
COMPLEX METHODS IN REAL INTEGRAL GEOMETRY

Michael Eastwood†

Though I take responsibility for the exposition, the work described here is joint
with Toby N. Bailey and C. Robin Graham and specific attributions are made for each
lecture. Conversations with A. Rod Gover, Lionel J. Mason, and Michael A. Singer
have been extremely useful. Indeed, the methods are a direct continuation of joint
work of Bailey, Gover, Mason, and myself [4] which itself continues from earlier work
of the same authors [3]. These lectures were presented at the 16th Winter School on
Geometry and Physics, Srńı, Czech Republic, January 1996.

The aim is to present a general machine which will analyse some real integral
transforms using complex methods. The machine will be illustrated by its application
to the X-ray transform. An elaboration upon these aims will be postponed until the
second lecture.

Lecture One

The Involutive Structure on a Totally Real Blow-Up

T.N. Bailey M.G. Eastwood C.R. Graham

Let Ω be a connected complex n-dimensional manifold and M ⊂ Ω a totally real,
real-analytic submanifold. An example would be Rn ⊂ Cn and, in general, one can
choose coördinates to put M ⊂ Ω locally into this form. Let η : Ω̃ → Ω denote the
real blow-up of Ω along M and denote by Σ the exceptional variety η−1(M). Thus,

Σ ⊂ Ω̃y yη

M ⊂ Ω
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with Σ a smooth hypersurface in Ω̃ whose fibre over m ∈ M is the real (n − 1)-
dimensional projective space of normal directions at m to M in Ω. The mapping
η : Ω̃ \ Σ → Ω \M is a diffeomorphism. Therefore, Ω̃ \ Σ has a complex structure.

Proposition 1 The complex structure on Ω̃ \Σ extends to Ω̃ as an involutive struc-
ture.

Proof. An involutive structure (in the sense of Treves [18]) is a complex sub-bundle
T 0,1 of the complexified tangent bundle CT , closed under Lie bracket. Equivalently,
by setting Λ1,0 = (T 0,1)⊥, it is a sub-bundle of the bundle of complex-valued 1-forms
which generates a differentially closed ideal. Of course, the notation is selected to
generalise that for complex manifolds. The involutive structure on Ω̃ is obtained by
pulling back the complex structure on Ω, specifically Λ1,0eΩ = η∗Λ1,0

Ω . Evidently, this
will be closed provided it is indeed a sub-bundle. This is ensured by M being totally
real. Rather than check this abstractly, it is convenient for later use to work in local
coördinates (and here we use that M is real-analytic):

(z, s1, t1, s2, t2, . . . , sn−1, tn−1) ∈ C× R2n−2yη

(z, w1, w2, . . . , wn−1) = (z, s1 + zt1, s2 + zt2 . . . , sn−1 + ztn−1) ∈ Cn.

Charts of this form cover Σ, the image of each being a double wedge in Ω with edge
in M . Writing z = x+ iy, the hypersurface Σ is defined in these coördinates by y = 0.
The bundle Λ1,0

Ω is spanned by dz, dw1, dw2, . . . , dwn−1 so Λ1,0eΩ is spanned by

dz, ds1 + z dt1 + t1dz, ds2 + z dt2 + t2dz, . . . , dsn−1 + z dtn−1 + tn−1dz

which are manifestly linearly independent. 2

Dually, the bundle T 0,1 on Ω̃ is spanned by the commuting vector fields

Z =
∂

∂z
and W j =

∂

∂tj
− z

∂

∂sj
for j = 1, . . . , n− 1. (1)

These vector fields extend the Cauchy-Riemann equations on Ω̃\Σ across Σ. On Σ the
vector fields W j are real and span T 0,1∩T 0,1. They generate the fibres of η : Σ → M .

To any real smooth hypersurface in a smooth manifold, there is a canonically
associated locally constant line bundle. Write Ẽ for this bundle associated to Σ ⊂ Ω̃.
We recall its construction. It is defined by transition functions taking the values ±1.
Choose a covering of Σ by open sets Uα in Ω̃ with Σ defined as the jump discontinuity
of a chosen Heaviside function Hα (for example, sign y in local coördinates as above).

Add Ω̃ \ Σ as a final set to give a covering of Ω̃. Now specify transition functions:

• on Uα ∩ (Ω̃ \ Σ) use Hα

• on Uα ∩ Uβ use Hα/Hβ.
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By definition, Ẽ is trivial on Ω̃ \Σ and we write H as the trivialising section (i.e. the
function which is identically 1 in our chosen trivialisation). When restricted to a fibre

η−1(m) for m ∈ M , the bundle Ẽ becomes the standard bundle of twisted functions
on RPn−1 whose sections correspond to odd functions on Sn−1.

