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Abstract. We discuss the recent advances made towards the notorious twin prime
conjecture and its generalisations. What follows is a lengthy exploration of the various
techniques used in the field, both in their general setting and their specific application
to the problem of gaps between prime numbers, along with a new result by the author
on a conjecture of Polignac’s.

1. Introduction

1.1. The History of Twin Primes. Euclid’s proof of the infinitude of primes [6, Book
IX, Proposition 20] is well-known and any professional mathematician can reproduce it
from memory. It is an easy and intuitive result which raises the question as to how these
numbers are distributed.

Looking through the sequence of primes we note that there seem to be rather a large
number of primes whose difference is precisely two — 3 and 5; 11 and 13; 347 and 349 —
but the earliest extant example of the question as to whether there are infinitely many of
these so-called twin primes was first posed in a more general form by de Polignac [16].

Conjecture 1 (de Polignac, 1849). Let k be any positive even integer and let pn be the
nth prime number. Then, for infinitely many n ∈ N, we have pn+1 − pn = k.

Any k which satisfies Polignac’s conjecture is called a Polignac number and the twin
prime conjecture simply states that 2 is a Polignac number.

This conjecture was partially resolved by Maynard [13] and Zhang [27] with the follow-
ing theorem
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Theorem 2 (Maynard-Zhang, 2013). There exist infinitely many pairs of prime numbers
whose difference is no more than 600.

This bound was originally proved by Zhang [27] with 600 replaced by 7 × 107 which
then got reduced to 4,680 by Polymath [17]. Maynard [13] then reduced it to 600 and
we will give a further improvement in this report. This clearly shows that there exists
at least one Polignac number 2 ≤ k ≤ 600 and this, together with the following theorem
from Pintz[15], asserts that there are infinitely many Polignac numbers.

Theorem 3 (Pintz, 2013). There is an ineffective constant C such that every interval
of the form [m,m + C] contains a Polignac number. Therefore, if there is at least one
Polignac number then there exist infinitely many Polignac numbers.

Unfortunately this theorem is ineffective — it offers no way to generate future Polignac
numbers — but it does give direction for future research, particularly some results by the
author [10] on the behaviour of Polignac numbers and arithmetic progressions.

We might also like to ask whether we have similar bounded behaviour for non-consecutive
primes and that question has also been resolved by Maynard [13]:

Theorem 4 (Maynard, 2013). Let m and n be positive integers. Then there are infinitely
many n ∈ N such that

pn+m − pn ≤ Am3e4m (1)

for all sufficiently large m and some positive, real constant A.

This shows that we have bounded behaviour for prime pairs, whether consecutive or
not.

There are some previous results in this direction, dealing with the normalised prime
gaps

pn+1 − pn
log n

(2)

where the log n represents the expected gap. In 1931, Westzynthius [26] proved that

lim sup
n→∞

pn+! − pn
log n

=∞ (3)

and, in 2005, Goldston, Pintz and Yildirim [8] proved

lim inf
n→∞

pn+1 − pn
log n

= 0. (4)

The Zhang result has the Golston-Pintz-Yildirim result as a corollary but, recently,
Banks, Freiman and Maynard [1] have announced an improvement to these results which
we will not have time to delve into but mention for the sake of completeness.

Theorem 5 (Banks-Freiman-Maynard, 2014). For at least 12.5% of all positive real num-
bers x, the sequence of normalised prime gaps has a subsequence which tends to x.

1.2. Sieving. Sieving as a technique for counting and/or generating primes has had a
long and interesting history dating back to the Greeks and Eratosthenes. Unfortunately
this is out of the scope of this work but much of the history can be found in [11].

The majority of the sieving in this report uses the large sieve and the Goldston-Pintz-
Yildirim (GPY) version of the Selberg sieve: the large sieve gives us the Barban-Bombieri-
Vinogradov theorem [2] and the GPY sieve [8] acts as a detector for multiple primes in
an interval.

Informally, the Barban-Bombieri-Vinogradov theorem tells us that the average num-
ber of primes less than x on an arithmetic progression does not grow much faster than
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x1/2(log x)−A for any positive A. More specifically, if we define the level of distribution of
the primes by

Definition 6. Let A be a positive real number; (m,n) be the greatest common divisor of
m and n; π(x) be the prime counting function; π(x; a, q) be the prime counting function
on the arithmetic progression n ≡ a (mod q) and ϕ be Euler’s totient function. If, for all
ε ∈ R+, ∑

q≤xθ−ε
sup

(a,q)=1

∣∣∣∣π(x; a, q)− 1

ϕ(q)
π(x)

∣∣∣∣ ≤ cAx(log x)−A (5)

holds for some positive real constant cA, depending only on A, and all sufficiently large
x ∈ R+, then θ ∈ (0, 1] is called the level of distribution of the primes.

The Barban-Bombieri-Vinogradov theorem is then equivalent to saying that the primes
have level of distribution 1/2.

1.3. Open Problems and Conditional Results. A generalisation of the Barban-
Bombieri-Vinogradov theorem is the following conjecture:

Conjecture 7 (Elliott-Halberstam, 1970). [5] The primes have level of distribution 1.

Under the assumption that the Elliott-Halberstam conjecture holds, Goldston, Pintz
and Yildirim [8] proved the Maynard-Zhang theorem with a bound of 16. Maynard[13]
himself has given an improvement of this bound to 12 for consecutive primes and a bound
of 600 for pn+2 − pn.

There is also a natural generalisation of Polignac’s conjecture and Dirichlet’s theorem
of prime numbers in arithmetic progressions[4] which we would hope to treat using the
methods of Zhang, Pintz and Maynard.

Conjecture 8 (Dickson, 1904). Let a1, . . . , ak, b1, . . . , bk be a finite collection of integers
with bi ≥ 1 for all 1 ≤ i ≤ k and let fi(n) = ai + bin be a collection of linear forms. If

there is no positive integer m dividing all the products
∏k

i=1 fi(n) for all integers n then
there exist infinitely many natural numbers n such that all of the linear forms are prime
[3].

You can see that, by setting k = 2 and using the linear forms n, n+ 2, this implies the
twin prime conjecture and proving Dickson with the linear forms n, n + 2k for all k ∈ N
is equivalent to Polignac’s conjecture. Finally, if we assume that there are infinitely
many twin primes, there is the question of just how frequently they show up. Hardy and
Littlewood [9] gave the following conjecture as to how many there should be:

Conjecture 9 (Hardy-Littlewood, 1923). Let P2(n) be the number of prime pairs less
than n and let P be the set of all prime numbers. Then

P2(n) ∼ 2C2
n

(log n)2
(6)

where

C2 =
∏

p∈P\{2}

(
1− 1

(p− 1)2

)
≈ 0.66. (7)
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2. Notation and Identities

2.1. Notation. We collect here a list of the symbols we will use in the rest of the report
for easy reference.

x a positive real number
p a prime number
D0 the value log log logN
W the primorial

∏
p≤D0

p
θ level of distribution of the primes
P the set of all prime numbers
I an interval
SI the set of all squarefree numbers in I
L log x
[x] the largest integer less than or equal to x

(m,n) the greatest common divisor of m and n
π(x) the number of prime numbers less than or equal to x
φ(n) the Euler totient function, giving the number of m < n such that (m,n) = 1
Λ(n) the von Mangoldt function
ψ(x) the Chebyshev function

∑
n≤x

Λ(n)

ϑ(x) the Chebyshev function
∑
p≤x

log p

e(n) the exponential function e2πin

σ(n) the number-of-divisors function
σk(n) the number of ways of writing n as the product of k natural numbers
Γ(t) the gamma function

∫∞
0
xt−1e−xdx

g the totally multiplicative function defined on primes by g(p) = p− 2
χ a Dirichlet character

τ(χ) the Gauss sum
∑
a≤q

χ(a)e(a/q)

1A(x) the characteristic function of the set A,
occasionally written without the argument if the meaning is clear

∆(f ; a, q) the discrepancy
∑

a∈(Z/qZ)∗

∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

f(n)− 1
ϕ(q)

∑
n≤x

(n,q)=1

f(n)

∣∣∣∣∣∣∣
f ? g Dirichlet convolution of two arithmetic functions f and g

2.1.1. Asymptotic Notation. We will write f(x) = O(g(x)) or f(x)� g(x) if and only if
there is some positive constant M such that, for all sufficiently large x, f(x) ≤ Mg(x).
If the implied constant depends on some value A we will write f(x) = OA(g(x)) or

f(x)�A g(x). We will also write f(x) = o(g(x)) if and only if f(x)
g(x)
→ 0 as x→∞.

2.2. Identities.

ϕ(mn) ≤ ϕ(m)ϕ(n) (8)∑
d|n

µ(d) = 1n=1 (9)

∑
d|n

µ(d)2

ϕ(d)
=

n

ϕ(n)
(10)
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∑
n≤Q

1

ϕ(n)
� logQ (11)

1

ϕ(z)

∑
χ (mod q)

χ(a)χ(b) = 1a≡b (mod q), if (a, q) = 1 (12)

χ(n)τ(χ) =
∑
a≤q

χ(a)e(an/q), if χ is a primitive character (13)

|τ(χ)| = √q, if χ is a primitive character (14)

1

N

∑
n<N

σk(n)� (logN)k (15)

1

[m,n]
=

1

mn

∑
d|(m,n)

ϕ(d) (16)

1

ϕ([m,n])
=

1

ϕ(m)ϕ(n)

∑
d|mn

g(d) (17)

∑
p≤n

log p

p
∼ log n (18)

where q is always taken to be the modulus of the Dirichlet character

3. The Large Sieve Inequality and the Barban-Bombieri-Vinogradov
Theorem

In order to prove Maynard’s theorem we will first need some information on prime
numbers, specifically about their growth on arithmetic progressions. We say that the
primes have level of distribution θ if

∑
q≤xθ−o(1)

∑
a∈(Z/qZ)∗

∣∣∣∣∣∣∣
∑

n≡a (mod q)
n<x

1P(n)− 1

ϕ(q)

∑
(n,q)=1
n<x

1P(x)

∣∣∣∣∣∣∣�A xL−A (19)

for some sufficiently slowly decaying o(1) and any A ∈ R+. The Barban-Bombieri-
Vinogradov theorem will show that the primes have level of distribution at least 1/2
and that is enough for our purposes.

