Definition

Let G be a group and V be a complex vector space. Then $\rho : G \to \text{GL}(V)$ is a representation if it is a homomorphism. Denote a representation by the pair (ρ, V). A representation is irreducible if there are no non-trivial ρ-invariant subspaces of V. I.E. for all U such that $0 \neq U \subsetneq V$. Write the set of all equivalence classes (under some relation) of irreducible representations of G as \hat{G}.

Definition

Let p be some probability measure on a group G. We define the Fourier transform of p at the representation (ρ, V) by $\hat{p}(\rho) = \sum_{g \in G} p(g) \rho(g)$.

Stijn Hanson (York) Group Representation Theory on Mixing Times
Definition

Let G be a group and V be a complex vector space. Then $\rho : G \rightarrow \text{GL}(V)$ is a representation if it is a homomorphism. Denote a representation by the pair (ρ, V).

A representation is irreducible if there are no non-trivial ρ-invariant subspaces of V. I.E. for all U such that $0 \neq U \subsetneq V$. Write the set of all equivalence classes (under some relation) of irreducible representations of G as \hat{G}.

Definition

Let p be some probability measure on a group G. We define the Fourier transform of p at the representation (ρ, V) by

$$\hat{p}(\rho) = \sum_{g \in G} p(g)\rho(g)$$
Theorem (Fourier Inversion Theorem)

Let p be a probability measure on a group G and \hat{p} be its Fourier transform. Then

$$p(g) = \frac{1}{|G|} \sum_{\rho \in \hat{G}} d_\rho \text{tr}(\hat{p}(\rho) \rho(g^{-1}))$$
Theorem (Fourier Inversion Theorem)

Let p be a probability measure on a group G and \hat{p} be its Fourier transform. Then

$$
p(g) = \frac{1}{|G|} \sum_{\rho \in \hat{G}} d_{\rho} \text{tr}(\hat{p}(\rho) \rho(g^{-1}))
$$

Theorem (Plancherel’s Theorem)

Let p and q be some probability measures on a group G. Then

$$
\sum_{g \in G} p(g^{-1})q(g) = \frac{1}{|G|} \sum_{\rho \in \hat{G}} d_{\rho} \text{tr}(\hat{p}(\rho) \hat{q}(\rho))
$$
We can show that the matrix associated to any representation \((\rho, V)\) is unitary. Thus

\[
\rho(g^{-1}) = \rho(g)^{-1} = \rho(g)^*
\]

where \(\ast\) represents the adjoint.
We can show that the matrix associated to any representation \((\rho, V)\) is unitary. Thus

\[
\rho(g^{-1}) = \rho(g)^{-1} = \rho(g)^*
\]

where \(*\) represents the adjoint. By taking \(q(g) = p(g^{-1})^*\) we get

Theorem (Plancherel (kinda))

\[
\sum_{g \in G} |p(g)|^2 = \frac{1}{|G|} \sum_{\rho \in \hat{G}} d_\rho \text{tr}(\hat{p}(\rho)\hat{p}(\rho^*))
\]
Theorem

Let \(p \) be some probability measure on a finite group \(G \) and \(u \) be the uniform measure. Then

\[
|G| \sum_{g \in G} |p_t(g) - u(g)|^2 = \sum_{\rho \in \hat{G}}^* d_\rho \text{tr}(\hat{p}(\rho)^t(\hat{p}(\rho)^t)^*)
\]

where the sum is over all non-trivial irreducible representations.
We can use this to bound total variation distance with the simple observations that

\[\| p(t)(x) - u \|_{TV}^2 \leq \frac{|G|}{4} \sum_{g \in G} |p(t)(g) - u(g)|^2 \]

\[\| p(t)(x) - u \|_{TV}^2 \geq \frac{1}{4} \sum_{g \in G} |p(t)(g) - u(g)|^2 \]

by the Cauchy-Schwarz inequality and Pythagoras’ theorem respectively.

Stijn Hanson (York)
We can use this to bound total variation distance with the simple observations that

\[\| p^{(t)}(x) - u \|_{TV}^2 \leq \frac{|G|}{4} \sum_{g \in G} |p^{(t)}(g) - u(g)|^2 \]

\[\| p^{(t)}(x) - u \|_{TV}^2 \geq \frac{1}{4} \sum_{g \in G} |p^{(t)}(g) - u(g)|^2 \]

by the Cauchy-Schwarz inequality and Pythagoras’ theorem respectively. These give

\[\frac{1}{4|G|} \sum_{\rho \in \hat{G}}^* d_\rho \text{tr}(\hat{p}(\rho)^{(t)}(\hat{p}(\rho)^{(t)})^*) \leq \| p^{(t)} - u \|_{TV}^2 \leq \frac{1}{4} \sum_{\rho \in \hat{G}}^* d_\rho \text{tr}(\hat{p}(\rho)^{(t)}(\hat{p}(\rho)^{(t)})^*) \]

or, slightly more vaguely,

\[\| p^{(t)} - u \|_{TV}^2 \asymp \sum_{\rho \in \hat{G}}^* d_\rho \text{tr}(\hat{p}(\rho)^{(t)}(\hat{p}(\rho)^{(t)})^*) \]
Suppose that G is a group, V is a finite-dimensional vector space and (ρ, V) is a representation of G. For each $g \in G$ consider the matrix representation of $\rho(g)$, denoted $\rho(g)$, relative to some fixed basis in V. Define a function $\chi : G \rightarrow \mathbb{C}$ by $\chi(g) = \text{tr} \, \rho(g)$ for all $g \in G$. χ is called the character of (ρ, V).
Definition

