Prime Numbers How Far Apart Are They?

Stijn S.C. Hanson

June 13, 2014

Distribution of Prime Numbers

- Behaviour of $\pi(x)$
- Behaviour of π(x; a, q)

2 Prime Constellations

- Distance Between Neighbouring Primes
- Beyond Bounded Gaps
- 3 Diophantine Approximation
 - Classical Theory
 - Relation to Bounded Gaps

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Distribution of Prime Numbers

- Behaviour of $\pi(x)$
- Behaviour of π(x; a, q)

2 Prime Constellations

- Distance Between Neighbouring Primes
- Beyond Bounded Gaps
- 3 Diophantine Approximation
 - Classical Theory
 - Relation to Bounded Gaps

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Basic Definitions

• A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;

- 17 ▶

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define π(x) to be the number of prime numbers less than or equal to x and p_n to be the nth prime number;

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define π(x) to be the number of prime numbers less than or equal to x and p_n to be the nth prime number;
- Two integers *n* and *m* are said to be coprime if their greatest common divisor is 1. I.e. if (n, m) = 1;

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define π(x) to be the number of prime numbers less than or equal to x and p_n to be the nth prime number;
- Two integers *n* and *m* are said to be coprime if their greatest common divisor is 1. I.e. if (n, m) = 1;
- The number of coprime integers to n which do not exceed n is denoted by φ(n).

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$$

< □ > <

3) 3

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$$
$$\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\frac{x}{\log x}e^{-a\sqrt{\log x}}\right)$$

< □ > <

3) 3

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$$
$$\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\frac{x}{\log x}e^{-a\sqrt{\log x}}\right)$$
$$\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\sqrt{x}\log x\right)$$
(RH)

< □ > <

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$$
$$\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\frac{x}{\log x}e^{-a\sqrt{\log x}}\right)$$
$$\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\sqrt{x}\log x\right) \qquad (RH)$$

Putting $x + \log x$ into the top characterisation tells us that the asymptotic gap between primes is $\log x$.

▲ 同 ▶ - ▲ 三

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Primes in Short Intervals

Theorem (Heath-Brown, 1988)

Let $\theta \in (7/12, 1)$. Then

$$\pi(x+x^{ heta})-\pi(x)\sim rac{x^{ heta}}{\log x}$$

< 4 → < 三

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Primes in Short Intervals

Theorem (Heath-Brown, 1988)

Let $\theta \in (7/12, 1)$. Then

$$\pi(x+x^{\theta})-\pi(x)\sim \frac{x^{\theta}}{\log x}$$

Theorem (Maynard, 2014)

Let x, y > 1, possibly dependent on each other. Then there are $\gg x \exp(-\sqrt{\log x})$ integers $x_0 \in [x, 2x]$ such that

$$\pi(x_0 + y) - \pi(x_0) \gg \log y.$$
 (1)

< 13 ▶ <

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Arithmetic Progressions

Theorem (Dirichlet, 1837)

Let a, $q \in \mathbb{N}$ be two coprime integers. Then the arithmetic progression

$$a, a+q, a+2q, \ldots$$

contains infinitely many prime numbers.

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Arithmetic Progressions

Theorem (Dirichlet, 1837)

Let a, $q \in \mathbb{N}$ be two coprime integers. Then the arithmetic progression

$$a, a+q, a+2q, \ldots$$

contains infinitely many prime numbers.

Theorem (Green-Tao, 2004)

The primes contain arbitrarily long arithmetic progressions.

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x; a, q)$

Theorem (Barban-Bombieri-Vinogradov, 1961-1987-1965)

For any small ϵ and real A

$$\sum_{q \leq x^{1/2-\epsilon}} \sup_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \left| \pi(x; a, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x (\log x)^{-A}.$$

< □ > <

Behaviour of $\pi(x)$ Behaviour of $\pi(x; a, q)$

Growth of $\pi(x; a, q)$

Theorem (Barban-Bombieri-Vinogradov, 1961-1987-1965)

For any small ϵ and real A

$$\sum_{q \leq x^{1/2-\epsilon}} \sup_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \left| \pi(x; a, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x (\log x)^{-A}.$$

Conjecture (Elliott-Halberstam, 1968)

For all $\theta \in (0, 1)$

$$\sum_{q \leq x^{\theta}} \sup_{\mathsf{a} \in (\mathbb{Z}/q\mathbb{Z})^{*}} \left| \pi(x; \mathsf{a}, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x (\log x)^{-A}.$$

If this holds for some $\theta \in (0, 1)$ then we say that the primes have level of distribution θ .

Distribution of Prime Numbers

- Behaviour of $\pi(x)$
- Behaviour of $\pi(x; a, q)$

2 Prime Constellations

- Distance Between Neighbouring Primes
- Beyond Bounded Gaps
- 3 Diophantine Approximation
 - Classical Theory
 - Relation to Bounded Gaps

Distance Between Neighbouring Primes Beyond Bounded Gaps

____ ▶

Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n be the nth prime number. Then

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=\infty.$$

Distance Between Neighbouring Primes Beyond Bounded Gaps

Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n be the nth prime number. Then

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=\infty.$$

Theorem (Golston-Pintz-Yildirim, 2006)

$$\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=0$$

Distance Between Neighbouring Primes Beyond Bounded Gaps

< □ > < 同 > < 三

Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n be the nth prime number. Then

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=\infty.$$

Theorem (Golston-Pintz-Yildirim, 2006)

$$\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=0$$

Theorem (Banks-Freiman-Maynard, 2014)

The set of limit points of the sequence of normalised prime gaps contains 2% of all non-negative real numbers.

Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n\to\infty}(p_{n+1}-p_n)=2$$

A 1

Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n\to\infty}(p_{n+1}-p_n)=2$$

Theorem (Zhang, 2013)

$$\liminf_{n\to\infty}(p_{n+1}-p_n) \le 70,000,000$$

< A > <

Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n\to\infty}(p_{n+1}-p_n)=2$$

Theorem (Maynard-Zhang, 2013)

 $\liminf_{n\to\infty}(p_{n+1}-p_n)\leq 600$

< 4 1 → 4 三

Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n\to\infty}(p_{n+1}-p_n)=2$$

Theorem (Maynard-Polymath-Zhang, 2013-2014)

 $\liminf_{n\to\infty}(p_{n+1}-p_n)\leq 246$

< 17 ▶

Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n\to\infty}(p_{n+1}-p_n)=2$$

Theorem (Maynard-Polymath-Zhang, 2013-2014)

$$\liminf_{n\to\infty}(p_{n+1}-p_n)\leq 246$$

Theorem (Maynard, 2014)

$$\liminf_{n\to\infty}(p_{n+m}-p_n)\ll m^3e^{4m}$$

Generalisations of the Bounded Gaps Conjecture

Conjecture (Polignac, 1843)

Let k be any positive integer. Then, for infinitely many $n \in \mathbb{N}$, we have that $p_{n+1} - p_n = 2k$. If this holds then 2k is called a Polignac number.

Generalisations of the Bounded Gaps Conjecture

Conjecture (Polignac, 1843)

Let k be any positive integer. Then, for infinitely many $n \in \mathbb{N}$, we have that $p_{n+1} - p_n = 2k$. If this holds then 2k is called a Polignac number.

Conjecture (Dickson, 1904)

Let $a_1 + b_1 n, a_2 + b_2 n, ..., a_k + b_k n$ be a finite set of linear forms with integer coefficients where $b_i \ge 1$ for all $1 \le i \le n$. Then, if there is no positive integer m divide all the products $\prod_{i=1}^k f_i(n)$ for all integers n then there exist infinitely many natural numbers n such that all of the linear forms are prime.

Partial Results Towards Polignac's Conjecture

Theorem (Pintz, 2013)

There is some ineffective constant c such that every interval of the form [m, m + c] contains a Polignac number.

Partial Results Towards Polignac's Conjecture

Theorem (Pintz, 2013)

There is some ineffective constant c such that every interval of the form [m, m + c] contains a Polignac number.

Corollary (Hanson, 2014)

The set of Polignac numbers contains arbitrarily long arithmetic progressions.

Partial Results Towards Polignac's Conjecture

Theorem (Pintz, 2013)

There is some ineffective constant c such that every interval of the form [m, m + c] contains a Polignac number.

Corollary (Hanson, 2014)

The set of Polignac numbers contains arbitrarily long arithmetic progressions.

Theorem (Hanson, 2014)

Every arithmetic progression of the form q, 2q, 3q,... contains infinitely many Polignac numbers.

Classical Theory Relation to Bounded Gaps

Distribution of Prime Numbers

- Behaviour of $\pi(x)$
- Behaviour of $\pi(x; a, q)$

2 Prime Constellations

- Distance Between Neighbouring Primes
- Beyond Bounded Gaps

Oiophantine Approximation

- Classical Theory
- Relation to Bounded Gaps

Classical Theory Relation to Bounded Gaps

A D

Approximating Reals with Rationals

Theorem (Dirichlet, 1834)

Let x be a real number. Then there are infinitely many coprime m, n such that

$$\left|x-\frac{m}{n}\right| < \frac{1}{n^2}$$

Classical Theory Relation to Bounded Gaps

Approximating Reals with Rationals

Theorem (Hurwitz, 1891)

Let x be a real number. Then there are infinitely many coprime m, n such that

$$\left|x-\frac{m}{n}\right| < \frac{1}{\sqrt{5}n^2}$$

Classical Theory Relation to Bounded Gaps

Definition (Badly Approximable Number)

A number x is called badly approximable if there is some $c \in \mathbb{R}^+$ such that

$$\left|x-\frac{m}{n}\right| \geq \frac{c}{n^2}$$

for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. The set of all badly approximable is written Bad.

Classical Theory Relation to Bounded Gaps

Definition (Badly Approximable Number)

A number x is called badly approximable if there is some $c \in \mathbb{R}^+$ such that

$$\left|x-\frac{m}{n}\right| \geq \frac{c}{n^2}$$

for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. The set of all badly approximable is written Bad.

Theorem (Jarnik, 1928)

Bad has Hausdorff dimension 1 and measure 0.

Classical Theory Relation to Bounded Gaps

Prime Approximation

Theorem (Bounded Gaps Conjecture)

Fix $N \in \mathbb{N}$. Then there are infinitely many prime numbers p, q such that

$$|p-q| \leq N$$

Classical Theory Relation to Bounded Gaps

Prime Approximation

Theorem (Bounded Gaps Conjecture)

Fix $N \in \mathbb{N}$. Then there are infinitely many prime numbers p, q such that

$$|p-q| \leq N$$

Conjecture (Hanson-Haynes)

Fix some $\alpha \in \mathbb{R}^+$ and $N \in \mathbb{R}_{\geq 0}$. Then there are infinitely many prime numbers p, q such that

$$|\boldsymbol{p} - \alpha \boldsymbol{q}| \le \boldsymbol{N}$$