Theorem 10 (Large Sieve Inequality). For any complex sequence (an)n∈N; any M,N ∈ N;
and all real Q > 1

∑
q≤Q

∑∗

χ (mod q)

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

� (Q2 +N)
M+N∑
n=M+1

|an|2 (20)

where
∑∗

χ (mod q)

represents a sum of primitive Dirichlet characters modulo q.

Proof. Let χ be a primitive Dirichlet character modulo q. If τ(χ) is the Gauss sum of χ
then, by (13),

M+N∑
n=M+1

anχ(n) =
1

τ(χ)

∑
a≤q

χ(a)
M+N∑
n=M+1

ane(an/q). (21)
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Define S(a/q) =
∑M+N

n=M+1 ane(an/q). Then

∑∗

χ (mod q)

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

=
∑∗

χ (mod q)

1

|τ(χ)|2

∣∣∣∣∣
q∑

a=1

χ(a)S

(
a

q

)∣∣∣∣∣
2

.

So, by 14, this is no larger than

1

q

∑
χ (mod q)

∣∣∣∣∣
q∑

a=1

χ(a)S

(
a

q

)∣∣∣∣∣
2

≤ 1

q

∑
χ (mod q)

q∑
a=1

|χ(a)|2
∣∣∣∣S (aq

)∣∣∣∣2

=
1

q

q∑
a=1

∣∣∣∣S (aq
)∣∣∣∣2 ∑

χ (mod q)

|χ(a)|2 . (22)

As non-zero Dirichlet characters are roots of unity and non-zero only when (a, q) = 1,∑
χ (mod q) |χ(a)|2 equals ϕ(q) whenever (a, q) = 1 and is 0 otherwise. Therefore (22) is

less than or equal to

ϕ(q)

q

∑
a≤q

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 . (23)

Hence we have shown that

∑
q≤Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

≤
∑
q≤Q

∑
a≤q

(a,q)=1

∣∣∣∣∣
M+N∑
n=M+1

ane

(
an

q

)∣∣∣∣∣
2

. (24)

We can view the double sum as a sum over all positive proper fractions whose denomi-
nators do not exceed q. Moreover, as (a, q) = 1, the fractions are all distinct so we can
apply Gallagher’s large sieve inequality (Theorem 31) to show that this is less than or
equal to

(πN + δ−1)
M+N∑
n=M+1

|an|2 � (N + δ−1)
M+N∑
n=M+1

|an|2. (25)

Finally note that

δ = min
a1
q1
6=a2
q2

∥∥∥∥a1q1 − a2
q2

∥∥∥∥ ≥ min
a1
q1
6=a2
q2

1

q1q2
≥ 1

Q2
(26)

completing the proof. �

We will immediately apply this to proving that primes have level of distribution 1/2.

Theorem 11 (Barban-Bombieri-Vinogradov). Let ε ∈ (0, 1/2). Then

∑
q≤x1/2−ε

sup
a∈(Z/qZ)∗

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

1P(n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

1P(n)

∣∣∣∣∣∣∣∣� xL−A (27)

for any fixed A ∈ R+.
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Sketch of proof. Consider the Chebyshev ψ, ϑ functions and define

π(x; a, q) =
∑
n≤x

n≡a (mod q)

1P(n) (28)

ψ(x; a, q) =
∑
n≤x

n≡a (mod q)

Λ(n) (29)

ϑ(x; a, q) =
∑
p≤x

p≡a (mod q)

log p. (30)

Using partial summation along with the facts that π(x; a, 1) = π(x) and ϑ(x; a, 1) =
ϑ(x) we see

|∆(π; a, q)| =
∣∣∣∣ϑ(x; a, q)

log x
+

∫ x

2

ϑ(t; a, q)

t(log t)2
dt− 1

ϕ(q)

(
ϑ(x; a, 1)

log x
+

∫ x

2

ϑ(t; a, 1)

t(log t)2
dt

)∣∣∣∣
≤
∣∣∣∣ϑ(x; a, q)

log x
− ϑ(x; a, 1)

ϕ(q) log x

∣∣∣∣+

∣∣∣∣∫ x

2

ϑ(t; a, q)

t(log t)2
dt− 1

ϕ(q)

∫ x

2

ϑ(t; a, 1)

t(log t)2
dt

∣∣∣∣
≤ 1

log x
|∆(ϑ1[2,x]; a, q)|+ max

2≤t≤x

∣∣∆(ϑ1[2,x]; a, q)
∣∣ ∣∣∣∣∣
[

1

log t

]t=x
t=2

∣∣∣∣∣
� |∆(ϑ1[2,x]; a, q)|+ max

2≤t≤x
|∆(ϑ1[2,t]; a, q)|. (31)

Furthermore

ψ(x; a, q) =
∑
p≤x

p≡a (mod q)

log p+
∑
p≤x1/2

p2≡a (mod q)

log p+
∑
p≤x1/3

p2≡a (mod q)

log p+ · · ·

= ϑ(x; a, q) +O
(
ϑ(x1/2) + ϑ(x1/3) + · · ·

)
. (32)

Note that the sum in the ’O’ term is finite as x1/ log2 x = 2 and so ϑ(x1/n) = 0 for all
n > log2 x. Also, by the prime number theorem,

ϑ(x1/n) ≤ x1/n

log x1/n
log x1/n = x1/n (33)

and so

ϑ(x1/2) + ϑ(x1/3) + · · · � x1/2 + x1/3 log2 x� x1/2. (34)

Id est

ψ(x; a, q) = ϑ(x; a, q) +O
(
x1/2

)
. (35)

Then

|∆(ϑ1[2,x]; a, q)| ≤ |∆(ψ1[2,x]; a, q)|+O(x1/2) (36)

so it is sufficient to show that∑
q≤x1/2−ε

sup
a∈(Z/qZ)∗

∣∣∣∣ψ(x; a, q)− 1

ϕ(q)
ψ(x)

∣∣∣∣� xL−A. (37)

This can be achieved by decomposing the von Mangoldt function via the Heath-Brown
identity (Lemma 32) and noting that all of the items we are convolving are coefficient
sequences and that log obeys the Siegel-Walfisz condition, allowing us to apply the gen-
eralised Barban-Bombieri-Vinogradov theorem (see Theorem 39 in Appendix B for de-
tails). �
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4. The Selberg Sieve

4.1. General GPY-Selberg Sieve Manipulations. We will now look at the Selberg
lambda-squared sieve [11] and its applications to the problem of bounded gaps. The
Selberg sieve is any sieve of the form

∑
n

an

∑
d|n

λd

2

(38)

for some arithmetic function λn. This will let us weight a detector function for primes in
constellations. We will show the particular sieve to use later in this report but we need
to develop a few notions first.

Let H = {h1, h2, . . . , hk} be some finite set. We say that H is admissible if, for all
primes p, there is some integer a such that hi 6≡ a (mod p) for all hi ∈ H. We choose to
study these sets as these are the sets which possess the potential to have infinitely many
translates n+H, all of whose elements are prime. From here on we will consider H to be
some fixed admissible set.

If we take some prime pj then there must be some aj such that h 6≡ aj (mod pj) for all
h ∈ H. By the Chinese remainder theorem there must be a unique solution to the system
of congruence equations

v0 ≡ −aj (mod pj) (39)

for all pj ≤ D0, where D0 = log log log x. Then, as these pj are precisely the prime divisors
of the value W , we must have

v0 + h ≡ h− aj 6≡ 0 (mod pj). (40)

Thus v0 + h is prime to W .
These definitions allow us to define the particular detector function we will use. So let

us define the GPY sieve sum
S = S2 − ρS2 (41)

where

S1 =
∑

N≤n<2N
n≡v0 (mod W )

 ∑
(∀i)(di|n+hi)

λd1,...,dk

2

(42)

S2 =
∑

N≤n<2N
n≡v0 (mod W )

(
k∑
i=1

1P(n+ hi)

) ∑
(∀i)(di|n+hi)

λd1,...,dk

2

. (43)

From now on we will omit the (∀i) on the subscript of the summation for ease of reading.
Note that if S > 0 then at least one of the terms in the outer sum must be positive.

As squared factors don’t affect the sign of a term this implies that

k∑
i=1

1P(n+ hi)− ρ > 0 (44)

for some n satisfying the previous conditions. Thus there must be at least ρ primes in
the translate n+H.

Let F be some fixed piecewise-differentiable function supported on

Rk =

{
(x1, . . . , xk) ∈ [0, 1]k :

k∑
i=1

xi ≤ 1

}
. (45)
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Also let R = N θ/2−δ for some small, fixed, δ ∈ R+. Then we want our Selberg weight
function to be of the form

λd1,...,dk =

(
k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri

(ri,W )=1

µ
(∏k

i=1 ri

)2
∏k

i=1 ϕ(ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)
. (46)

whenever
(∏k

i=1 di,W
)

= 1, when
∏k

i=1 di < R and when
∏k

i=1 di is square-free. Let

λd1,...,dk = 0 otherwise.
We proceed by finding asymptotic equations for S1 and S2.

Lemma 12. Let

yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di

λd1,...,dk∏k
i=1 di

(47)

and ymax = supr1,...,rk |yr1,...,rk |. Then

S1 =
N

W

∑
r1,...,rk

y2r1,...,rk∏k
i=1 ϕ(ri)

+O

(
y2maxϕ(W )kN(logR)k

W k+1D0

)
(48)

Proof. Expanding the square and switching the order of summation gives

S1 =
∑

N≤n<2N
n≡v0 (mod W )

∑
di|n+hi

λd1,...,dk
∑

ei|n+hi

λe1,...,ek

=
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,dk
∑

N≤n<2N
n≡v0 (mod W )
[di,ei]|n+hi

1. (49)

We will suppose that D0 ≥ maxH and conjecture that W and the [di, ei] are coprime.
If not then there exists some d such that either d|([di, ei], [dj, ej]) or d|(W, [di, ei]) for all
i 6= j. In the first case d must divide n+hi and n+hj, both of which are coprime to W so
d also divides hi− hj ≤ max(H), giving us that (hi− hj,W ) = hi− hj. Thus (d,W ) 6= 1,
contradicting our earlier statement.