Let V be a holomorphic vector bundle on Ω and denote by O(V ) (respectively
E(V )) its sheaf of germs of holomorphic (respectively smooth) sections. The coho-
mology spaces Hr(Ω,O(V )) will be realised as Dolbeault cohomology. From this point
of view the bundle V is equipped with a ∂-operator, the initial operator in the usual
complex:

E(V )
∂−→ E0,1(V )

∂−→ E0,2(V )
∂−→ · · · ∂−→ E0,n(V ) → 0.

An involutive structure is all that is needed to define a complex of d-operators

E = A0,0 d−→ A0,1 d−→ A0,2 d−→ · · · (2)

where A0,r is the sheaf of germs of smooth sections of the rth exterior power of
Λ0,1 = Λ1/Λ1,0. This is true on Ω̃ where the operators may also be coupled with
η∗V (a bundle compatible with the involutive structure in the sense of [4]). Let

Ṽ = Ẽ ⊗ η∗V . Since Ẽ is given by locally constant transition functions, this bundle is
also compatible with the involutive structure and we obtain a complex

Γ(Ω̃,A0,0(Ṽ ))
d−→ Γ(Ω̃,A0,1(Ṽ ))

d−→ Γ(Ω̃,A0,2(Ṽ ))
d−→ · · · (3)

whose cohomology we shall denote by Hr
d
(Ω̃, Ṽ ). (Warning: there is no reason to

suppose these are sheaf cohomologies.) The main purpose of this lecture is to prove
the following:

Theorem 1 There is an exact sequence

0 → Γ(Ω,O(V )) → Γ(M, E(V )) → H1
d
(Ω̃, Ṽ ) → H1(Ω,O(V )) → 0

and isomorphisms

Hr
d
(Ω̃, Ṽ )) ∼= Hr(Ω,O(V )) for r ≥ 2

except for r = n− 1 and r = n when n is odd in which case there is an exact sequence

0→Hn−1(Ω,O(V ))→Hn−1

d
(Ω̃, Ṽ )→Γ(M, E(V ))→Hn(Ω,O(V ))→Hn

d
(Ω̃, Ṽ )→0.

The proof proceeds by the following Lemmata.

Lemma 1 The complex

0 → Γ(Ω, E0,0(V ))
∂→ Γ(Ω, E0,1(V ))

∂→ Γ(Ω, E0,2(V ))
∂→ · · · ∂→ Γ(Ω, E0,n(V )) → 0

is formally exact along M except in the zeroth position where the formal cohomology
is Γ(M, E(V )).
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Proof. To say that the complex is formally exact at Γ(Ω, E0,r(V )) is to say that
if ω ∈ Γ(Ω, E0,r(V )) satisfies dω ∼ 0 (meaning that dω vanishes to infinite order
along M), then there exists ν ∈ Γ(Ω, E0,r−1(V )) so that dν ∼ ω (meaning that ω− dν
vanishes to infinite order along M). To say that the zeroth formal cohomology is
Γ(M, E(V )) is to say that

• every smooth section f0 of V along M may be extended to a smooth section f
of V over Ω so that ∂f ∼ 0

• if g ∈ Γ(Ω, E(V )) satisfies ∂g ∼ 0 and g|M = 0, then g ∼ 0.

(This is the well-known manœuvre of taking an almost analytic extension.)
Let us check the zeroth cohomology first. Choose local coördinates zj = xj + iyj

with M given by y1 = y2 = · · · = yn = 0. The vector fields

∂j =
1

2

(
∂

∂xj
+ i

∂

∂yj

)
are transverse to M so, in these coördinates, we may define the extension of a function
off M to infinite order by specifying all derivatives ∂j · · · ∂kf along M . These may
be chosen arbitrarily (provided they are symmetric in the indices j · · · k) and, in
particular, we may take f |M = f0 and all higher derivatives zero. This is precisely
a local version of what we want to prove in the case when V is trivial. A standard
partition of unity argument gives the global result and also allows non-trivial V .

For higher cohomology first use the zeroth result to extend any partition of unity
on M to Ω so that it is ∂-closed to infinite order along M . This reduces to the local
case where we can use the coördinates above. Thus, we are given

ωkl···m︸︷︷︸
r

= ω[kl···m] such that ∂h · · · ∂i∂[jωkl···m]|M = 0

and we are required to specify ∂h · · · ∂i∂j∂kνl···m on M , skew in the indices l · · ·m so
that

∂h · · · ∂i∂j∂[kνl···m]|M = ∂h · · · ∂i∂jωkl···m|M .

This is easily accomplished by setting νl···m|M = 0 and

∂h · · · ∂i∂j∂k︸ ︷︷ ︸
d

νl···m|M =
rd

r + d− 1
∂(h · · · ∂i∂jωk)l···m|M for d ≥ 1.

