + 4yx+ 2h(and, in fact, consists of polynomials in C). Applying C to � 2 V (w) gives w(w+2)�.Since V (w) is generated by � and C commutes with the action of g, it follows thatC acts on all of V (w) by multiplication by w(w + 2). This already restricts thepossibilities for non-trivial homomorphisms V (w0) ! V (w) for, in this case, clearlyone must have w0(w0 + 2) = w(w + 2). The action of C also plays a rôle as follows.The standard representation of SL(2;R) on R2 gives rise to a Verma module V (R2).Generally, if � : G! Aut(E) is restricted to P , then the corresponding homogeneousvector bundle E is canonically trivial:E = G=P � E#G=P :Thus, on the level of Verma modules,V (R2) = V (0)
 (R2)�and, more generally, V (R2
Rw) = V (w)
 (R2)�:



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYThe short exact sequence of P -modules0 ! Rw�1 �! R2
Rw �! Rw+1! 0gives rise to a short exact sequence of g-modules0  V (w � 1) � V (w)
 (R2)�  � V (w + 1) 0:For w 6= �1, notice that C acts by di�erent scalars on V (w � 1) and V (w + 1). Inthese cases, therefore, V (w) 
 (R2)� decomposes as a g-module into a direct sum ofthe two eigenspaces of C. Bearing in mind that a homomorphism of Verma modulescorresponds to a G-invariant di�erential operator, this shows that there are invariantdi�erential splittings, for example0! E(�1) �!̂IDA EA �!̂IDA E(1) ! 0where EA is the trivial bundle with R2 as �bre. In homogeneous co�ordinates,DA = �@=@xA:The exterior derivative g : E ! E(�2) also acts on this trivial bundle to give thediagram E(�1) �! EA �!̂IDA E(1)#gE(�3) �!̂IDA EA(�2) �! E(�1) :The composition DA � g � DA is then g2 : E(1) ! E(�3). Notice that it has beenconstructed in a manifestly invariant manner. Iterating this procedure generates allthe invariant operators gk inductively.In the 
at conformal case, there are similar invariant di�erential splittings of thetractor bundle. Their existence is guaranteed abstractly by analysing the actionof the centre of U(g) (see [8] for corresponding splittings of the twistor bundles inthe four-dimensional case). This analysis not only gives a complete classi�cation ofthe conformally invariant linear di�erential operators between irreducible conformallyweighted tensor bundles in the 
at case, but also gives, via the translation functor, away of building families of invariant operators from their simplest members. For thepurposes of this article, the results of this classi�cation are not so important (see, forexample, [15] or [8] for the four-dimensional case, [4] for the general case, and [7] forgeneralisations).The rest of this article is concerned with the extent to which the translation functor,as a method for generating invariant operators, extends to the curved case. Themain point is that the di�erential splittings mentioned above exist in the curved casetoo. In fact, the basic examples were already written down in 1932 by Thomas [24].As motivation, he noted that the tractor connection is an inadequate substitute for



MICHAEL EASTWOODthe Levi-Civita connection. In the Riemannian case one can apply the Levi-Civitaconnection repeatedly. Indeed, in some well-de�ned sense, which we won't go intohere, this captures all the invariant calculus that is present on a Riemannian manifold.In the conformal case, having formedrbV A for a tractor �eld V A, there is no invariantconnection on the cotangent bundle so one is at a loss for a second derivative. Thomassuggested the following replacement. De�ne DB : E[w]! EB [w� 1] byDBf = 8>>>>>>>>: w(n + 2w � 2)f(n+ 2w � 2)rbf(�� wP)f 9>>>>>>>>;where � denotes the Laplacian �rara and P � Paa, a multiple of the scalarcurvature. As usual, this de�nition is written with respect to a particular choiceof metric in the conformal class. It is, however, conformally invariant. To see this,consider how the Laplacian changes under scaling of the metric gab 7! bgab = 
2gab.crbcraf = crb(raf + w�af)= rb(raf + w�af) + (w � 1)�b(raf + w�af)��a(rbf + w�bf) + �c(rcf + w�cf)gab: (5)Thus,cracraf = ra(raf + w�af) + (n+ w � 2)�a(raf + w�af)= raraf + w(ra�a)f + (n+ 2w � 2)�araf + w(n+ w � 2)�a�af= raraf + (n+ 2w � 2)�araf + w(ra�a + (n+ w � 2)�a�a)f:On the other hand, bP = P�ra�a + �1 � n2��a�a:Hence,( b��wbP)f = (�� wP)f � (n+ 2w � 2)�brbf � 12�b�bw(n+ 2w � 2)fwhilst (n+ 2w � 2)crbf = (n+ 2w � 2)rbf +�bw(n+ 2w � 2)f:These are exactly the transformations of a tractor, as required.Notice that the argument is una�ected if f is replaced by a tractor �eld of conformalweight w (where, of course, the Laplacian is replaced by the tractor Laplacian (anexplicit formula for which is quite complicated)). In other words, the operator DB :EA[w]! EBA[w�1] makes perfectly good sense. We can continue in this way to formDBV A DCDBV A � � �for any conformally weighted tractor �eld V A.The D-operator combines several features of conformal geometry. If w = 0, thenthe �rst component of DBV A vanishes and so the second component is conformally