On the other hand λd1,...,dk is only supported when the di and W are coprime so we
can suppose that W, [d1, e1], . . . , [dk, ek] are pairwise coprime. This means that, by the
Chinese remainder theorem, we can turn the inner sum in (49) into a sum over a single

residue class q = W
∏k

i=1[di, ei] and this sum has a value of N/q +O(1). So

S1 =
N

W

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,dk∏k
i=1[di, ei]

+O

 ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,dk |

 (50)

where
∑′ represents the restriction that W, [d1, e1] . . . , [dk, ek] are pairwise coprime.
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Let λmax = supd1,...,dk |λd1,...dk |. Then, as λd1,...,dk is non-zero only if
∏k

i=1 di < R,

∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek | ≤ |λmax|2
 ∑

∏k
i=1 di<R

1

2

= λ2max

(∑
d<R

σk(d)

)2

� λ2maxR
2(logR)2k. (51)

Now we rewrite the main term using (16) as

N

W

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

k∏
i=1

1

diei

∑
ui|(di,ei)

ϕ(ui). (52)

Recall that λd1,...,dk is supported only when the product d1 · · · dk is squarefree so the di
must be pairwise coprime and also recall that this product and W must also be coprime.
Therefore [di, ei] is coprime to W . Then the above equals

N

W

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

) ∑′

d1,...,dk
e1,...,ek
ui|(di,ei)

λd1,...,dkλe1,...,ek(∏k
i=1 di

)(∏k
i=1 ei

) (53)

with the restriction on the sum simply now being that (di, ej) = 1 for all i 6= j but this
can be removed by multiplying through by

∑
si,j |(di,ej) µ(si,j). This turns the main term

into

N

W

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

) ∑
d1,...,dk
e1,...,ek
ui|(di,ei)

∏
si,j
i 6=j

∑
l 6=m

sl,m|(dl,em)

µ(sl,m)

 λd1,...,dkλe1,...,ek(∏k
i=1 di

)(∏k
i=1 ei

) (54)

or

N

W

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

)∑
si,j
i 6=j

 ∏
1≤l,m,≤k
l 6=m

µ(sl,m)

 ∑
d1,...,dk
e1,...,ek
ui|(di,ei)

si,j |(di,ej),∀i 6=j

λd1,...,dkλe1,...,ek(∏k
i=1 di

)(∏k
i=1 ei

) . (55)

We can furthermore require that si,j is coprime to both ui and uj as, if (si,j, ui) 6= 1,
we would have some common divisor between (di, ei) and (di, ej). This would mean that
ei and ej share some common factor but then λe1,...,ek = 0 and so these terms do not
contribute to the sum.

Similarly we can further restrict the sum so that si,j is coprime to si,a and sb,j for all

a 6= j and b 6= i. We denote this restricted sum by
∑∗

.

Write

yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di

λd1,...,dk∏k
i=1 di

. (56)

If we fix d1, . . . , dk with µ
(∏k

i=1 di

)
6= 0 we find

10



∑
r1,...,rk
di|ri

yr1,...,rk∏k
i=1 ϕ(ri)

=
∑
r1,...,rk
di|ri

(
k∏
i=1

µ(ri)

) ∑
e1,...,ek
ri|ei

λe1,...,ek∏k
i=1 ei

=
∑

e1,...,ek

λe1,...,ek∏k
i=1 ei

∑
r1,...,rk
di|ri|ei

k∏
i=1

µ(ri)

=
∑

e1,...,ek

λe1,...,ek∏k
i=1 ei

∑
r1,...,rk
ri|ei/di

k∏
i=1

µ(diri)

=
k∏
i=1

µ(di)
∑

e1,...,ek

λe1,...,ek∏k
j=1 ej

∑
ri|ei/di

µ(ri). (57)

If any of the ei/di do not equal 1 then one of the divisor sums of the Möbius function will
be 0. Therefore we can write ei = di for all i and so∑

r1,...,rk
di|ri

yr1,...,rk∏k
i=1 ϕ(ri)

=
λd1,...,dk∏k
i=1 µ(di)di

. (58)

Thus any choice of yr1,...,rk which is supported on r1, . . . , rk such that r =
∏k

i=1 ri < R is
square-free and (r,W ) = 1 will give us some λd1,...,dk . Now let

ymax = sup
r1,...,rk

|yr1,...,rk | (59)

then we find that, by taking r′ =
∏k

i=1
ri
di

λmax = sup
d1,...,dk

|λd1,...,dk |

= sup
d1,...,dk

∣∣∣∣∣∣∣∣∣∣∣∣
(

k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri
r<R
µ(r)6=0

yr1,...,rk
∏k

i=1 µ(ri)
2∏k

i=1 ϕ(ri)

∣∣∣∣∣∣∣∣∣∣∣∣
= ymax sup

d1,...,dk
µ(

∏k
i=1 di)6=0

∣∣∣∣∣∣∣∣∣∣
(

k∏
i=1

di

) ∑
r′<R/

∏k
i=1 di

µ(
∏k
i=1 dir

′)6=0

µ
(∏k

i=1 dir
′
)2
σk(r

′)

ϕ
(∏k

i=1 dir
′
)

∣∣∣∣∣∣∣∣∣∣
= ymax sup

d1,...,dk
µ(

∏k
i=1 di)6=0

∣∣∣∣∣∣∣∣∣∣
(

k∏
i=1

di
ϕ(di)

) ∑
r′<R/

∏k
i=1 di

µ(
∏k
i=1 dir

′)6=0

µ
(∏k

i=1 dir
′
)2
σk(r

′)

ϕ
(∏k

i=1 dir
′
)

∣∣∣∣∣∣∣∣∣∣
11



= ymax sup
d1,...,dk

µ(
∏k
i=1 di)6=0

∣∣∣∣∣∣∣∣∣∣
 ∑
d|

∏k
i=1 di

µ(d)2

ϕ(d)

 ∑
r′<R/

∏k
i=1 di

µ(
∏k
i=1 dir

′) 6=0

µ
(∏k

i=1 dir
′
)2
σk(r

′)

ϕ
(∏k

i=1 dir
′
)

∣∣∣∣∣∣∣∣∣∣
(60)

by equation (10). Setting u = dr′ and noting that σk(dr
′) ≥ σk(r

′) shows

λmax ≤ ymax

∑
u<R

µ(u)2σk(u)

ϕ(u)
� ymax(logR)k (61)

by standard estimates on the mean values of arithmetic functions.
We can use this to bound our error term O(λ2maxR

2(logN)2k) by O(y2maxR
2(logN)4k).

Substituting our expression for yr1,...,rk into equation (55) and using our new estimate for
the error term we get

S1 =
N

W

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

)∑∗

si,j
i 6=j


 ∏

1≤l,m≤k
l 6=m

µ(sl,m)


(

k∏
l=1

µ(al)µ(bl)

ϕ(al)ϕ(bl)
ya1,...,akyb1,...,bk

)
+O(y2maxR

2(logR)4k) (62)

where we define am = um
∏
l 6=m sm,l and bm = um

∏
l 6=m sl,m. As um is coprime to all sl,m we

note that µ(am), µ(bm) 6= 0 and the main term becomes

N

W

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)∑∗

si,j
i 6=j

 ∏
1≤l,m≤k
l 6=m

µ(sl,m)

ϕ(sl,m)2

 ya1,...,akyb1,...,bk (63)

Using the fact that yd1,...,dk is supported only on
(∏k

i=1 di,W
)

= 1 it must be that the si,j

are coprime to W . Thus we only need to consider si,j = 1 and si,j > D0. The contribution when
si,j > D0 is

� y2maxN

W

 ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)


k ∑

si,j>D0

µ(si,j)
2

ϕ(si,j)2

∑
s≥1

µ(s)2

ϕ(s)2

k2−k−1

� y2maxϕ(W )kN(logR)k

W k+1D0
(64)

by standard estimates on the mean values of multiplicative functions.
We can now just restrict our attention to the case where si,j = 1 for all i 6= j. This gives

S1 =
N

W

∑
u1,...,uk

y2u1,...,uk∏k
i=1 ϕ(ui)

+O

(
y2maxϕ(W )kN(logR)k

W k+1D0
+ y2maxR

2(logR)4k
)

(65)

but R2 = N θ−2ε � N1−2ε, W � N ε and logR ∼ logN � N ε for all ε ∈ R+, giving the required
result. �

We derive an asymptotic bound for S2 in a similar way but we first need to break it
up. Define

S
(m)
2 =

∑
N≤n<2N

n≡v0 (mod W )

1P(n+ hm)

 ∑
d1,...,dk
di|n+hi

λd1,...,dk


2

(66)

12



All we have done is to break up the set H as the parameter to the GPY sieve term

S2. Clearly we have S2 =
∑k

m=1 S
(m)
2 and our next lemma gives us a bound for these

summands.

Lemma 13. Let

y(m)
r1,...,rm

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dr
ri|di
dm=1

λd1,...,dk∏k
i=1 ϕ(di)

(67)

where g is the totally multiplicative function defined on primes by g(p) = p − 2. Also let

y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then, for any fixed A ∈ R+, we have

S
(m)
2 =

N

ϕ(W ) logN

∑
r1,...,rk

(
y
(m)
r1,...,rk

)2
∏k

i=1 g(ri)
+O

(
(y

(m)
max)2ϕ(W )k−2N(logN)k−2

W k−1D0

)

+O

(
y2maxN

(logN)A

)
. (68)

Proof. As before we expand out the square and swap the order of summation in S
(m)
2 to

give

S
(m)
2 =

∑
d1,...,dk
e1,...,dk

λd1,...,dkλe!,...,dk
∑

N≤n<2N
n≡v0 (mod W )
[di,ei]|n+hi

1P(n+ hm). (69)

As with the estimation of S1 we can use the Chinese remainder theorem to write the
inner sum as a sum over a single primitive residue class modulo q = W

∏k
i=1[di, ei] if

W, [d1, e1], . . . , [dk, ek] are pairwise coprime. Also note that the inner sum equals 0 unless
[dm, em] = 1. Then the inner sum contributes∑

N≤n<2N
n≡a0 (mod q)

1P(n+ hm) ≤
∑

N≤n<2N
n≡a0 (mod q)

1P(n) +O(1)

=
1

ϕ(q)

∑
N≤n<2N

1P(n) +
∑

N≤n<2N
n≡a0 (mod q)

1P(n)− 1

ϕ(q)

∑
N≤n<2N

1P(n)

+O(1)

≤ 1

ϕ(q)