2

For the next lemma, recall the local coördinates introduced on Ω̃ and the vector field
Z constructed from them. Let us write Σ0 and Ω̃0 for the charts of Σ and Ω̃ covered
by this coördinate system.

Lemma 2 Given a smooth function f0 on Σ0 and a smooth function g on Ω̃0, there
is a smooth solution f on Ω̃0 to

Zf ∼ g with f |Σ0 = f0

and f is formally unique along Σ. If f0 has compact support then f can be chosen to
have compact support.
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Proof. This is a formal non-characteristic Cauchy problem for a complex vector field
and is proved inductively by power series calculation. More generally, the Cauchy-
Kovalevski theorem, usually stated in the real-analytic category, is true on the level
of formal power series. 2

Lemma 3 Let C̃ denote the sheaf of locally constant complex-valued twisted functions
on RPn−1.

Then

{
Hr(RPn−1, C̃) = 0 for all r except

Hn−1(RPn−1, C̃) = C if n is odd.

Proof. Let Γodd(S
n−1, Λr) denote the smooth r-forms on Sn−1 satisfying ι∗ω = −ω

where ι is the antipodal mapping. Then

Hr(RPn−1, C̃) = Hr(Γodd(S
n−1, Λ•))

and the result follows from the de Rham theorem on Sn−1. Notice that the mapping
Hn−1(RPn−1, C̃) → C may be defined by integrating a twisted volume form over
RPn−1 (a well-defined procedure when n is odd though RPn−1 is not orientable). 2

Lemma 4 The complex

0 → Γ(Ω̃,A0,0(Ṽ ))
d→ Γ(Ω̃,A0,1(Ṽ ))

d→ Γ(Ω̃,A0,2(Ṽ ))
d→ · · · d→ Γ(Ω̃,A0,n(Ṽ )) → 0

is formally exact along Σ if n is even. If n is odd it is formally exact except at
Γ(Ω̃,A0,n−1(Ṽ )) where the formal cohomology may be identified with Γ(M, E(V )).

Proof. We use the vector fields (1) to write out the d-operator in local coördinates.
An r-form ω may be realised as a pair

αkl···m︸︷︷︸
r−1

= α[kl···m] βjkl···m︸ ︷︷ ︸
r

= β[jkl···m]

(dual to Z ∧W k ∧W l ∧ · · · ∧Wm and W j ∧W k ∧W l ∧ · · · ∧Wm, respectively) and
dω ∼ 0 means

W [jαkl···m] ∼ Zβjkl···m and W [iβjkl···m] ∼ 0

whilst ω ∼ dν reads

αkl···m ∼ Zδkl···m −W [kγl···m] and βjkl···m ∼ W [jδkl···m]

for suitable γl···m = γ[l···m] and δkl···m = δ[kl···m]. Recall that the vector fields W j are
tangent on Σ to the fibres of η. The forms β and δ expressed above in local coördinates
have a well-defined meaning on Σ as relative r- and (r − 1)-forms respectively. On
each fibre η−1(m) ∼= RPn−1 for m ∈ M , the bundle η∗V plays no rôle whilst the bundle

Ẽ is the bundle of twisted functions. From Lemma 3, we may always solve for δ on
Σ unless n is odd and r = n − 1. Having found δ|Σ we may take γ to be identically
zero, using Lemma 2 and a partition of unity to extend δ off Σ so that

Zδkl···m ∼ αkl···m.
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Since the vector fields commute

Z(W [jδkl···m] − βjkl···m) = W [jZδkl···m] − Zβjkl···m
∼ W [jαkl···m] − Zβjkl···m
∼ 0

so, by the formal uniqueness in Lemma 2, W [jδkl···m] ∼ βjkl···m, as required. Finally,
when n is odd and r = n−1, the obstruction to carrying out this reasoning is precisely
the integral of β along the fibres of η. This obstruction lies in Γ(M, E(V )). 2

Proof of Theorem 1. Let Γ(M ⊂ Ω, E0,•(V )) denote the subcomplex of Γ(Ω, E0,•(V ))
consisting of those V -valued (0, r)-forms on Ω which vanish to infinite order along M .
Write Γ[M ](Ω, E0,•(V )) for the quotient so that

0 −→ Γ(M ⊂ Ω, E0,•(V )) −→ Γ(Ω, E0,•(V )) −→ Γ[M ](Ω, E0,•(V )) −→ 0 (4)

is an exact sequence of complexes. Lemma 1 says that

Hr(Γ[M ](Ω, E0,•(V ))) =

{
Γ(M, E(V )) if r = 0

0 if r ≥ 1.

In a similar vein, Lemma 4 says that

Hr(Γ[Σ](Ω̃,A0,•(Ṽ ))) =

{
0 for all r except

Γ(M, E(V )) for r = n− 1 when n is odd.

