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A ssmple question on R", n > 3

Question:Which linear differential operators preserve

harmonic functions2Answer onR?:—
Zeroth orderf — constantx f
First order

V= 0/01, Vy=08/0ry V=00 3

r1Vo —29V1 &C. 3

r1V1+ x9Vo + 23V3 —|—1/2 1

(1% — 19° — 23°)V1 + 22122V s + 20123V3 + 21 3
&C. —

DIMENSIONS - -« - - - - - oot 10

Lie Algebra= so(4,1) =|conformal algebra— NB!
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Second order

Boyer-Kalnins-Miller (1976)
Extras: o« Laplacian ( +— hA f for any smooth)
plus a35-dim’ family of new ones!

{Dl, DQ} — Dlpg = D2D1

O’s0(4,1) =? dim =10 x 11/2 = 55

O = S oc® R D

b0=30+14+1+5

Separation of variables (Bocher, Bateman, ...).
Third order...?
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Conformal geometry

STL

stereographic projection

e

—_—

I )en
Action of SO(n 4+ 1,1) on S

by conformal transformations flat’ model
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Conformal Laplacian birac 1935

_ 2 2 2 2
r = I _|_33n _I_xn—kl — LTn+2

A B 82 T 82 I 82 82
N 012 Ox,? aan? axn—l—22
f on null conec R"** homogeneous of degree~~

. ambiently extend tg’ of degreew

. freedomf — f + rg for ¢ of degreew — 2

- calculate:A(rg) = rAg + 2(n + 2w — 2)g
w=1-n/2= f— (Af)|,—o is invariantly defined.
OnR"it's A On S” it's A 4(7};_21)}%
AdS/CFT| |Fefferman-Graham‘ambient’ metric
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Symmetriesof A

D asymmetry<— AD = oA for somey.
trivial example D = PA for anyP
equivalenceD; =Dy <— D; — Dy =PA

R™ ~~ A, = algebraof symmetries

under composition
up to equivalence

Write D = V9V, V.- - -V, + lower order terms

/ \
symbol normalise w.l.g. to bé&ace-free

| >4
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Theorems

~D a symmetry= trace-free part o/ (@}/bed) — (
—Easy
+~OnR", such a conformal Killing tensdr® ¢ ~ Dy,
—Not So Easy

Dy, 1s a canonically associated symmetry of the form

Dy = V¥ iy, V.- -V, + lower order terms

e E.g. First order
Dyf=VVauf + 52V V) f

e E.g. Second order

Dy f = V®V Vo f+5(Va VOV, f + (V Vi,V f

4(n—i—2)(n—i—1
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| ngredients of proof

e We can solve the conformal Killing tensor equation

v(avbc---d) _ g(ab)\c---d)
onR" by prolongation and/or BGG machinery

W.rt.so(n +1,1).

O

S —
# of columns= # of indices onl/ ¢ ¢

E.g.V’ = ®+m"x. + X’ + rexoa® — Jawor’

— translation+ rotation—+ dilation -+ inversion.

e Use ‘ambient’ methods to construbi, .

Third Frontiers Lecture at Texas A&M — p. 9/17



Corollary

AS a vector space

OO e o o
An: o
) S—————

S

Question What about the algebra structure?

Cf.. letg be a Lie algebra. As a vector space

O

Ug) =P O

s=0

but the algebra structure is opaque viewed this way.
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Thealgebrastructure

B X g
Lw)_(X®Y—Y®X—MﬂW
_ X9
(X®Y -X0Y —2[X,Y))
Theorem
B X so(n+1,1)
T (XY -XoY —3[X Y]+ g (X, Y))
Cartan Lie Killing
Equivalently,

A, = U(so(n+ 1,1))/Joseph Ideal
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Proof of algebra structure

Calculate by ambient means that

DxDy = Dxoy + 5Pxy] — mpnsn Dixy)

and use properties of Cartan product (due to Kostant).
Remark:simple Lie algebra= g # sl(2,C) =

Xy
(XY -XoY -1X Y]- X, Y))

for precisely one value of (Braverman and Joseph)

~ graded algebrg) ©°g.
s=0
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Curved analogues

For any vector field ¢,
J = VOV + 5= (V Vo f

IS conformally invariant
For any trace-free symmetric tensor fiéfd’,

[ VOV + 5V V)V, f
| n(n—2) (v vbvab)f

" 4(n+2)(n+1)
0y BV f | =| curvature
correction

IS conformally invariant&c. &c. terms
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Curved symmetries?

e V% 1s a conformal Killing vector-
Dyf=ViVuf + 52V V) f
IS symmetry of the conformal Laplacian.

o V% is a conformal Killing tensoe=

Dyf = VOV, f + 15 (V VD)V, f
| ) (v vbvab)]ﬂ n—+2 R vabf

" 4(n+2)(n+1) 4(n+1)

IS a symmetry of the conformal Laplaciari:

Third Frontiers Lecture at Texas A&M — p. 14/17



Another operator

In even dimensions, there is the Dirac operator
D:St—§S".
A symmetryof D is an operatoD : ST — ST s.t.
St D S-

D 54
St D s

commutes for some differential operatorS— — S~
e The symbol ofD satisfies a conformally invariant
overdetermined system of equations.
v FIrst order symmetries: Benn and Kress.
v Higher order symmetries in the flat case:
E, Somberg, and Scek.
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Yet another operator

For the square of the Laplacida and Leistner)
symmetry algebra:

X so(n+1,1)
(X®Y—X@Y—X.Y— LX, Y] + fodetd <X,Y>)

dn(n+1)(n+2)

and some fourth order elém\erﬁ‘i AEW ‘\

different

with graded counterpart \

O O

a “HH.e@ [ e
s=0 v §=2 VS

S
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THANK YOU

THE END
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