∑
N≤n<2N

1P(n)

+ sup
(a,q)=1

∣∣∣∣∣∣∣∣
∑

N≤n<2N
n≡a (mod q)

1P(n)− 1

ϕ(q)

∑
N≤n<2N

1P(n)

∣∣∣∣∣∣∣∣+O(1)

=
XN

ϕ(q)
+O(E(N, q)). (70)

where

XN =
∑

N≤n<2N

1P(n); (71)

E(N, q) = 1 + sup
(a,q)=1

|∆(1P1[N,2N); a, q)|. (72)

13



Thus

S
(m)
2 =

XN

ϕ(W )

∑∗

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di, ei])

+O

 ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)

 . (73)

Looking at the error term we see that, by the restricted support of λd1,...,dk we only need

to worry about
∏k

i=1 di < R. I.E. when q ≤
∏k

i=1 diei < R2W with q being square-free.
Combinatorially, if r is square-free then there are no more than σ3k(r) choices of d1,

. . . , dk, e1, . . . , ek for which W
∏k

i=1[di, ei] = r. Then the error term contributes

� y2max(logR)2k
∑

r<R2W

µ(r)2σ3k(r)E(N, r). (74)

Trivially we see that E(N, r) ≤ 1 + 2N
ϕ(q)
� N

ϕ(q)
. Using Cauchy-Schwarz and the fact that

the primes have level of distribution θ this error term is

� y2max(logR)2k

( ∑
r<R2W

µ(r)2σ3k(r)
2 N

ϕ(r)

)1/2( ∑
r<R2W

µ(r)2E(N, r)

)1/2

� y2max(logR)2k ×N1/2 log(R2W )O(1) × N1/2

(logN)A

� y2maxN

(logN)A
(75)

for any fixed A ∈ R+ with the penultimate step coming from standard multiplicative
function means.

We treat the main term similarly to in the previous lemma and rewrite the condition
(di, ei) = 1 by multiplying through by

∑
si,j |(di,ej) µ(si,j). Again we can restrict the si,j to

be coprime to ui, uj, si,a and sb,j for all a 6= i and b 6= j and denote the summation with

respect to these restrictions by
∑∗

. Using the fact that di, ei are square-free we get a

main term of

XN

ϕ(W )

∑
u1,...,uk

(
k∏
i=1

g(ui)

)∑∗

si,j
i 6=j

 ∏
1≤l,m≤k
l 6=m

µ(sl,m)

 ∑
d1,...,dk
e1,...,ek
u|(di,ei)

si,j |(di,ej),∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ(di)ϕ(ei)

(76)

where the product of the g(ui) comes from equation (17). Now let

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dr
ri|di
dm=1

λd1,...,dk∏k
i=1 ϕ(di)

(77)

and note that this will be 0 unless rm = 1 and unless the ri are all square-free. Substituting
this into (76) we get

XN

ϕ(W )

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

g(ui)

)∑∗

si,j
i 6=j

 ∏
1≤l,m≤k
l 6=m

µ(si,j)

g(si,j)

 y(m)
a1,...,ak

y
(m)
b1,...,bk

(78)
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where aj = uj
∏

i 6=j sj,i and bj = uj
∏

i 6=j si,j for each 1 ≤ j,≤ k as before. Arguing as in
the preceding lemma we find that the contribution from si,j 6= 1 is of size

�

(
y
(m)
max

)2
N

ϕ(W ) logN

 ∑
u<R

(u,W )=1

µ(u)2

g(u)


k−1 ∑

si,j>D0

µ(si,j)
2

g(si,j)2

(∑
s≥1

µ(s)2

g(s)2

)k2−k−1

�

(
y
(m)
max

)2
ϕ(W )k−2N(logR)k−1

W k−1D0 logN
. (79)

Thus

S
(m)
2 =

XN

ϕ(W )

∑
u1,...,uk

(
y
(m)
u1,...,uk

)2
∏k

i=1 g(ui)
+O


(
y
(m)
max

)2
ϕ(W )k−2N(logR)k−1

W k−1D0


+O

(
y2maxN

(logN)A

)
(80)

for all A ∈ R+. Finally, by the prime number theorem, XN = N
logN

+ O
(

N
(logN)2

)
. This

error term contributes

�

(
y
(m)
max

)2
N

ϕ(W )(logN)2

 ∑
u<R

(u,W )=1

µ(u)2

g(u)


k−1

�

(
y
(m)
max

)2
ϕ(W )k−2N(logR)k−3

W k−3 (81)

which is absorbed in the first error term above due to logR being significantly bigger than
D0, finishing the proof. �

Lemma 14. If rm = 1 then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(W ) logR

WD0

)
(82)

Proof. Substituting (58) into the definition of y
(m)
r1,...,rk we get

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
ri|di
dm=1

(
k∏
i=1

µ(di)di
ϕ(di)

) ∑
a1,...,ak
di|ai

ya1,...,ak∏k
i=1 ϕ(ai)

. (83)

Now, by changing the order of summation, the sum over d1, . . . , dk equals∑
a1,...,ak
ri|ai

ya1,...,ak∏k
i=1 ϕ(ai)

∑
d1,...,dk
ri|di|ai
dm=1

(
k∏
i=1

µ(di)di
ϕ(di)

)
(84)

or, by replacing di by diri∑
a1,...,ak
ri|ai

ya1,...,ak∏k
i=1 ϕ(ai)

∑
d1,...,dk
di|ai/ri
dm=1

(
k∏
i=1

µ(diri)diri
ϕ(diri)

)
. (85)
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Note that, due to multiplicativity and the fundamental theorem of arithmetic∑
d|r

µ(d)d

ϕ(d)
=
∑
d|r

∏
p|d

µ(p)p

ϕ(p)

=
∏
p|r

(
1 +

µ(p)p

ϕ(p)

)

=
∏
p|r

(p− 1)− p
p− 1

=
∏
p|r

−1

p− 1
. (86)

Looking specifically at the sum over d we see that, by switching order of summation
and product, (85) equals

∏
i 6=m

∑
di|ai/ri

µ(diri)diri
ϕ(diri)

=
∏
i 6=m

µ(ri)ri
ϕ(ri)

 ∏
p|ai/ri

−1

p− 1


=
∏
i 6=m

µ(ri)ri
ϕ(ri)

µ(ai/ri)

ϕ(ai/ri)

=
∏
i 6=m

µ(ai)ri
ϕ(ai)

(87)

where the splitting and recombining of the multiplicative functions holds due to the fact
that the ai are squarefree (else the contribution is 0). Substituting this back into (85)
and then (83) gives

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)ri

) ∑
a1,...,ak
ri|ai

ya1,...,ak∏k
i=1 ϕ(ai)

∏
i 6=m

µ(ai)

ϕ(ai)
(88)

By the restricted support of ya1,...,ak we can specify that (ai,W ) = 1. This implies that
(ai/ri,W ) = 1 which, in turn, implies that either ai = ri or ai > D0ri.

For j 6= m the total contribution from aj 6= rj is

� ymax

(
k∏
i=1

g(ri)ri

) ∑
aj>D0rj

µ(aj)
2

ϕ(aj)2


 ∑

am<R
(am,W )=1

µ(aj)
2

ϕ(aj)

 ∏
1≤i≤k
i 6=j,m

∑
ri|ai

µ(ai)
2

ϕ(ai)2


� ymaxϕ(W ) logR

WD0

k∏
i=1

g(ri)ri
ϕ(ri)2

� ymaxϕ(W ) logR

WD0

(89)

by standard results on the mean values of multiplicative functions and noting that
∏

p|ri
(p−2)p
(p−1)2 =∏

p|ri
p2−2p
p2−2p+1

≤ 1. Thus the main contribution is when aj = rj for all j 6= m. This gives

y(m)
r1,...,rk

=

(
k∏
i=1

g(ri)ri
ϕ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(W ) logR

WD0

)
(90)
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due to the µ(ri)
2 term getting absorbed into g(ri). Note that

g(p)p

ϕ(p)2
= 1− 1

p2 − 2p+ 1
= 1 +O

(
p−2
)
, (91)

implying that the whole product is equal to 1+O (p−2). Furthermore, as the contribution

is zero unless
∏k

i=1 ri is coprime to W we must have p > D0. This then gives a second
error term of size

� ymax

D2
0

∑
am≤R

1

ϕ(am)

� ymax logR

D2
0

� ymaxW logR

WD0

, (92)

completing the proof. �

4.2. Choosing y. We will now define

yr1,...,rk = F

(
log r1
logR

, . . . ,
log rk
logR

)
(93)

whenever r =
∏k

i=1 ri satisfies (r,W ) = 1 and µ(r)2 = 1 for some piecewise-differentiable
function F supported on the k-simplex

Rk =

{
(x1, . . . , xk) ∈ [0, 1]k :

k∑
i=1

xi ≤ 1

}
. (94)

It is not hard to see that this choice of y satisfies all of our support conditions and we
can now develop some slightly more explicit bounds for S1 and S2 which is what we spend
the rest of this chapter doing.