The long exact sequence derived from (4) gives, by Lemma 1,

0 → H0(Γ(M ⊂ Ω, E0,•(V ))) → Γ(Ω,O(V )) → Γ(M, E(V ))
↙

H1(Γ(M ⊂ Ω, E0,•(V ))) → H1(M,O(V )) → 0

and isomorphisms

Hr(Γ(M ⊂ Ω, E0,•(V ))) ∼= Hr(Ω,O(V )) for all r ≥ 2.

Now H0(Γ(M ⊂ Ω, E0,•(V ))) is precisely the holomorphic sections of V which vanish
(to infinite order) along M . Since Ω is connected, these vanish identically. Therefore,
we have the exact sequence

0 → Γ(Ω,O(V )) → Γ(M, E(V )) → H1(Γ(M ⊂ Ω, E0,•(V ))) → H1(M,O(V )) → 0.

Similarly, Lemma 4 gives isomorphisms

Hr(Γ(Σ ⊂ Ω̃,A0,•(Ṽ ))) ∼= Hr
d
(Ω̃, Ṽ )

for all r except for r = n− 1 and r = n when n is odd in which case there is an exact
sequence

0 → Hn−1(Γ(Σ ⊂ Ω̃,A0,•(Ṽ ))) → Hn−1

d
(Ω̃, Ṽ ) → Γ(M, E(V ))

↙
Hn(Γ(Σ ⊂ Ω̃,A0,•(Ṽ ))) → Hn

d
(Ω̃, Ṽ ) → 0.

We make the following observations
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• A smooth function on Ω vanishing to infinite order along M is equivalent to a
smooth function on Ω̃ vanishing to infinite order along Σ.

• If f is a smooth function on Ω̃ vanishing to infinite order along Σ, then Hf is a
smooth twisted function on Ω̃ vanishing to infinite order along Σ and vice versa.

Here, recall that H ∈ Γ(Ω̃, Ẽ) is the canonically defined trivialising section. These
observations apply equally well to sections of a vector bundle on Ω and its pull back
to Ω̃. They combine to give an isomorphism of complexes

Γ(M ⊂ Ω, E0,•(V )) ∼= ×H−−−→ Γ(Σ ⊂ Ω̃,A0,•(Ṽ ))

and, hence, induced isomorphisms on cohomology. Substituting into the various exact
sequences above completes the proof. 2

Corollary 1 The spaces Hr
d
(Ω̃, Ṽ ) are finite-dimensional except for r = 1 when n is

arbitrary and for r = n− 1 when n is odd.

It is interesting to compare this with the Hodge theory discussed by Hanges and
Jacobowitz [12]. The involutive structure on Ω̃ is elliptic except on Σ but the Levi form

is degenerate unless n = 2. In this case Ω̃ is Example V2 on page 501 of [12] save for a
change of coördinates and the Levi form has one positive and one negative eigenvalue.
Then [12, Theorem on p. 501] implies that the Laplacian is hypoelliptic with one loss
of derivative on 0-forms and 2-forms and standard arguments [12, pp. 509–510] imply
that the cohomology is finite-dimensional in degree 0 and 2.

Lecture Two

Geometry on the Correspondence Space

T.N. Bailey M.G. Eastwood

The prototype for our discussions will be the X-ray transform introduced by John [13]
in 1938. A compactified version of this transform starts with a smooth function f on
the three-sphere S3 and for each plane P through the origin in R4, integrates f over
the geodesic γ = P ∩ S3:

φ(P ) =
1

2π

∮
γ

f.

The smooth function φ is defined on the Grassmannian Gr2(R4) of two-planes in
R4 and satisfies a second order linear differential equation, the ultrahyperbolic wave
equation. In a closely related case, by arguing that both spaces are irreducible under
an action of SL(4, R), Guillemin and Sternberg [11] conclude that the X-ray transform
is an isomorphism:{

Smooth even
functions on S3

}
∼=−→

{
Smooth even solutions of the
ultrahyperbolic wave equation on Gr(R4)

}
. (5)
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Woodhouse [19] reaches the same conclusion by expanding both side in (generalised)
spherical harmonics. John’s original article [13] proves a corresponding result for
sufficiently smooth functions on R3 subject to decay conditions at infinity. In these
lectures we intend to prove (5) by complex methods.

The X-ray transform may be viewed in terms of the real correspondence

RF = The real flag manifold of lines in planes in R4

�
�/

S
Sw

RP3 Gr2(R4).

Properties of the Penrose transform may be deduced (as, for example, in [8]) by
analysing the complex correspondence

CF = The complex flag manifold of lines in planes in C4

�
�/

S
Sw

CP3 Gr2(C4).

