Prime Numbers
How Far Apart Are They?

Stijn S.C. Hanson

June 13, 2014
1 Distribution of Prime Numbers
 • Behaviour of $\pi(x)$
 • Behaviour of $\pi(x; a, q)$

2 Prime Constellations
 • Distance Between Neighbouring Primes
 • Beyond Bounded Gaps

3 Diophantine Approximation
 • Classical Theory
 • Relation to Bounded Gaps
1 Distribution of Prime Numbers
 • Behaviour of $\pi(x)$
 • Behaviour of $\pi(x; a, q)$

2 Prime Constellations
 • Distance Between Neighbouring Primes
 • Beyond Bounded Gaps

3 Diophantine Approximation
 • Classical Theory
 • Relation to Bounded Gaps
Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define \(\pi(x) \) to be the number of prime numbers less than or equal to \(x \) and \(p_n \) to be the \(n \)th prime number;
Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define $\pi(x)$ to be the number of prime numbers less than or equal to x and p_n to be the nth prime number;
- Two integers n and m are said to be coprime if their greatest common divisor is 1. I.e. if $(n, m) = 1;$
Basic Definitions

- A prime number is any positive integer bigger than 1 whose only divisors are 1 and itself;
- We define $\pi(x)$ to be the number of prime numbers less than or equal to x and p_n to be the nth prime number;
- Two integers n and m are said to be coprime if their greatest common divisor is 1. I.e. if $(n, m) = 1$;
- The number of coprime integers to n which do not exceed n is denoted by $\varphi(n)$.
Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

\[
\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)
\]
Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

$$\pi(x) = \frac{x}{\log x} + O \left(\frac{x}{(\log x)^2} \right)$$

$$\pi(x) = \int_2^x \frac{dx}{\log x} + O \left(\frac{x}{\log x} e^{-a \sqrt{\log x}} \right)$$
Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

\[
\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)
\]

\[
\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\frac{x}{\log x} e^{-a\sqrt{\log x}}\right)
\]

\[
\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\sqrt{x \log x}\right) \quad (RH)
\]
Growth of $\pi(x)$

Theorem (Prime Number Theorem, Hadamard-de la Vallée Poussin, 1896)

\[
\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)
\]

\[
\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\frac{x}{\log x} e^{-a\sqrt{\log x}}\right)
\]

\[
\pi(x) = \int_2^\infty \frac{dx}{\log x} + O\left(\sqrt{x} \log x\right) \quad (RH)
\]

Putting $x + \log x$ into the top characterisation tells us that the asymptotic gap between primes is $\log x$.
Primes in Short Intervals

Theorem (Heath-Brown, 1988)

Let \(\theta \in (7/12, 1) \). Then

\[
\pi(x + x^\theta) - \pi(x) \sim \frac{x^\theta}{\log x}
\]
Primes in Short Intervals

Theorem (Heath-Brown, 1988)

Let \(\theta \in (7/12, 1) \). Then

\[
\pi(x + x^\theta) - \pi(x) \sim \frac{x^\theta}{\log x}
\]

Theorem (Maynard, 2014)

Let \(x, y > 1 \), possibly dependent on each other. Then there are \(\gg x \exp(-\sqrt{\log x}) \) integers \(x_0 \in [x, 2x] \) such that

\[
\pi(x_0 + y) - \pi(x_0) \gg \log y.
\]
Arithmetic Progressions

Theorem (Dirichlet, 1837)

Let $a, q \in \mathbb{N}$ be two coprime integers. Then the arithmetic progression

$$a, a + q, a + 2q, \ldots$$

contains infinitely many prime numbers.

Theorem (Green-Tao, 2004)
The primes contain arbitrarily long arithmetic progressions.
Arithmetic Progressions

Theorem (Dirichlet, 1837)

Let $a, q \in \mathbb{N}$ be two coprime integers. Then the arithmetic progression

$$a, a + q, a + 2q, \ldots$$

contains infinitely many prime numbers.

Theorem (Green-Tao, 2004)

The primes contain arbitrarily long arithmetic progressions.
Growth of $\pi(x; a, q)$

Theorem (Barban-Bombieri-Vinogradov, 1961-1987-1965)

For any small ϵ and real A

$$\sum_{q \leq x^{1/2-\epsilon}} \sup_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \left| \pi(x; a, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x(\log x)^{-A}.$$
Growth of $\pi(x; a, q)$

Theorem (Barban-Bombieri-Vinogradov, 1961-1987-1965)

For any small ϵ and real A

$$\sum_{q \leq x^{1/2-\epsilon}} \sup_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \left| \pi(x; a, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x(\log x)^{-A}.$$

Conjecture (Elliott-Halberstam, 1968)

For all $\theta \in (0, 1)$

$$\sum_{q \leq x^{\theta}} \sup_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \left| \pi(x; a, q) - \frac{1}{\varphi(q)} \pi(x) \right| \ll x(\log x)^{-A}.$$

If this holds for some $\theta \in (0, 1)$ then we say that the primes have level of distribution θ.