Lemma 15. Define

Fmax = sup
(t1,...,tk)∈[0,1]k

(
|F (t1, . . . , tk)|+

k∑
i=1

∣∣∣∣∂F∂ti (t1, . . . , tk)
∣∣∣∣
)
. (95)

Then we have

S1 =
ϕ(W )kN(logR)k

W k+1
Ik(F ) +O

(
F 2
maxϕ(W )kN(logR)k

W k+1D0

)
. (96)

where

Ik =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1, . . . , dtk (97)

Proof. By our definition of y we clearly see that

ymax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)| ≤ Fmax (98)

so, substituting our choice of y into the expression for S1 given by Lemma 12, we get

S1 =
N

W

∑
u1,...,uk
(ui,uj)=1
(ui,W )=1

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log u1
logR

, . . . ,
log uk
logR

)2

+O

(
F 2
maxϕ(W )kN(logR)k

W k+1D0

)
. (99)
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Any integers a and b with (a,W ) = (b,W ) = 1 but (a, b) 6= 1 must share some common
prime factor which is greater than D0. Therefore we can drop the condition (ui, uj) = 1
by introducing an error of size

� F 2
maxN

W

∑
p>D0

∑
u1,...,uk<R
p|ui,uj

(ul,W )=1

k∏
l=1

µ(ul)
2

ϕ(ul)

� F 2
maxN

W

∑
p>D0

1

(p− 1)2

 ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)


2

� F 2
maxN

W

∑
p>D0

ϕ(W )k(logR)k

(p− 1)2W k

� F 2
maxϕ(W )kN(logR)k

W k+1D0

. (100)

by standard estimates on the mean values of multiplicative functions.
We now deal with the sum∑

u1,...,uk
(u,W )=1

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log u1
logR

, . . . ,
log uk
logR

)2

(101)

Let κ = 1 and suppose that

γ(p) =

{
1 , p - W
0 , p | W (102)

L =
∑
p|W

log p

p
+O(1)� logD0. (103)

Then h(p) = γ(p)
p−γ(p) = ϕ(p)−1 whenever (p,W ) = 1 and 0 otherwise so, when extended

multiplicatively, h(n) = ϕ(n)−1 whenever (n,W ) = 1 and 0 otherwise. Also note that
L > 0 and, by Chebychev’s inequality (18),∑

w≤p≤z
p-W

log p

p
− log

z

w
∼ log

z

w
− log

z

w
+O(1) = O(1). (104)

All the conditions of Lemma 40 are thus satisfied and we can apply it k times to (101)
which then equals

ϕ(W )k(logR)k

W k
Ik(F ) +O

(
F 2
maxϕ(W )k(logD0)(logR)k−1

W k

)
. (105)

as we would have

S =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
=
∏
p

p

p− γ(p)
× ϕ(p)

p

=
ϕ(W )

W
(106)
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Substituting this into (99) and using the fact that logD0 � logR
D0

gives the result. �

We get a similar result for S2

Lemma 16. Using the notation from the previous lemma

S
(m)
2 =

ϕ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) +O

(
F 2
maxϕ(W )kN(logR)k

W k+1D0

)
(107)

where

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk. (108)

Proof. By substituting our choice of y into the expression given by Lemma 14 we get

y(m)
r1,...,rk

=
∑
u<R

(u,W
∏k
i=1 ri)=1

µ(u)2

ϕ(u)
F

(
log r1
logR

, · · · , log rm−1
logR

,
log u

logR
,
log rm+1

logR
, · · · , log rk

logR

)
(109)

We can use estimates of multiplicative functions on this to bound y
(m)
max asymptotically

above by Fmaxϕ(W )(logR)/W .
Now set κ = 1 and

γ(p) =

{
1 , p - W

∏k
i=1 ri

0 , p | W
∏k

i=1 ri
(110)

L = O(1) +
∑

p|W
∏k
i=1 ri

log p

p
�

∑
p<logR

log p

p
+

∑
p|W

∏k
i=1 ri

p>logR

log logR

logR

� log logN (111)

as the p < logR sum will dominate over the second and R � N . Also h(n), defined in

the same way as in the previous lemma as γ(p)
p−γ(p) and extended multiplicatively, is now

equal to µ(n)
ϕ(n)

whenever n is coprime to W
∏k

i=1 ri..

As in the previous lemma we note that
∑

w≤p≤z(log p)/p − log(z/w) is bounded in
magnitude by a constant and so all the conditions of Lemma 40 are satisfied and we
apply it once to (109) to get

y(m)
r1,...,rk

= logR
ϕ(W )

W

(
k∏
i=1

ϕ(ri)

ri

)
F (m)
r1,...,rk

+O

(
Fmaxϕ(W ) logR

WD0

)
(112)

as, similarly,

S =
ϕ(W

∏k
i=1 ri)

W
∏k

i=1 ri
. (113)

Now, substituting this back into the result from Lemma 13, remembering that gives

S
(m)
2 =

ϕ(W )N(logR)2

W 2 logN

∑
r1,...,rk
(ri,W )=1
(ri,rj)=1
rm=1

k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2i

(
F (m)
r1,...,rk

)2

+O

(
F 2
maxϕ(W )kN(logR)k

W k+1D0

)
. (114)
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Similarly to before, we can remove the condition (ui, uj) = 1 with an error

� F 2
maxN

W

∑
p>D0

∑
u1,...,uk<R
p|ui,uj

(ul,W )=1

k∏
l=1

µ(ul)
2ϕ(ul)

2

g(ul)u2l

� F 2
maxN

W

∑
p>D0

(
(p− 1)4

(p− 2)2p4

) ∑
u<R

(u,W )=1

µ(u)2ϕ(u)2

g(u)2u2


k−1

� F 2
maxϕ(W )kN(logN)k

W k+1D0

(115)

again, by multiplicative function estimates. We now look at the sum

∑
r1,...,rm−1,rm+1,...,rk

(ri,W )=1

 ∏
1≤i≤k
i 6=j

µ(ri)
2ϕ(ri)

2

g(ri)r2i

 (F (m)
r1,...,rk

)2 (116)

and estimate it using Lemma 40 k − 1 times, on each of them r1, . . . , rm−1, rm+1, . . . , rk
in turn. We do this, as a slight correction to [13], with κ = 1 and set

γ(p) =

{
1− p2−3p+1

p3−p2−2p+1
, p - W

0 , p | W
(117)

L = O(1) +
∑
p|W

log p

p
� logD0. (118)

so h(p) = γ(p)
p−γ(p) = ϕ(p)2

g(p)p2
whenver p - W and is 0 otherwise. So h(n) = ϕ(n)2

g(n)n2 whenever

(n,W ) = 1. Also

S =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
=
∏
p-W

(
1− 1

p
+

p2 − 2p+ 1

p4 − p3 − 2p2 + 1

)(
1− 1

p

)
× ϕ(W )

W

� ϕ(W )

W
(119)

Then, as before

∑
w≤p≤z
p-W

γ(p) log p

p
− log

z

w
=

 ∑
w≤p≤z
p-W

log p

p
− log

z

w

− ∑
w≤p≤z
p-W

log p

p
× p2 − 3p+ 1

p3 − p2 − 2p+ 1

� 1 +
∑
n∈N

n−2+ε

= 1 + ζ(2− ε)
� 1 (120)

20



for all small enough ε ∈ R+. So we get

S
(m)
2 =

ϕ(W )kN(logR)k+1

W k+1 logN
J
(m)
k +O

(
F 2
maxϕ(W )kN(logN)k

W k+1D0

)
(121)

where

Jk =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1, . . . , dtm−1, dtm+1, . . . , dtk (122)

as required. �

Putting these results all together while noticing that 1/D0 → 0 yields

Proposition 17. With the notation as before, there exists some choice of λd1,...,dk such
that

S1 =
(1 + o(1))ϕ(W )kN(logR)k

W k+1
Ik(F ) (123)

S2 =
(1 + o(1))ϕ(W )kN(logR)k+1

W k+1 logN

k∑
m=1

J
(m)
k (F ) (124)

provided that neither Ik(F ) and J
(m)
k are zero for any m.

5. Bounded Gaps between Primes

We are almost in a position to prove the main results of Maynard’s paper but we first
need a preparatory result

Proposition 18. Let the primes have level of distribution θ ∈ (0, 1) and let Sk denote
the set of piecewise-differentiable functions F : [0, 1]k → R supported on the k-simplex Rk

with Ik(F ) 6= 0 and J
(m)
k 6= 0 for all m. Also let

Mk = sup
F∈Sk

(∑k
m=1 J

(m)
k (F )

Ik(F )

)
, rk =

⌈
θMk

2

⌉
. (125)

Then there are infinitely many integers n such that at least rk of the elements of n+H
are prime. In particular,

lim inf
n→∞

(pn+rk−1 − pn) ≤ max
1≤i,j≤k

(hi − hj) (126)

Proof. Let R = N θ/2−δ for some δ ∈ R+, as before. Then, by definition, we can select
some F0 ∈ Sk such that

k∑
m=1

J
(m)
k (F0) > (Mk − δ)Ik(F0) (127)

Now let ρ be some positive real number and recall that S = S2 − ρS2. Then, using
Proposition 17, we can choose λd1,...,dk such that

S =
ϕ(W )kN(logR)k

W k+1

(
logR

logN

k∑
m=1

J
(m)
k (F0)− ρIk(F0) + o(1)

)

≥ ϕ(W )kN(logR)kIk(F0)

W k+1

((
θ

2
− δ
)

(Mk − δ)− ρ+ o(1)

)
. (128)

If we set ρ = θMk

2
− ε, for some ε ∈ R, then(

θ

2
− δ
)

(Mk − δ)− ρ = ε− δ
(
θ

2
−Mk + 1

)
(129)
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which is positive for small enough δ. Then, as the fraction in (128) is also strictly positive
we must have that S > 0. So, as noted previously, there must exist an N ≤ n < 2N such
that at least bρ+ 1c primes in n + H. Also note that bρ+ 1c =

⌈
θMk

2

⌉
as long as ε is

sufficiently small.
As this holds for any interval [N, 2N) we obtain the lim inf result. �

The Mk are a ratio of k-fold integration so, as one might expect, their calculation is
rooted deep within the study of the calculus of variations. This is beyond the scope of
this work so we will have to content ourselves with taking other people’s calculations [13]
[24] at face value. Our best known values are

• M5 > 2;
• M59 > 4;
• Mk > log k + 2 log log k − 2 for sufficiently large k.

Then

Theorem 19 (Maynard-Polymath). Unconditionally we have that

lim inf
n→∞

(pn+1 − pn) ≤ 300 (130)

and, on assuming that the primes have level of distribution θ = 1− ε for every ε ∈ R+,

lim inf
n→∞

(pn+1 − pn) ≤ 12 (131)

lim inf
n→∞

(pn+2 − pn) ≤ 300. (132)

Proof. By Theorem 11 we can take θ = 1/2− ε for all ε ∈ R+. Then

θM59

2
=
M59

4
− εM59

2
(133)

can be made to exceed 1 by choosing ε to be sufficiently small, as M59 > 4. By Proposition
18 this gives

lim inf
n→∞

(pn+1 − pn) ≤ max
1≤i,j≤59

(hi − hj) (134)

for some 59 element admissible set. There exists such an admissible setH 1 whose diameter
is 300, proving the first part.

The results for the primes having level of distribution θ = 1 are almost identical except
that you get

θM5

2
=
M5

2
− εM5

2
> 1. (135)

The required 5 element admissible set is given by {0, 2, 6, 8, 12} �

In generality, we can look for a result for general prime pairs, consecutive or noncon-
secutive. Unfortunately we are currently unable to obtain an effective inequality so we
must content ourselves with an asymptotic one.