µ ν

To analyse the X-ray transform we shall use a halfway house

F

�
�/

S
Sw

RP3 ⊂ CP3 Gr2(R4)

η τ
(6)

where F ≡ ν−1(Gr2(R4)), τ ≡ ν|F , and η ≡ µ|F . The fibres of ν are CP1’s so the
same is true of τ . However, η is no longer a fibration:

Proposition 2 The mapping η is the real blow-up of CP3 along RP3.

Proof. Let us view the complex correspondence in local coördinates on CF. A generic
line inside a generic plane in C4 may be written as

span


1
z

s1 + zt1

s2 + zt2

 ⊂ span




1
0
s1

s2

 ,


0
1
t1

t2




and (z, s1, t1, s2, t2) ∈ C5 give standard affine coördinates on CF. The mapping µ is
then given by

(z, s1, t1, s2, t2) 7−→ (z, s1 + zt1, s2 + zt2)

using standard affine coördinates on CP3. The submanifold F is where s1, t1, s2, t2 are
real. This is the coördinate system used in Lecture One for a real blow-up. 2
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Since the fibres of τ are complex, we may consider the bundle Λ0,1
τ of relative

(0, 1)-forms. The complex structure on each fibre is induced from its image in CP3

under η. Therefore, the composition η∗Λ1,0
CP3

→ Λ1
F → Λ0,1

τ is zero and we obtain a
well-defined homomorphism of vector bundles

Λ0,1
F −→ Λ0,1

τ

where Λ0,1
F defines the involutive structure of Lecture One. We shall verify soon that

this is a surjection. In other words, the complex structure on the fibres of τ may be
obtained by restricting the involutive structure on F .

Let ι denote the inclusion ι : F ↪→ CF. Then η = µ ◦ ι so η∗Λ1,0
CP3

= ι∗(µ∗Λ1,0
CP3

).
Thus, the composition

ι∗Λ1,0
CF −→ Λ1

F −→ Λ0,1
F

kills µ∗Λ1,0
CP3
|F . Hence, there is a well-defined homomorphism

Λ1,0
µ |F −→ Λ0,1

F

where Λ1,0
µ denotes the bundle Λ1,0

CF/µ
∗Λ1,0

CP3
of (1, 0)-forms along the fibres of µ. Let

us write Λ1,0
η for Λ1,0

µ |F . We have constructed the following homomorphisms

0 → Λ1,0
η −→ Λ0,1

F −→ Λ0,1
τ → 0. (7)

Proposition 3 The sequence (7) is exact.

Proof. In our usual local coördinates on F ,

Λ1,0
η =

span{dz, ds1, dt1, ds2, dt2}
span{dz, ds1 + z dt1, ds2 + z dt2}

∼= span{dt1, dt2}

Λ0,1
F =

span{dz, dz, ds1, dt1, ds2, dt2}
span{dz, ds1 + z dt1, ds2 + z dt2}

∼= span{dz, dt1, dt2}

Λ0,1
τ =

span{dz, ds1, dt1, ds2, dt2}
span{ds1, dt1, ds2, dt2}

∼= span{dz}

with the obvious mappings. The result follows. 2

Let us see how this fits with the general real blow-up η : Ω̃ → Ω along M as in
Lecture One. The involutive structure on Ω̃ is sufficient to define holomorphic curves
in Ω̃. We shall suppose that we are given a foliation of Ω̃ by such curves. Then we
may simply define Λ1,0

η so that (7) is exact. In order to proceed further we shall also
suppose that the space of leaves of the foliation is a smooth manifold X. In other
words, there is a submersion τ : Ω̃ → X whose fibres are the leaves of the foliation.
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Finally, let us consider how (7) fits with the involutive d-complex (2). It induces
a filtering of this complex. Abusing notation somewhat, and allowing the fibres of τ
an arbitrary dimension,

A0,0 = Eyd

y∂τ

A0,1 = E0,1
τ + E(Λ1,0

η )yd

y∂τ

y∂τ

A0,2 = E0,2
τ + E0,1

τ (Λ1,0
η ) + E(Λ2,0

η )yd

y∂τ

y∂τ

y∂τ

A0,3 = E0,3
τ + E0,2

τ (Λ1,0
η ) + E0,1

τ (Λ2,0
η ) + E(Λ3,0

η )yd

y∂τ

y∂τ

y∂τ

y∂τ

...
...

...
...

...

(8)

where Λp,0
η = Λp(Λ1,0

η ), Λ0,q
τ = Λq(Λ0,1

τ ), and E0,q
τ = E(Λ0,q

τ ), the sheaf of germs of
smooth sections of Λ0,q

τ . The right hand sides in this diagram merely indicate the
composition factors defined by the filtering. There are induced differential operators

∂τ : E0,q
τ (Λp,0

η ) −→ E0,q+1
τ (Λp,0

η ).