Stijn S.C. Hanson

Prime Numbers
1 Distribution of Prime Numbers
 • Behaviour of $\pi(x)$
 • Behaviour of $\pi(x; a, q)$

2 Prime Constellations
 • Distance Between Neighbouring Primes
 • Beyond Bounded Gaps

3 Diophantine Approximation
 • Classical Theory
 • Relation to Bounded Gaps
Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n be the nth prime number. Then

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{\log n} = \infty.$$
Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n be the nth prime number. Then

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{\log n} = \infty.$$

Theorem (Golston-Pintz-Yildirim, 2006)

$$\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log n} = 0$$
Normalised Prime Gaps

Theorem (Westzynthius, 1931)

Let p_n *be the* nth *prime number. Then

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{\log n} = \infty.$$

Theorem (Golston-Pintz-Yildirim, 2006)

$$\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log n} = 0$$

Theorem (Banks-Freiman-Maynard, 2014)

The set of limit points of the sequence of normalised prime gaps contains 2% of all non-negative real numbers.
Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n \to \infty} (p_{n+1} - p_n) = 2$$
Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

\[
\liminf_{n \to \infty} (p_{n+1} - p_n) = 2
\]

Theorem (Zhang, 2013)

\[
\liminf_{n \to \infty} (p_{n+1} - p_n) \leq 70,000,000
\]
Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n \to \infty} (p_{n+1} - p_n) = 2$$

Theorem (Maynard-Zhang, 2013)

$$\liminf_{n \to \infty} (p_{n+1} - p_n) \leq 600$$
Bounded Prime Gaps

Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers \(p \) and \(q \) which differ by precisely 2. In other words

\[
\lim \inf_{n \to \infty} (p_{n+1} - p_n) = 2
\]

Theorem (Maynard-Polymath-Zhang, 2013-2014)

\[
\lim \inf_{n \to \infty} (p_{n+1} - p_n) \leq 246
\]
Conjecture (Twin Prime Conjecture)

There are infinitely many prime numbers p and q which differ by precisely 2. In other words

$$\liminf_{n \to \infty} (p_{n+1} - p_n) = 2$$

Theorem (Maynard-Polymath-Zhang, 2013-2014)

$$\liminf_{n \to \infty} (p_{n+1} - p_n) \leq 246$$

Theorem (Maynard, 2014)

$$\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^3 e^{4m}$$
Generalisations of the Bounded Gaps Conjecture

Conjecture (Polignac, 1843)

Let k be any positive integer. Then, for infinitely many $n \in \mathbb{N}$, we have that $p_{n+1} - p_n = 2k$. If this holds then $2k$ is called a Polignac number.
Conjecture (Polignac, 1843)

Let k be any positive integer. Then, for infinitely many $n \in \mathbb{N}$, we have that $p_{n+1} - p_n = 2k$. If this holds then $2k$ is called a Polignac number.

Conjecture (Dickson, 1904)

Let $a_1 + b_1 n, a_2 + b_2 n, \ldots, a_k + b_k n$ be a finite set of linear forms with integer coefficients where $b_i \geq 1$ for all $1 \leq i \leq n$. Then, if there is no positive integer m divide all the products $\prod_{i=1}^{k} f_i(n)$ for all integers n then there exist infinitely many natural numbers n such that all of the linear forms are prime.
Partial Results Towards Polignac’s Conjecture

Theorem (Pintz, 2013)

There is some ineffective constant \(c \) such that every interval of the form \([m, m + c]\) contains a Polignac number.
Theorem (Pintz, 2013)

There is some ineffective constant \(c \) such that every interval of the form \([m, m + c]\) contains a Polignac number.

Corollary (Hanson, 2014)

The set of Polignac numbers contains arbitrarily long arithmetic progressions.
Partial Results Towards Polignac’s Conjecture

Theorem (Pintz, 2013)

There is some ineffective constant \(c \) such that every interval of the form \([m, m + c]\) contains a Polignac number.

Corollary (Hanson, 2014)

The set of Polignac numbers contains arbitrarily long arithmetic progressions.

Theorem (Hanson, 2014)

Every arithmetic progression of the form \(q, 2q, 3q, \ldots \) contains infinitely many Polignac numbers.
1 Distribution of Prime Numbers
 - Behaviour of $\pi(x)$
 - Behaviour of $\pi(x; a, q)$

2 Prime Constellations
 - Distance Between Neighbouring Primes
 - Beyond Bounded Gaps

3 Diophantine Approximation
 - Classical Theory
 - Relation to Bounded Gaps
Approximating Reals with Rationals

Theorem (Dirichlet, 1834)

Let x be a real number. Then there are infinitely many coprime m, n such that

$$\left| x - \frac{m}{n} \right| < \frac{1}{n^2}$$
Theorem (Hurwitz, 1891)

Let x be a real number. Then there are infinitely many coprime m, n such that

$$\left| x - \frac{m}{n} \right| < \frac{1}{\sqrt{5}n^2}$$
Definition (Badly Approximable Number)

A number x is called badly approximable if there is some $c \in \mathbb{R}^+$ such that

$$\left| x - \frac{m}{n} \right| \geq \frac{c}{n^2}$$

for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. The set of all badly approximable is written Bad.
Definition (Badly Approximable Number)

A number \(x \) is called badly approximable if there is some \(c \in \mathbb{R}^+ \) such that

\[
\left| x - \frac{m}{n} \right| \geq \frac{c}{n^2}
\]

for all \(m \in \mathbb{Z} \) and \(n \in \mathbb{N} \). The set of all badly approximable is written \(\text{Bad} \).

Theorem (Jarnik, 1928)

\(\text{Bad} \) has Hausdorff dimension 1 and measure 0.
Prime Approximation

Theorem (Bounded Gaps Conjecture)

Fix $N \in \mathbb{N}$. Then there are infinitely many prime numbers p, q such that

$$|p - q| \leq N$$
Prime Approximation

Theorem (Bounded Gaps Conjecture)

Fix $N \in \mathbb{N}$. Then there are infinitely many prime numbers p, q such that

$$|p - q| \leq N$$

Conjecture (Hanson-Haynes)

Fix some $\alpha \in \mathbb{R}^+$ and $N \in \mathbb{R}_{\geq 0}$. Then there are infinitely many prime numbers p, q such that

$$|p - \alpha q| \leq N$$