Theorem 20 (Maynard). Let m ∈ N. Then

lim inf
n→∞

(pn+m − pn)� m3e4m. (136)

1An example is given by {0, 4, 6, 16, 18, 28, 30, 34, 36, 46, 48, 58, 60, 64, 66, 70, 84, 88, 90, 94, 106, 108, 114,
118, 126, 130, 136, 144, 148, 150, 156, 160, 168, 174, 178, 184, 190, 196, 198, 204, 210, 220, 226, 228, 234, 238,
240, 244, 246, 256, 268, 270, 276, 280, 286, 288, 294, 298, 300}
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Proof. Consider the case where k is large. For this proof any constants implied by as-
ymptotic notation will be independent of k.

By the Barban-Bombieri-Vinogradov theorem, we can take θ = 1/2− ε and so, by our
explicit expression for Mk we have, for sufficiently large k:

θMk

2
≥
(

1

4
− ε

2

)
(log k − 2 log log k − 2). (137)

Set ε = 1/k and then, by Lemma 41,

θMk

2
> m (138)

if k ≥ Cm2e4m for some C, independent of k and m. Then, for any admissible set
H = h1, . . . , hk with k ≥ Cm2e4m, at least m+ 1 of the n+hi must be prime for infinitely
many integers n.

We can choose our set H to be equal to {pπ(k)+1 + · · · + pπ(k)+k}. These are all prime
and not divisible by primes less than k so, for primes p < k, pπ(k)+i 6≡ 0 (mod p). Also
note that H only has k elements so there must be an open residue class modulo any
prime greater than or equal to k. Therefore this choice of H is indeed admissible and has
diameter

pπ(k)+k − pπ(k)+1 � k log k (139)

by the prime number theorem.
Thus, if we take k = dCm2e4me, we get

lim inf
n→∞

(pn+m − pn)� k log k � m2e4m(2 logm+ 4m)� m3e4m (140)

as required. �

With a very different tone — combinatorial rather than sieve theoretic — to the rest of
his results, Maynard proved one final result concerning the density of these prime tuples.
We will denote by Pm the set of all m-tuples h1, h2, . . . , hm such that all of n+h1, n+h2,
. . . , n+ hm are simultaneously prime infinitely often. Then we have the following result.

Theorem 21 (Maynard). Let m ∈ N and let r ∈ N be sufficiently large, depending on m.
Also let A be the set of all tuples of r distinct integers. Then

#{(h1, . . . , hm) ∈ A : (h1, . . . , hm) ∈ Pm}
#{(h1, . . . , hm)}

�m 1. (141)

That is to say: a positive proportion of m-tuples are simultaneously prime infinitely
often.

Proof. Let m be fixed and define k = dCm2e4me, as before. If {h1, . . . , hk} is an admissible
set then there is a subset {h′1, . . . , h′m} ⊆ {h1, . . . , hm} such that there are infinitely many
integers n for which all of the n+ h′i are prime.

Now let A2 be the set starting with A and then, for every p ≤ k, removing all elements
of the residue class modulo p with the fewest integers. Then, for each prime, at most 1/p
elements will be removed. Thus

#A2 ≥ r
∏
p≤k

(
1− 1

p

)
�m r. (142)

as the number of primes less than or equal to k will depend only on m. Moreover, any
subset of A2 of size k will be admissible as it cannot cover all residue classes modulo p
for any prime p ≤ k. Write s = #A2 and, as r is sufficiently large, we may assume that
s > k.
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Now there are
(
s
k

)
sets H ⊆ A2 of size k. Each of these is admissible due to the fact that

A2 is admissible. Therefore these must contain at least one subset {h′1, . . . , h′m} which
are simultaneously prime infinitely often.

Conversely, any admissible set B ⊆ A2 of size m is contained in
(
s−m
k−m

)
sets H ⊆ A2 of

size k. Thus there are at least(
s

k

)(
s−m
k −m

)−1
=
s!(k −m)!(s− k)!

k!(s− k)!(s−m)!
=

m∏
i=1

s− i
k − i

�m sm �m rm (143)

admissible sets of size m which are simultaneously prime infinitely often.
As there are

(
r
m

)
≤ rm sets {h1, . . . , hm} ⊆ A we then get

#A2 ≥ r
∏
p≤k

(
1− 1

p

)
�m

rm

rm
�m r. (144)

�

6. Beyond Bounded Gaps

So we have these beautiful results but what now? The Polymath project has further
improved upon these bounds, getting 246 as the bound for consecutive primes and

lim inf
n→∞

|pn+m − pn| � me(4−52/283)m (145)

unconditionally[18]. Furthermore, if we consider how we arrived at the Barban-Bombieri-
Vinogradov theorem then there is the following natural generalisation to the Elliott-
Halberstam conjecture:

Conjecture 22 (Generalised Elliott-Halberstam). Let xε � M,N � x1−ε be such that
x�MN � x and let α, β be coefficient sequences at scale M and N respectively. Then∑

q≤xθ
sup (a, q) = 1 |∆(α ? β; a, q)| � x(log x)−A (146)

for any fixed A ∈ R+ and for all θ ∈ (0, 1).

Under the assumption that this holds, Polymath have proven that we have bounded
gaps between primes of size 6 [18].

Also, if we suppose that we have proved that any admissible set of size k has infinitely
many translates that contain ρ primes then we can verify Conjecture 1 in a few specific
cases.

Lemma 23. Let k ≥ 59 and d =
∏

p≤k p. Then, for every N ∈ N,

{dN, 2dN, . . . , (k − 1)dN} (147)

contains at least one Polignac number.

Proof. Consider the set

H = {0, dN, 2dN, . . . , (k − 1)dN}. (148)

If we take any prime p ≤ k then, for all h ∈ H, we have p|h. Id est

h ≡ 0 (mod p) (149)

for all p ≤ k. Furthermore, if p > k then H cannot occupy all residue classes modulo p
as there are only k elements. Therefore H is admissible.
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As k is large enough we know that there are infinitely many translates of H which
contain two primes infinitely often. Therefore there is some pair (n1dN, n2dN) which are
simultaneously prime infinitely often, and the difference between these must be one of the
elements of the set (147). �

Let q ∈ N and consider the sequence given by n ≡ 0 (mod q). This has a subsequence
given by n ≡ 0 (mod qd) where d = 59#. This, in turn, has the subsequence

(qd, 2qd, . . . , 58qd), (59qd, 2× 59qd, . . . , 58× 59qd), . . . (150)

where each of the parenthesised terms contains a Polignac number by the above theorem
so we have proven [10]:

Corollary 24. There are infinitely many Polignac numbers on any arithmetic progression
of the form

q, 2q, . . . (151)

for all q ∈ N.

As there is only one even prime number we cannot have odd Polignac numbers, and
we will call the arithmetic progressions containing only odd numbers trivial, but we then
have the question as to whether the following statement is true.

Conjecture 25. Every non-trivial arithmetic progression contains infinitely many Polignac
numbers.

Theorem 23 implies the conclusion of Pintz’ (Theorem 3) but in a more effective form.
We can reduce the value of k on improvement in our knowledge of the Mk values and,
specifically, under the assumption of the Elliott-Halberstam conjecture we know that one
of 30, 60, 90 or 120 is a Polignac number and, under the generalised Elliott-Halberstam
conjecture, one of 6 or 12 is a Polignac number. This very clearly shows.

Theorem 26. Polignac’s conjecture is true if and only if every admissible tuple of size 2
is prime infinitely often.

By using Pintz’ result that every interval of the form [m,m + C] contains a Polignac
number if C is large enough we can calculate a lower bound for the upper asymptotic
density of the set of Polignac numbers P .

σ(P) = lim sup
n→∞

|P ∩ [0, n]|
n

≥ lim sup
n→∞

∣∣∣⋃n/c
i=1P ∩ [(i− 1)C, iC]

∣∣∣
n

. (152)

All of the intersections above are non-empty but they might count some Polignac numbers
twice so this is

≥ lim sup
n→∞

∑n/c
i=1 1

2n

≥ lim sup
n→∞

n/c− 1

2n

=
1

2c
. (153)

So the upper asymptotic density is positive and we can apply Szemerédi’s theorem [19]
[25] to show [10]
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Theorem 27 (Hanson, 2014). The set of Polignac numbers contains arbitrarily long
arithmetic progressions.

This has the following natural generalisation:

Conjecture 28. The Polignac numbers contain infinitely long arithmetic progressions.

One might also ask whether the Selberg sieve techniques used in the proof of bounded
gaps have applications to other problems related to the distribution of primes such as the
binary Goldbach conjecture. Analytic number theory is certainly advancing quickly and
only time can tell us what the limits of these techniques are.

A. Large Sieve Theorems

Here we gather together a collection of results needed to prove the large sieve inequality
and the Barban-Bombieri-Vinogradov theorem.