For p = 0, this is the Dolbeault resolution along the fibres of τ . We shall write Œ for
the sheaf it resolves. It is the sheaf of germs of smooth functions which are holomorphic
along the fibres of τ and we shall refer to such functions as partially holomorphic.
Similarly, we shall write Œp

η for the sheaf of germs of partially holomorphic sections
of Λp,0

η . We may view the partially holomorphic structure on Λp,0
η as arising from

the diagram (8). Alternatively, in the X-ray case, Λp,0
η is obtained by restricting the

holomorphic bundle Λ1,0
µ on CF to F . Of course, any holomorphic vector bundle on

CF will be partially holomorphic when restricted to F .
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Lecture Three

Pushing Down

T.N. Bailey M.G. Eastwood

Lecture Two ended with

Ω̃
�

�/
S

Sw

M ⊂ Ω X

η τ

where

• Ω is a complex manifold.

• M is a totally real, real-analytic submanifold.

• Ω̃ is the real blow-up of Ω along M endowed with the involutive structure of
Lecture One.

• X is a smooth manifold.

• τ : Ω̃ → X is a submersion with complex fibres of complex dimension one.

From now on we shall assume that Ω, and hence Ω̃, X, and the fibres of τ , are compact.
The prototype is (6).

Suppose V is a holomorphic vector bundle on Ω and recall the complex (3). Com-
bined with the short exact sequence (7), we obtain a spectral sequence

Ep,q
0 = Γ(Ω̃, E0,q

τ (Λp,0
η ⊗ Ṽ )) =⇒ Hp+q

d
(Ω̃, Ṽ ).

This is the E0-level of the spectral sequence associated with the filtered complex (8).

It will enable us to interpret the involutive cohomology spaces Hr
d
(Ω̃, Ṽ ) down on X.

This interpretation follows exactly the general method explained by Bailey [1] in
relation to the Penrose transform. The same methods were used by Schmid [16] in
1967 in relating the discrete series representations realised as Dolbeault cohomology
on G/T to a realisation as solutions of his D-operator on G/K. More recently, similar
techniques appear in the theses of Singer [17] and Wong [20].

It is easy to pass to the E1-level. The differentials at the E0-level are the ∂τ -
operators. Thus,

Theorem 2 There is a spectral sequence

Ep,q
1 = Γ(X, τ q

∗Œ
p
η(Ṽ )) =⇒ Hp+q

d
(Ω̃, Ṽ ).

(Those familiar with the Penrose transform will recognise this spectral sequence from
its counterpart there (for example, [5, p. 308], [6, Theorem 7.3.1], or [8, Theorem 4.1]).)
Notice that since the fibres of τ are compact, Dolbeault cohomology spaces along these



MICHAEL EASTWOOD

fibres will be finite-dimensional. Thus, provided this dimension is constant, the direct
images τ q

∗Œ
p
η(Ṽ ) define smooth complex vector bundles on X and the differentials of

the spectral sequence define differential operators between them.
A general machine for analysing the X-ray transform and various other real in-

tegral transforms arises by combining Theorems 1 and 2. The only remaining task
is to identify the direct images τ q

∗Œ
p
η(Ṽ ) and the induced differential operators. The

remainder of this lecture will be concerned with carrying out this task for the X-ray
transform.

Proposition 4 Let Œ̃ denote the sheaf of germs of partially holomorphic twisted
functions on F . Then τ∗Œ̃ is the bundle of twisted functions on Gr2(R4) whose
sections correspond to odd functions on Gr+

2 (R4), the Grassmannian of oriented two-
planes in R4. All higher direct images vanish.

Proof. Each fibre of τ is a Riemann sphere and intersects Σ in a circle. We obtain two
hemispheres and choosing one of them is equivalent to choosing a Heaviside function
with jump discontinuity across the circle. By definition, this trivialises Œ̃. A point
in Gr+

2 (R4) orients the circle or, equivalently, specifies a preferred hemisphere. 2

The upshot of this proposition is that the direct images differ from the usual Penrose
transform only in being twisted. As usual, we shall denote this extra twist by adding
a tilde to the standard notation on Gr2(R4). The induced differential operators are
exactly as in the Penrose transform (being well-defined with the twisting accomplished
by locally constant transition functions).

