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Lie n-algebras, supersymmetry, and division algebras

Introduction

This research began as a puzzle. Explain this pattern:
I The only normed division algebras are R, C, H and O.

They have dimensions k = 1, 2, 4 and 8.
I The classical superstring makes sense only in dimensions

k + 2 = 3, 4, 6 and 10.
I The classical super-2-brane makes sense only in

dimensions k + 3 = 4, 5, 7 and 11.

Pulling on this thread will lead us into higher gauge theory.
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I Everything in this table can be made “super”.
I A connection valued in Lie n-algebra is a connection on an

n-bundle, which is like a bundle, but the fibers are “smooth
n-categories.”

I The theory of Lie n-algebra-valued connections was
developed by Hisham Sati, Jim Stasheff and Urs Schreiber.

I Let us denote the Lie 2-superalgebra for superstrings by
superstring.

I Let us denote the Lie 3-superalgebra for 2-branes by
2-brane.
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I Yet superstrings and super-2-branes are exceptional
objects—they only make sense in certain dimensions.

I The corresponding Lie 2- and Lie 3-superalgebras are
similarly exceptional.

I Like many exceptional objects in mathematics, they are
tied to the division algebras, R, C, H and O.

I In this talk, I will show you how superstring and 2-brane

arise from division algebras.
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But why should we care about superstring and 2-brane?
I In dimensions 3, 4, 6 and 10, we will define the superstring

Lie 2-superalgebra to be the chain complex:

siso(V )← R

This is Lie 2-superalgebra extending the Poincaré Lie
superalgebra, siso(V ).

I In dimensions 4, 5, 7 and 11, we will define the 2-brane Lie
3-superalgebra to be a chain complex:

siso(V)← 0← R

This is a Lie 3-superalgebra extending the Poincaré Lie
superalgebra, siso(V).
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Connections valued in these Lie n-superalgebras describe the
parallel transport of superstrings and super-2-branes in the
appropriate dimension:

superstring(V ) Connection component
R R-valued 2-form, the B field.
↓

siso(V ) siso(V )-valued 1-form.
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2-brane(V) Connection component
R R-valued 3-form, the C field.
↓
0
↓

siso(V) siso(V)-valued 1-form.
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The B and C fields are very important in physics. . .
I The B field, or Kalb-Ramond field, is to the string what the

electromagnetic A field is to the particle.
I The C field is to the 2-brane what the electromagnetic A

field is to the particle.

. . . and geometry:
I The A field is really a connection on a U(1)-bundle.
I The B field is really a connection on a U(1)-gerbe, or

2-bundle.
I The C field is really a connection on a U(1)-2-gerbe, or

3-bundle.
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Using superstring and 2-brane, we neatly package these fields
with the Levi–Civita connection on spacetime.

Let us see where these Lie n-superalgebras come from,
starting with the reason superstrings and 2-branes only make
sense in certain dimensions.
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Spinor identities and supersymmetry

In the physics literature, the classical superstring and
super-2-brane require certain spinor identities to hold:

Superstring In dimensions 3, 4, 6 and 10, we have:

[ψ,ψ]ψ = 0

for all spinors ψ ∈ S.

Here, we have:
I the bracket is a symmetric map from spinors to vectors:

[, ] : Sym2S → V

I vectors can “act” on spinors via the Clifford action, since
V ⊆ Cliff(V ).
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Spinor identities and supersymmetry

Recall that:
I V is the vector representation of Spin(V ) = ˜SO0(V ).
I S is a spinor representation, i.e. a representation coming

from a module of Cliff(V ).
I Cliff(V ) = TV

v2=||v ||2 .
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Spinor identities and supersymmetry

Similarly, for the 2-brane:
Super-2-brane In dimensions 4, 5, 7 and 11, the 3-ψ’s rule

need not hold:
[Ψ,Ψ]Ψ 6= 0

Instead, we have the 4-Ψ’s rule:

[Ψ, [Ψ,Ψ]Ψ] = 0

for all spinors Ψ ∈ S.
Again:

I V and S are vectors and spinors for these dimensions.
I [, ] : Sym2S → V.
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Spinor identities and division algebras

Where do the division algebras come in?

I We can use K to build V and S in dimensions 3, 4, 6 and
10, V and S in 4, 5, 7 and 11.

I The 3-ψ’s and 4-Ψ’s rules are consequences of this
construction.
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Spinor identities and division algebras

In superstring dimensions 3, 4, 6 and 10:
I The vectors V are the 2× 2 Hermitian matrices with

entries in K:

V =

{(
t + x y

y t − x

)
: t , x ∈ R, y ∈ K

}
.

I The determinant is then the norm:

−det
(

t + x y
y t − x

)
= −t2 + x2 + |y |2.