Lemma 29 (Sobolev-Gallagher Inequality). Let g have a continuous derivative on [0, 1].
Then

g

(
1

2

)
≤
∫ 1

0

(
|g(t)|+ 1

2
|g′(t)|

)
dt. (154)

Proof. Using integration by parts∫ 1

0

g(t)dt = [tg(t)]10 −
∫ 1

0

tg′(t)dt = g(t)−
∫ 1

0

tg′(t)dt (155)

and, by the fundamental theorem of calculus

g(x) +

∫ 1

x

g′(t)dt = g(x) + g(1)− g(x) = g(1) (156)

for x ∈ [0, 1]. Substituting out g(1) and rearranging to put things in terms of g(x) we
find that

g(x) =

∫ 1

0

g(t)dt+

∫ x

0

tg′(t)dt+

∫ 1

x

(t− 1)g′(t)dt. (157)

Setting x = 1/2 gives∣∣∣∣g(1

2

)∣∣∣∣ ≤ ∫ 1

0

|g(t)|dt+

∫ 1/2

0

t|g′(t)|dt+

∫ 1

1/2

(t− 1)|g′(t)|dt

≤
∫ 1

0

|g(t)|dt+

∫ 1/2

0

1

2
|g′(t)|dt+

∫ 1

1/2

1

2
|g′(t)|dt

≤
∫ 1

0

|g(t)|dt+
1

2

∫ 1

0

|g′(t)|dt

≤
∫ 1

0

(
|g(t)|+ 1

2
|g′(t)|

)
dt (158)

due to the fact that t and 1 − t are less than or equal to 1/2 on [0, 1/2] and [1/2, 1]
respectively. �

Lemma 30 (Parseval’s Identity). Let f be a function with Fourier series f(x) = 1
2a

∑∞
n=−∞ cne(nx)

where cn =
∫ a
−a f(x)e(−nx)dx. Then

1

2a

∞∑
n=−∞

|cn|2 =

∫ a

−a
|f(x)|2dx (159)

whenever a = q/2 for some q ∈ Z.
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Proof. Let SN(x) = 1
2a

∑N
n=−N cne(nx). Then, if ‖ · ‖2 is the norm over L2[−a, a]:

‖f − SN‖2 = 〈f, f〉 − 〈SN , f〉∗ − 〈SN , f〉+ 〈SN , SN〉

= ‖f‖2 −
∫ a

−a

1

2a

N∑
n=−N

cne(−nx)f(x)dx−
∫ a

−a

1

2a

N∑
n=−N

cne(nx)f(x)dx

+

∫ a

−a

1

2a

N∑
m=−N

cme(mx)
1

2a

N∑
n=−N

cne(−nx). (160)

As all of our sums are finite they converge and we can exchange the order of summation
and integration to give

‖f‖2 − 1

2a

N∑
n=−N

cncn −
1

2a

N∑
n=−N

cncn +
1

4a2

N∑
m=−N

N∑
n=−N

cmcn

∫ a

−a
e((m− n)x)dx. (161)

If m 6= n then m− n = A ∈ Z∗ and∫ a

−a
e(Ax)dx =

1

2πiA
[e(Ax)]ax=−a = 0 (162)

whenever a is of the form q/2 for some integral q. However, if m = n, then the integrand
is 1 and so the integral is 2a giving

‖f − SN‖ =

∫ a

−a
|f(x)|2 − 1

2a

N∑
n=−N

|cn|2. (163)

To finish the proof we simply note that SN → f as n → ∞ implying that ‖f − SN‖ →
0. �

Theorem 31 (Gallagher’s Large Sieve Inequality). Let α1, α2, . . . , αJ ∈ R and a1, a2, . . . ,
aN ∈ C be two finite sequences with

δ := min
j 6=k
‖αj − αk‖ 6= 0 (164)

where ‖a‖ is the distance from a to the nearest integer. Then

J∑
j=1

∣∣∣∣∣
M+N∑
n=M+1

ane(nαj)

∣∣∣∣∣
2

≤
(
πN + δ−1

) M+N∑
n=M+1

|an|2. (165)

Proof. Let g(t) = f(α + δ(t− 1
2
)) and suppose that f has a continuous derivative. Then

g has a continuous derivative and, by the Sobolev-Gallagher inequality:

f(α) = g

(
1

2

)
≤
∫ 1

0

(∣∣∣∣f (α + δ

(
t− 1

2

))∣∣∣∣+
1

2

∣∣∣∣δf ′(α + δ

(
t− 1

2

))∣∣∣∣ dt)
=

∫ α+δ/2

α−δ/2

(
δ−1|f(u)|+ 1

2
|f ′(u)|

)
du. (166)

Let S(α) =
∑N

n=−N ane(αn) and set f(α) = S(α)2. This has a continuous derivative so

J∑
n=1

|S(αj)|2 ≤
J∑
n=1

∫ α+δ/2

αj−δ/2
(δ−1|S(u)|2 + |S(u)S ′(u)|)du

≤
∫ 1

0

(δ−1|S(u)|2 + |S(u)S ′(u)|)du (167)
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as the intervals [αj − δ/2, αj + δ/2] are non-overlapping modulo 1 and S is periodic with
period 1. By the Cauchy-Schwarz inequality∫ 1

0

|S(u)S ′(u)|du ≤
(∫ 1

0

|S(u)|2du
)1/2(∫ 1

0

|S ′(u)|2du
)1/2

. (168)

On changing variables we see that∫ 1

0

|S(u)|2du =

∫ 1/2

−1/2

∣∣∣∣S (u+
1

2

)∣∣∣∣2 du. (169)

Calculating directly we get

S

(
u+

1

2

)
=

N∑
n=−N

cne

((
u+

1

2

)
n

)
=

N∑
n=−N

(
ane

(
1

2
n

))
e(un) (170)

and

S ′
(
u+

1

2

)
=

N∑
n=−N

2πin

(
ane

(
1

2
n

))
e(un). (171)

Using Parseval’s identity with a = 1/2 gives∫ 1/2

−1/2

∣∣∣∣S (u+
1

2

)∣∣∣∣2 =
N∑

n=−N

∣∣∣∣ane(1

2
n

)∣∣∣∣2 =
N∑

n=−N

|an|2 (172)

and ∫ 1/2

−1/2

∣∣∣∣S ′(u+
1

2

)∣∣∣∣2 =
N∑

n=−N

∣∣∣∣2πinane(1

2
n

)∣∣∣∣2 = 4π2

N∑
n=−N

|nan|2. (173)

Putting these values back into (167) and using Parseval’s identity again we get

J∑
j=1

|S(αj)|2 ≤
∫ 1/2

−1/2
δ−1|S(u)|2du+

(∫ 1/2

−1/2

∣∣∣∣S (u+
1

2

)∣∣∣∣
)1/2(∫ 1/2

−1/2

∣∣∣∣S ′(u+
1

2

)∣∣∣∣
)1/2

≤ δ−1
N∑

n=−N

|an|2 + 2π

(
N∑

n=−N

|an|2
)1/2( N∑

n=−N

|nan|2
)1/2

≤ (δ−1 + 2πN)
N∑

n=−N

|an|2. (174)

Note that 2[N/2] ≤ N so, defining any extra an to be 0 if necessary:

J∑
j=1

∣∣∣∣∣
M+N∑
n=M+1

ane ((αj − [N/2]−M − 1)n)

∣∣∣∣∣
2

=
J∑
j=1

∣∣∣∣∣∣
[N/2]∑

n=−[N/2]

an+[N/2]+M+1e(nαj)

∣∣∣∣∣∣
≤ (δ−1 + πN)

[N/2]∑
n=−[N/2]

|an+[N/2]+M+1|2

≤ (δ−1 + πN)
M+N∑
n=M+1

|an|2 (175)

completing the proof. �
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Lemma 32 (Heath-Brown Identity). Let K be some natural number. Then

Λ =
K∑
j=0

(−1)j
(
K

j

)
µ?K−j ? µj≤ ? 1?K−1 ? log (176)

on [1, 2x], where µ≤ is the Möbius function restricted to [1, (2x)1/K ] and f ?n is the n-fold
convolution of f with itself.

Proof. Using the identities that Λ = µ ? log and δ = µ ? 1N, where δ(n) = 1n=1 is the
identity for Dirichlet convolutions, we deduce that

Λ = µ?K ? 1?K−1N ? log . (177)

Writing µ = µ≤ + µ> where µ≤ and µ> represent the restriction of the Möbius function
to
[
1, (2x)1/K

]
and

(
(2x)1/K ,∞

)
respectively, we notice that the K-fold convolution µ?K>

vanishes on [1, 2x] and, in particular,

µ?K> ? 1?K−1N ? log = 0 (178)

on [1, 2x]. Now, as Dirichlet convolutions distribute over addition, we can generalise the
binomial theorem to Dirichlet convolutions. Specifically:

µ?K> = (µ− µ≤)?K

=
K∑
j=0

(−1)j
(
K

j

)
µ?K−j ? µ?j≤ . (179)

Putting this back into equation (178) we get

0 =
K∑
j=0

(−1)j
(
K

j

)
µ?K−j ? µj≤ ? 1?K−1N ? log (180)

on [1, 2x]. But the j = 0 term is simply Λ so the lemma follows by using the fact that
Dirichlet convolution is a symmetric operation and remembering the cancellation identity
µ ? 1N = δ. �

B. Coefficient Sequences

Definition 33. A coefficient sequence is a finitely-supported sequence α : N → R such
that

|α(n)| � σ(n)O(1)LO(1) (181)

Definition 34. If α is a coefficient sequence and a (mod q) is a primitive residue class
then the signed discrepancy ∆(α; a, q) of α in the sequence a (mod q) is given by

∆(α; a, q) =
∑

n≡a (mod q)

α(n)− 1

ϕ(q)

∑
(n,q)=1

α(n) (182)

Definition 35. A coefficient sequence α is said to be at scale N for some N ≥ 1 if it is
supported on some interval of the form [(1−O(L−A0))N, (1 +O(L−A0))N ].

Definition 36. A coefficient sequence α at scaleN is said to obey a Siegel-Walfisz theorem
if

∆(α1(·,q)=1; a, r)� σ(qr)O(1)NL−A (183)

for any q, r ≥ 1, A ∈ R+ and any primitive residue class a (mod r).
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Lemma 37. Let α be a coefficient sequence and let C ∈ R+. Then∑
d≤xC
|α(d)|C � xCLx. (184)

Proof. Beyond the scope of this work but can be found in [23]. �

Proposition 38. Let α, β be coefficient sequences and let a be a primitive residue class
modulo q. Then

∆(α ? β; a, q) =
1

ϕ(q)

∑
χ 6=χ0 (mod q)

χ(a)

(
∞∑
m=1

(αχ)(m)

)(
∞∑
n=1

(βχ)(n)

)
. (185)

Proof. By expanding out the sums and remembering that Dirichlet characters are totally
multiplicative: (

∞∑
m=1

(αχ)(m)

)(
∞∑
n=1

(βχ)(n)

)
=

∞∑
m=1

∞∑
n=1

α(m)β(n)χ(mn). (186)

Changing the first sum to be over k = mn this is equal to
∞∑
k=1

χ(k)
∑
d|k

α(d)β(k/d) =
∞∑
k=1

(α ? β)(k)χ(k). (187)

Thus the right-hand side of (185) becomes

1

ϕ(q)

∑
χ (mod q)

χ(a)
∞∑
k=1

(α ? β)(k)χ(k)− 1

ϕ(q)

∞∑
k=1

(α ? β)(k)χ0(k). (188)

The primitive Dirichlet character modulo q is equal to 1(·,q) so the right-most term is

1

ϕ(q)

∑
(k,q)=1

(α ? β)(k) (189)

and the left-most term is, upon switching the order of summation and recalling the or-
thogonality relations for Dirichlet characters

∞∑
k=1

(α ? β)(k)
1

ϕ(q)

∑
χ (mod q)

χ(a)χ(k) =
∑

k≡a (mod q)

(α ? β)(k). (190)

Summing these last two equalities gives the required result. �

We will use these results to prove a generalised form of the Barban-Bombieri-Vinogradov
theorem

Theorem 39 (Generalised BBV). Let M and N be such that x�MN � x and xε �M,
N � x1−ε for some fixed ε ∈ (0, 1). Let α, β be coefficient sequences at scale M,N
respectively. Suppose also that β obeys a Siegel-Walfisz theorem, then∑

q≤x1/2−o(1)
sup

a∈(Z/qZ)∗
|∆(α ? β; a, q)| � xL−A (191)

for some sufficiently slowly decaying o(1) and any A ∈ R+.