Example 1 Let V be the line-bundle O(−2) on CP3. The relevant direct images are
(see, for example, [5, Table 2] or [6, p. 99])

τ 1
∗ Œ̃(−2) = Ẽ [−1] τ∗Œ̃

2
η(−2) = Ẽ [−3]

and all others vanish. Therefore, the E1-level of the spectral sequence is

0 0 Γ(Gr2(R4), Ẽ [−3])

Γ(Gr2(R4), Ẽ [−1]) 0 0

and, following one of the standard arguments for the Penrose transform (for example,
[8, Theorem 6.1]), the ultrahyperbolic wave operator 2 emerges as the only differential
at the E2-level. Theorem 2 gives

H1
d
(F, Õ(−2)) = ker 2 : Γ(Gr2(R4), Ẽ [−1]) −→ Γ(Gr2(R4), Ẽ [−3])

H2
d
(F, Õ(−2)) = coker 2 : Γ(Gr2(R4), Ẽ [−1]) −→ Γ(Gr2(R4), Ẽ [−3])

and all other cohomology vanishes. On the other hand, Hr(CP3,O(−2)) = 0 for all r
(for example, by the Bott-Borel-Weil Theorem). Thus, by Theorem 1,

Γ(RP3, E(−2)) ∼=−→ ker 2 : Γ(Gr2(R4), Ẽ [−1]) −→ Γ(Gr2(R4), Ẽ [−3])

Γ(RP3, E(−2)) ∼= coker 2 : Γ(Gr2(R4), Ẽ [−1]) −→ Γ(Gr2(R4), Ẽ [−3]).



COMPLEX METHODS IN REAL INTEGRAL GEOMETRY

The first isomorphism is (5) proved by complex methods. The second is a compactified
version of a result of Grinberg [10, Theorem 3] indentifying the range of 2 as those

elements of Γ(Gr2(R4), Ẽ [−3]) whose integrals over all α-planes vanish.

Example 2 Let V be the trivial line-bundle. Then

τ∗Œ̃ = Ẽ τ∗Œ̃
1
η = Ẽ1 τ∗Œ̃

2
η = Ẽ2

+

where Ẽ2
+ is the sheaf of germs of twisted self-dual 2-forms on Gr2(R4). All higher

direct images vanish. Therefore, the E1-level of the spectral sequence is

Γ(Gr2(R4), Ẽ) Γ(Gr2(R4), Ẽ1) Γ(Gr2(R4), Ẽ2
+)

0 0 0

the differentials being exterior derivatives. This time, there is a contribution from
Theorem 1 in that Γ(CP3,O) = C. We conclude that there is a surjective X-ray
transform

Γ(RP3, E) −→
ker d+ : Γ(Gr2(R4), Ẽ1) → Γ(Gr2(R4), Ẽ2

+)

im d : Γ(Gr2(R4), Ẽ) → Γ(Gr2(R4), Ẽ1)
(9)

whose kernel is the constant functions. The right hand side may be re-intepreted as
follows. In view of the well-known diffeomorphism Gr+

2 (R4) ' S2 × S2, the twisted
de Rham cohomology of Gr2(R4) is easily computed (compare Lemma 3):

H2(Gr2(R4), C̃) = C⊕ C

and all others vanish. A closed twisted anti-self-dual 2-form on Gr2(R4) is zero when
restricted to any α-plane and its integral over a β-plane is independent of choice
of this plane. Let us call this its charge. If the charge is zero then we can find a
potential. In other words, the right hand side of (9) may be re-interpreted as the
space of twisted anti-self-dual Maxwell fields with zero charge. The second involutive
cohomology gives an isomorphism

Γ(RP3, E) ∼= coker d+ : Γ(Gr2(R4), Ẽ1) → Γ(Gr2(R4), Ẽ2
+),

parallel to Grinberg’s result in Example 1.

Example 3 Let V be the line-bundle O(−4) on CP3. It may be regarded as the
bundle of holomorphic 3-forms on CP3 with its restriction to RP3 being the bundle of
smooth 3-forms. The relevant direct images are

τ 1
∗ Œ̃(−4) = Ẽ2

+ τ 1
∗ Œ̃

1
η(−4) = Ẽ3 τ 1

∗ Œ̃
2
η(−4) = Ẽ4
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and all others vanish. Theorem 2 gives

0 0 0

Γ(Gr2(R4), Ẽ2
+) Γ(Gr2(R4), Ẽ3) Γ(Gr2(R4), Ẽ4)

at the E1-level. The immediate conclusion is

Γ(RP3, E(−4)) ∼=−→ ker d : Γ(Gr2(R4), Ẽ2
+) → Γ(Gr2(R4), Ẽ3).

In other words, the space of smooth 3-forms on RP3 is isomorphic under the X-ray
transform to the space of twisted self-dual Maxwell fields on Gr2(R4) (as in [11]).
One can easily check that the integral of the 3-form over RP3 gives the charge of the
corresponding field. The Bott-Borel-Weil Theorem identifies H3(CP3,O(−4)) = C
and the remaining conclusion of Theorem 1 is an exact sequence

0 → H2
d
(F, Õ(−4)) −→ Γ(RP3, E(−4))

R
−→ C −→ H3

d
(F, Õ(−4)) → 0.