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYinvariant. This is the tractor connection. If w = 1� n2 , then both the �rst and secondcomponents vanish. The third component is therefore conformally invariant. In otherwords, the di�erential operatorf 7! (�� wP)f = (� + n� 24(n� 1)R)f (6)is conformally invariant when acting on functions or tractor �elds of weight 1� n2 . Inthe 
at model, DA is closely related to di�erentiation with respect to the co�ordinateson Rn+2. Indeed, this aspect may be exploited in the curved case with DA �ndinginterpretation in the ambient metric construction of Fe�erman and Graham [10].Lecture FourThe investigation of invariant di�erential operators on a conformal manifold is an act-ive area of research (see, for example, [5, 6, 15, 16, 21, 26]). The conformally invariantLaplacian or Yamabe operator (6) is an example of such an operator. More gener-ally, by a conformally invariant di�erential operator, we shall mean any polynomialexpression in the Levi-Civita connection and its curvature acting between conform-ally weighted tensor bundles, which is unchanged when the metric is scaled. Someexamples should su�ce to make clear what is meant here. The exterior derivativera : E[b:::d] �! E[ab���d]is certainly invariant. Consider the operatorE[1] �! trace free part of E(ab)[1]� � � �f 7�! r(arb)f + Pabf � 1ngab(rcrcf + Pf): (7)From (5) cr(acrb)f = r(arb)f + (r(a�b) ��a�b)f + trace termswhilst bPab � 1n bPgab = Pab � 1nPgab �r(a�b) +�a�b:The operator (7) is therefore invariant. A more exotic invariant operator is given byf 7�! totally trace free part of (r(arbrc)f + 4P(abrc)f + 2[r(aPbc)]f)acting on conformally weighted functions of weight 2. In fact, all these operators arestrongly invariant in the sense that they are also invariant when acting on tractor �eldsrather than just scalar functions. This is because the transformations under scaling ofthe metric simply do not distinguish between pure tensors and tensor �elds coupledto the tractor bundle. However, it is not the case that all invariant operators arestrongly invariant. Consider, for example, the operator L : E ! E[�4] in dimensionfour given by Lf = rb[rbra + 4Pba � 2Pgba]raf: (8)



MICHAEL EASTWOODCalculation yieldsbLf = Lf +2�bra(rarb�rbra)f + 2�b(rarb�rbra)raf � 2 [(rarb �rbra)�a]rbf:The curvature terms cancel so L is conformally invariant. However, if f is replacedby fC , a section of EC , then, writing 
abCD for the tractor curvature (cf. (4)),bLfC = LfC + 4�b
abCDrafD + 2�b[ra
abCD]fDso conformal invariance is lost.We shall now describe a procedure (the curved translation principle) for generatingconformally invariant operators. This procedure takes a strongly invariant operatorand yields new strongly invariant operators from it. (We should remark, however, thatthough this is a generally applicable procedure, there are much more e�cient meansfor calculating certain series of operators in particular cases (see, for example, [12]). Toproceed, we need to generalise the D-operator so that it acts on arbitrary conformallyweighted irreducible tensor bundles. Thus, DB : F [w]! FB[w�1] for any irreducibletensor bundle F . The general existence of these operators follows from their existencein the 
at case and this, as indicated in Lecture Three, follows from the generaltheory of Verma modules. The formulae become quite complicated. For example,DB : Ea[w]! EaB[w � 1] sends a conformally weighted 1-form �a of weight w to8>>>>>>>>: (n+ 2w � 4)(n + w � 2)(w � 2)w�a(n + 2w � 4)[(n+ w � 2)(w � 1)rb�a + (n + w � 2)ra�b �w�abrc�c](n+ w � 2)(w � 1)(�� (w � 1)P)�a � (n� 2)[rarb + (n+ w � 2)Pab]�b 9>>>>>>>>; :However, these operators only of second order. It is this fact that allows a generalexistence argument. In fact, there is an alternative approach using twistors insteadof tractors where the corresponding operators are only of �rst order. This makestheir existence more straightforward (cf. [11]). A general formula in four dimensionsis given in [8]. As with DB : E[w] ! EB[w � 1], the same formulae with the tractorconnection de�ne conformally invariant operators when acting on tractor-valued con-formally weighted tensors, i.e. these operators are strongly invariant. (Note, however,that there is some choice here|the same operator on tensors may be de�ned by twodi�erent formulae (when derivatives are commuted at the expense of curvature) inwhich case these di�erent formulae may give rise to genuinely di�erent operators ontractors. This is another reason why the twistor approach may be preferred.)There is also a series EbC : Fb[w] ! FC[w � 1] of strongly invariant �rst orderoperators for any irreducible tensor bundle Fb. For example,�b 7! 8>>>>>>>>: 0(n + w � 2)�c�rb�b 9>>>>>>>>;for �a a local section of Ea[w] and