I This uses the properties of K:

|y |2 = yy .
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Spinor identities and division algebras

In superstring dimensions 3, 4, 6 and 10:
I The spinors are S = K2.

I The Clifford action is just matrix multiplication.
I [−,−] has a nice formula using matrix operations:

[ψ,ψ] = 2ψψT − 2ψT
ψ1 ∈ V

I Showing
[ψ,ψ]ψ = 0

is now an easy calculation!
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Spinor identities and division algebras

I These constructions are originally due to Tony Sudbery,
with help from Corrinne Manogue, Tevian Dray and Jorg
Schray.

I We have shown to generalize them to the 2-brane
dimensions 4, 5, 7 and 11, taking V ⊆ K[4] and S = K4.

I The 4-Ψ’s rule
[Ψ, [Ψ,Ψ]Ψ] = 0

is then also an easy calculation.
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Lie algebra cohomology

What are the 3-ψ’s and 4-Ψ’s rules?
They are cocycle conditions.
I In 3, 4, 6 and 10, there is a 3-cochain α:

α(ψ, φ, v) = 〈ψ, vφ〉.

Here, 〈−,−〉 is a Spin(V )-invariant pairing on spinors.
I dα = 0 is the 3-ψ’s rule!

I In 4, 5, 7 and 11, there is a 4-cochain β:

β(Ψ,Φ,V ,W ) = 〈Ψ, (VW −WV )Φ〉.

Here, 〈−,−〉 is a Spin(V)-invariant pairing on spinors.
I dβ = 0 is the 4-Ψ’s rule!
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Lie algebra cohomology

Lie (super)algebra cohomology:

I Let g = g0 ⊕ g1 be a Lie superalgebra,
I which has bracket [, ] : Λ2g→ g,
I where Λ2g = Λ2g0 ⊕ g0 ⊗ g1 ⊕ Sym2g1 is the graded

exterior square.
I We get a cochain complex:

Λ0g∗ → Λ1g∗ → Λ2g∗ → · · ·

I where d = [, ]∗ : Λ1g∗ → Λ2g∗, the dual of the bracket.
I d2 = 0 is the Jacobi identity!
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Lie algebra cohomology

I In 3, 4, 6 and 10:
T = V ⊕ S

is a Lie superalgebra, with bracket

[, ] : Sym2S → V .

I α(ψ, φ, v) = 〈ψ, vφ〉 is a 3-cocycle on T .
I In 4, 5, 7 and 11:

T = V ⊕ S

is a Lie superalgebra, with bracket

[, ] : Sym2S → V.

I β(Ψ,Φ,V ,W ) = 〈Ψ, (VW −WV )Φ〉 is a 4-cocycle on T .
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Lie algebra cohomology

I In 3, 4, 6 and 10: we can extend α to a cocycle on

siso(V ) = spin(V ) n T

the Poincaré superalgebra.

I In 4, 5, 7 and 11: we can extend β to a cocycle on

siso(V) = spin(V) n T

the Poincaré superalgebra.
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Lie n-superalgebras

The spinor identities were cocycle conditions for α and β. What
are α and β good for?

Building Lie n-superalgebras!

Definition
A Lie n-superalgebra is an n term chain complex of Z2-graded
vector spaces:

L0 ← L1 ← · · · ← Ln−1

endowed with a bracket that satisfies Lie superalgebra axioms
up to chain homotopy.

This is a special case of an L∞-superalgebra.
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Lie n-superalgebras

Definition
An L∞-algebra is a graded vector space L equipped with a
system of grade-antisymmetric linear maps

[−, · · · ,−] : L⊗k → L

satisfying a generalization of the Jacobi identity.

So L has:
I a boundary operator ∂ = [−] making it a chain complex,
I a bilinear bracket [−,−], like a Lie algebra,
I but also a trilinear bracket [−,−,−] and higher, all

satisfying various identities.
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Lie n-superalgebras

The following theorem says we can package cocycles into Lie
n-superalgebras:

Theorem (Baez–Crans)
If ω is an n + 1 cocycle on the Lie superalgebra g, then the n
term chain complex

g← 0← · · · ← 0← R

equipped with
[−,−] : Λ2g→ g

ω = [−, · · · ,−] : Λn+1g→ R

is a Lie n-superalgebra.
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Lie n-superalgebras

Theorem
In dimensions 3, 4, 6 and 10, there exists a Lie 2-superalgebra,
which we call superstring(V ), formed by extending the
Poincaré superalgebra siso(V ) by the 3-cocycle α.

Theorem
In dimensions 4, 5, 7 and 11, there exists a Lie 3-superalgebra,
which we call 2-brane(V), formed by extending the Poincaré
superalgebra siso(V) by the 4-cocycle β.
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