The mapping
∫

is the integral over RP3 and is surjective. The consequent vanishing of

H3
d
(F, Õ(−4)) is consistent with the surjectivity of Γ(Gr2(R4), Ẽ3) → Γ(Gr2(R4), Ẽ4),

namely the vanishing of the twisted de Rham cohomology H4(Gr2(R4), C̃). The final
conclusion is an isomorphism of the smooth 3-forms on RP3 whose total integral is
zero with the space

ker d : Γ(Gr2(R4), Ẽ3) → Γ(Gr2(R4), Ẽ4)

im d : Γ(Gr2(R4), Ẽ2
+) → Γ(Gr2(R4), Ẽ3)

.

Example 4 Let V be Λ1, the cotangent bundle on CP3. From the Bott-Borel-Weil
Theorem, H1(CP3,O(Λ1)) = C and all other cohomology vanishes. Thus, Theorem 1
gives an exact sequence

0 → Γ(RP3, E(Λ1)) −→ H1
d
(Ω̃, Λ̃1) −→ C → 0.

The non-zero direct images are

τ 1
∗Œ(Λ̃1) = Ẽ τ∗Œ

1
η(Λ̃

1) = Ẽ2
− ⊕ Ẽ [−2] τ∗Œ

2
η(Λ̃

1) = Ẽ [−2]⊕ Ẽ3

and the spectral sequence of Theorem 2 is (cf. [5, p. 309] or [6, p. 104])

0

Γ(Gr2(R4), Ẽ2
−)

⊕
Γ(Gr2(R4), Ẽ [−2])

Γ(Gr2(R4), Ẽ [−2])
⊕

Γ(Gr2(R4), Ẽ3)

Γ(Gr2(R4), Ẽ) 0 0
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Consequently, there is an X-ray transform

X : Γ(RP3, E(Λ1)) −→ Γ(Gr2(R4), Ẽ)

whose range is

{f ∈ Γ(Gr2(R4), Ẽ) s.t. Ddf = dρ for some ρ ∈ Γ(Gr2(R4), Ẽ2
−)}

where D : Ẽ1 → Ẽ3 is the operator of [9, Proposition 3.3]. (To establish this carefully
requires a good deal of further argument, cf. [14].) The kernel of X is identified with
the twisted anti-self-dual Maxwell fields of zero charge. Alternatively, in view of Ex-
ample 2, the kernel consists of the exact 1-forms. The transform X is geometrically
extremely natural. A point of Gr+

2 (R4) gives an oriented geodesic on RP3 over which
a smooth 1-form may be integrated. Changing the orientation changes the sign of
this integral so there results a twisted smooth function on Gr2(R4). From this inter-
pretation it is clear that X annihilates the exact forms. The converse is a result of
Michel [15]. It generalises considerably [2]. That one can identify the range of X in
terms of differential equations on Gr2(R4) is, perhaps, more subtle.

Example 5 An X-ray transform can be constructed and analysed starting with any
irreducible homogeneous vector bundle on CP3. The corresponding exercise for the
Penrose transform is carried out in [7] and a complete analysis in the X-ray case would
follow similar lines. Certainly, the necessary direct images are computed in [7]. The
other ingredient, needed to compute the analytic cohomology in CP3 which appears
in Theorem 1, is the Bott-Borel-Weil Theorem—see, for example, [6].

Concluding Remarks

The X-ray transform considered in this section could, in principle, be analysed by
decomposing the spaces in question into harmonics under the action of SO(4). On
the other hand, the main analytical ingredient involved in applying Theorems 1 and 2
is the Bott-Borel-Weil Theorem, either on CP3 or on the fibres of τ , each isomor-
phic to CP1. The Bott-Borel-Weil Theorem can itself be proved using (generalised)
spherical harmonics. Thus, one possible point of view on this approach to the X-ray
transform is that the geometry of (6) is automatically organising the spherical har-
monics to effect the analysis. Presumably, a similar point of view can be adopted in
any situation with a sufficient degree of symmetry. Of course, the Bott-Borel-Weil
Theorem is an extremely efficient method of organising these harmonics. It would be
interesting to find some less symmetrical examples where the analytic cohomology of
Theorem 1 is beyond the Bott-Borel-Weil Theorem. Certainly, the Penrose transform
goes well beyond this.

There are two limitations inherent in this development. The first comes about by
using a real blow-up. Here one replaces a totally real submanifold M of a complex
manifold with its space of normal directions. This is the right thing to do for a real
integral transform defined by integrals over one-dimensional real cycles. For cycles of
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dimension k one would have to modify the blow-up procedure so as to replace M with
its space of normal k-planes. Presumably, this is not a serious impediment. A tighter
restriction seems to be the requirement of M having a compact complexification with
the real cycles in M inducing a foliation of the blow-up by complex submanifolds.
At the moment it is far from clear how stringent a requirement this is. Many more
examples are needed to illuminate this issue.
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