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRY ab 7! 8>>>>>>>>: 0(n+ w � 2) ac�rb ab 9>>>>>>>>; or 8>>>>>>>>: 0(w � 2)�ac dd�nrb ab 9>>>>>>>>; or 8>>>>>>>>: 0(n+ w � 4) ac�rb ab 9>>>>>>>>;for  ab a local section of Eab[w] and either symmetric trace free, pure-trace, or skew,respectively.Finally, there is a series of zeroth order invariant operators FB : F [w] ! FB[w + 1]for any irreducible tensor bundle F whose de�nition is tautological:�a���c 7! 8>>>>>>>>: 00�a���c 9>>>>>>>>; :Dually, there are srongly invariant operatorsDB : FB[w]! F [w � 1] EbC : FC [w]! Fb[w + 1] FB : FB[w]! F [w+ 1]:For example,EdC : E[ab]C[w] �! (irreducible decomposition of E[ab]d[w + 1])� � � �8>>>>>>>>: �ab�abc�ab 9>>>>>>>>; 7�! 8><>: (w � 2) h�abd + 2n�1gd[a�b]ee � �[abd]i+23 hr[a�b]d �rd�abi� 2n�1gd[are�b]e 9>=>;+n(n+ w � 3)gd[a�b]ee � gd[are�b]eo+n(w + 1)�[abd] �r[a�bd]oThe curved translation principle is obtained simply by combining these operators asfollows. Suppose K : F [w]! G[w0] is a strongly invariant linear di�erential operatorfor irreducible tensor bundles F and G and conformal weights w and w0. Stronginvariance implies that the same formula de�nes:K : FB[w]! GB[w0]which we may compose with the D, E, and F -operators to obtain new stronglyinvariant operators between conformally weighted irreducible tensor bundles. Thefollowing example illustrates this procedure. Let K be the exterior derivative from1-forms to 2-forms. Then K : EbC ! E[ab]C is given by8>>>>>>>>: �b�bc�b 9>>>>>>>>; 7�! 8>>>>>>>>: r[a�b] + �[ab]r[a�b]c + �[ac�b] + P[ac�b]r[a�b] � Pc[a�b]c 9>>>>>>>>; :



MICHAEL EASTWOODWe may compose with EaC : (trace-free part of E(ab)[1])! EbC given by ab 7! 8>>>>>>>>: 0(n� 1) bc�rd bd 9>>>>>>>>;and EdC : E[ab]C ! (irreducible decomposition of E[ab]d[1]) to obtain, after some cal-culation, (n� 1)r[a b]c � gc[ard b]d;another strongly invariant operator, this one acting on symmetric trace-free  ab ofweight 1.This is still �rst order. However, the translation principle can also increase the orderby 1 (or decrease by 1 or more). For example,E[1] DC�! EC ra�! EaC EbC�! (trace-free part of E(ab)[1])� � � �f 7�������������! nr(arb)f + nPabf + gab�f � gabPfyields a second order operator from a �rst order operator whilstEb[1] DC�! EbC ra�! E[ab]C EdC�! (highest weight part of E[ab]d[1])� � � ��a 7���������������! (n� 1)Cabdc�cyields a zeroth order operator from a �rst order operator.To summarize: The existence of the D and E-operators derives from the 
at casewhere this translation principle coincides with the Jantzen-Zuckerman translationfunctor. The resulting classi�cation in the 
at case yields various series of operatorsand the curved translation principle shows that most of these series admit `curvedanalogues,' i.e. invariant operators with the same symbol as an invariant operatorin the 
at case. Indeed, in the odd-dimensional case, all the 
at operators admitcurved analogues and the even dimensional case most can be obtained by translatingthe exterior derivative. There are, however, some exceptions and in dimension four,Graham has shown that the 
at invariant operator�3 : E[1] �! E[�5] (9)has no curved analogue [13]. In the 
at case, this operator may be obtained bytranslating (8) but, in the curved case, this breaks down since, as we observed, (8) isnot strongly invariant.



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRYThere are many questions yet to be answered.� Precisely which 
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