Proof. Set Q = x1/2−ε then, by the overspill principle (Lemma ??), it is sufficient to show
that ∑

q≤Q

sup
a∈(Z/qQ)∗

|∆(α ? β; a, q)| � xL−A. (192)
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Using Proposition 38, the left-hand side is simply

∑
q≤Q

sup
a∈(Z/qZ)∗

∣∣∣∣∣∣ 1

ϕ(q)

∑
χ 6=χ0 (mod q)

χ(a)

(
∞∑
m=1

(αχ)(m)

)(
∞∑
n=1

(βχ)(n)

)∣∣∣∣∣∣ . (193)

By the definition of imprimitivity we can rewrite every character in the above sum in
the form χ(n) = χ′(n)1(n,e)=1 where q = de and χ′ is a primitive Dirichlet character with
conductor d > 1. Then the above expression becomes

∑
e≤Q

∑
1<d≤Q/e

sup
a∈(Z/qZ)∗

∣∣∣∣∣∣ 1

ϕ(de)

∑∗

χ 6=χ0 (mod d)

χ(a)

(
∞∑
m=1

(αχ1(·,e)=1)(m)

)(
∞∑
n=1

(βχ1(·,e)=1)(n)

)∣∣∣∣∣∣ .
(194)

Now, using ϕ(de) ≥ ϕ(d)ϕ(e) we can split up the totient function term. Furthermore, if
we define Se to be equal to

∑
1<d≤Q/e

sup
a∈(Z/qZ)∗

∣∣∣∣∣∣ 1

ϕ(d)

∑∗

χ 6=χ0 (mod d)

χ(a)

(
∞∑
m=1

(αχ1(·,e)=1)(m)

)(
∞∑
n=1

(βχ1(·,e)=1)(n)

)∣∣∣∣∣∣
(195)

then (194) is equal to

∑
e≤Q

1

ϕ(e)
Se � L sup

e≤Q
Se. (196)

Working with Se itself shows that, by the triangle inequality and the fact that the absolute
value of any Dirichlet character is at most 1, Se is no more than

∑
1<d≤Q/e

1

ϕ(d)

∑∗

χ 6=χ0 (mod d)

∣∣∣∣∣
(
∞∑
m=1

(αχ1(·,e)=1)(m)

)(
∞∑
n=1

(βχ1(·,e)=1)(n)

)∣∣∣∣∣ . (197)

We now break apart the sum over d by dyadic decomposition. I.E. using the observation
that

∑
1<d≤Q/e

ad ≤
[log2Q/e]∑
k=0

∑
2k<d≤2k+1

ad

≤ L sup
D≤Q

∑
D<d≤2D

ad (198)

Putting these all together shows that (194) is asymptotically less than

LO(1) sup
e,D≤Q

∑
D<d≤2D

1

ϕ(d)

∑∗

χ 6=χ0 (mod d)

∣∣∣∣∣
(
∞∑
m=1

(αχ1(·,e)=1)(m)

)(
∞∑
n=1

(βχ1(·,e)=1)(n)

)∣∣∣∣∣ . (199)
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Fix some C ∈ R+ and suppose that D ≤ LC . Then, splitting the sum over the primitive
residue classes∣∣∣∣∣∑

n

β(n)χ(n)1(n,e)=1

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

a∈(Z/dZ)∗

∑
n≡a (mod d)

β(n)χ(n)1(n,e)=1 −
1

ϕ(d)

∑
(n,d)=1

β(n)χ(n)1(n,e)=1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(n,d)=1

β(n)χ(n)1(n,e)=1

∣∣∣∣∣∣
≤ ϕ(d) max

a∈(Z/dZ)∗

∣∣∆(βχ1(·,e)=1; a, d)
∣∣+

∣∣∣∣∣∣
∑

(n,d)=1

β(n)χ(n)1(n,e)=1

∣∣∣∣∣∣ . (200)

We treat the first term using the Siegel-Walfisz condition (183) along with the fact that
ϕ(d)� d� LC and the second using Lemma 37 to obtain∣∣∣∣∣∑

n

β(n)χ(n)1(n,e)=1

∣∣∣∣∣� σ(de)O(1)NL−A′+O(C). (201)

for any A′ ∈ R+. Note that, because A′ can take any positive value, we can ignore any bounded
contribution of L. So, multiplying this through by∣∣∣∣∣∑

n

α(n)χ(n)1(n,e)=1

∣∣∣∣∣�MLO(1), (202)

and using the fact that MN � x we get∣∣∣∣∣∑
n

β(n)χ(n)1(n,e)=1

∣∣∣∣∣� xL−A′ sup
e≤Q
D≤LC

∑
D<d≤2D

1

ϕ(d)

∑∗

χ 6=χ0 (mod d)

τ(de)O(1)

� xL−A′ sup
e≤Q
D≤LC

∑
D<d≤2D

τ(de)O(1)

� xL−A′ (203)

for all A′ ∈ R+, by multiplicative function means. This is acceptable so we deal with the case
where D > LC . Then, again by Lemma 37∑

m

|α(m)1(m,e)=1|2 �MLO(1) (204)∑
n

|β(n)1(n,e)=1|2 � NLO(1). (205)

Using the large sieve inequality and the Cauchy-Schwarz inequality gives us

T :=
∑

D<d≤2D

1

ϕ(d)

∑∗

χ (mod ()d)

∣∣∣∣∣
(∑

m

α(m)χ(m)1(m,e)=1

)(∑
n

β(n)χ(n)1(n,e)=1

)∣∣∣∣∣
≤

∑
D<d≤2D

1

ϕ(d)

 ∑∗

χ (mod d)

∣∣∣∣∣∑
m

α(m)χ(m)1(m,e)=1

∣∣∣∣∣
2
1/2 ∑∗

χ (mod d)

∣∣∣∣∣∑
n

β(n)χ(n)1(n,e)=1

∣∣∣∣∣
2
1/2

≤

 ∑
D<d≤2D

1

ϕ(d)

∑∗

χ (mod d)

∣∣∣∣∣∑
m

α(m)χ(m)1(m,e)=1

∣∣∣∣∣
2
1/2 ∑

D<d≤2D

1

ϕ(d)

∑∗

χ (mod d)

∣∣∣∣∣∑
n

β(n)χ(n)1(n,e)=1

∣∣∣∣∣
2
1/2

�
(
M +D2

D

)1/2(
N +D2

D

)1/2
(∑

m

|α(m)1(m,e)=1|2
)1/2(∑

n

|β(n)1(n,e)=1|2
)1/2
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� L
O(1)

D

(
MN(M +D2)(N +D2)

)1/2
. (206)

Again, using the fact that MN � x we get

T � x1/2LO(1)

D
(MN +MD2 +ND2 +D4)1/2

≤ x1/2LO(1)

D
((MN)1/2 +M1/2D +N1/2D +D2)

� xLO(1)

(
1

D
+N−1/2 +M−1/2 + x−1/2D

)
. (207)

But LC ≤ D ≤ Q = x1/2−ε so

T � xLO(1)
(
L−C + x−ε + x−ε + x−ε

)
� xLO(1)−C (208)

which, for large enough C, is � xL−A for all A. Substituting both these values back into
(199) will only multiply by a bounded power of L which we can safely ignore. This proves the
result. �

C. Assorted Lemmata

Lemma 40. Let κ,A1, A2, L ∈ R+ and let γ be a multiplicative function satisfying

0 ≤ γ(p)

p
≤ 1− A1 (209)

and

− L ≤
∑
w≤p≤z

γ(p) log p

p
− κ log

z

w
≤ A2 (210)

for any 2 ≤ w ≤ z. Also let h be the totally multiplicative function defined on primes by

h(p) =
γ(p)

p− γ(p)
(211)

and, finally, let G : [0, 1]→ R be a piecewise-differentiable function with

Gmax = sup
t∈[0,1]

(|G(t)| − |G′(t)|). (212)

Then∑
d<z

µ(d)2h(d)G

(
log d

log z

)
= S

(log z)κ

Γ(κ)

∫ 1

0

G(x)xκ−1dx+OA1,A2,κ(SLGmax(log z)κ−1)

(213)
where

S =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)κ
(214)

is the singular series and the ’O’ term is independent of G and L.

Proof. Found in [7] with slight notational changes. �

Lemma 41. Let k,m ∈ N and suppose there exists some constant C ∈ R+, independent
of m and k, such that k ≥ Cm2e4m. Then(

1

4
− 1

2k

)
(log k − 2 log log k − 2) > m. (215)
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Proof. Suppose that the lemma does not hold. Then there is some k ≥ Cm2e4m with

logm ≥ log

(
1

4
− 1

2k

)
+ log(log k − 2 log log k − 2)

= log

(
1

4
− 1

2k

)
+ log log k + log

(
1− 2

log log k

log k
− 2

log k

)
. (216)

Now log k ≥ logC + 2 logm+ 4m so

0 ≥ logC + 2

(
log

(
1

4
− 1

2k

)
+ log log k + log

(
1− 2

log log k

log k
− 2

log k

))
+

(
1− 2

k

)
(log k + 2 log log k − 2)− log k

= logC + 2

(
log

(
1

4
− 1

2k

)
+ log

(
1− 2

log log k

log k
− 2

log k

)
− 1

)
− 2

k
(log k + 2 log log k − 2). (217)

This is continuous and tends to a finite limit and so is bounded. Thus we can increase
C sufficiently to violate this inequality for all k, yielding a contradiction. This implies
that the lemma must hold. �
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