Suppose that G is a group, V is a finite-dimensional vector space and (ρ, V) is a representation of G. For each $g \in G$ consider the matrix representation of $\rho(g)$, denoted $\overline{\rho(g)}$, relative to some fixed basis in V. Define a function $\chi : G \to \mathbb{C}$ by $\chi(g) = \text{tr} \overline{\rho(g)}$ for all $g \in G$. χ is called the character of (ρ, V).

It turns out that, if G is Abelian, the characters form a group. Call this the dual group of G and write it as \tilde{G}. Moreover $\tilde{G} \cong G$.
Definition

Suppose that G is a group, V is a finite-dimensional vector space and (ρ, V) is a representation of G. For each $g \in G$ consider the matrix representation of $\rho(g)$, denoted $\rho(g)$, relative to some fixed basis in V. Define a function $\chi : G \to \mathbb{C}$ by $\chi(g) = \text{tr} \, \rho(g)$ for all $g \in G$. χ is called the character of (ρ, V).

It turns out that, if G is Abelian, the characters form a group. Call this the dual group of G and write it as \tilde{G}. Moreover $\tilde{G} \cong G$.

Definition

Let G be a group and χ be the character of some irreducible representation of G. Then define the Fourier transform of some measure p at χ as

$$\hat{p}(\chi) = \sum_{g \in G} p(g) \chi(g)$$
From now on we will take G to be Abelian. Then $G \cong \tilde{G}$ implies that the collection $(\hat{p}(\chi))_{\chi \in \tilde{G}}$ is precisely the spectrum of p viewed as a convolution operator.
From now on we will take G to be Abelian. Then $G \cong \tilde{G}$ implies that the collection $(\hat{p}(\chi))_{\chi \in \tilde{G}}$ is precisely the spectrum of p viewed as a convolution operator. Using this and

Theorem

\[\rho \text{ is an irreducible representation if and only if } d_\rho = 1. \]

we get

\[|G| \sum_{g \in G} |p^{(t)}(g) - u(g)|^2 = \sum_{\chi \in \tilde{G}}^* |\hat{p}(\chi)|^{2t} \]
Consider $G = \mathbb{Z}_n$. We know that G is Abelian and so there are n irreducible representations given by

$$\rho_j(N) = \left(e^{2\pi ij N/n} \right)$$

for any $N \in \mathbb{Z}_n$, $\times \in \mathbb{C}^*$ and $0 \leq j < n$.
Consider $G = \mathbb{Z}_n$. We know that G is Abelian and so there are n irreducible representations given by

$$\rho_j(N) = (e^{2\pi ijN/n})$$

for any $N \in \mathbb{Z}_n$, $x \in \mathbb{C}^*$ and $0 \leq j < n$. Their characters are

$$\chi_j(N) = e^{2\pi ijN/n}$$
Consider $G = \mathbb{Z}_n$. We know that G is Abelian and so there are n irreducible representations given by

$$\rho_j(N) = (e^{2\pi ijN/n})$$

for any $N \in \mathbb{Z}_n$, $\chi \in \mathbb{C}^*$ and $0 \leq j < n$. Their characters are

$$\chi_j(N) = e^{2\pi ijN/n}$$

Consider the simple random walk where $p(+1) = p(-1) = 1/2$. Then

$$\hat{p}(\chi_j) = \frac{1}{2}(\chi(+1) + \chi(-1))$$

$$= \frac{1}{2} \left(e^{t\pi ij/n} + e^{-t\pi ij/n} \right)$$

$$= \cos(2\pi ij/n)$$
Consider $G = \mathbb{Z}_n$. We know that G is Abelian and so there are n irreducible representations given by

$$\rho_j(N) = (e^{2\pi ijN/n})$$

for any $N \in \mathbb{Z}_n$, $x \in \mathbb{C}^*$ and $0 \leq j < n$. Their characters are

$$\chi_j(N) = e^{2\pi ijN/n}$$

Consider the simple random walk where $p(+1) = p(-1) = 1/2$. Then

$$\hat{p}(\chi_j) = \frac{1}{2}(\chi(+1) + \chi(-1))$$

$$= \frac{1}{2} \left(e^{t\pi ij/n} + e^{-t\pi ij/n} \right)$$

$$= \cos(2\pi ij/n)$$

Thus

$$\|p(t) - u\|_{TV}^2 \approx \sum_{j=1}^{n-1} |\cos(2\pi ij/n)|^{2t}$$