
LECTURE 3: RIEMANN’S GEOMETRY
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1. Summary of Lecture 2.

• We showed that the Lorentzian geometry of Minkowski space led directly and
straightforwardly to the well-known consequences of special relativity.
• We saw how force, power, energy and momentum no longer define invariant quan-

tities in relativity and must necessarily be unified into 4-dimensional invariants
‘power-force’ and ‘energy-momentum’. Mass, however, is an invariant quantity
(it’s the length of the energy-momentum vector).
• We discussed the electromagnetic force and, briefly, Maxwell’s equations, which are

unified beautifully into two exterior equations in the Minkowskian framework of
special relativity.

“I do not believe in mathematics.” - Albert Einstein1

“Grossmann, you must help me or else I’ll go crazy!” - Albert Einstein2

“I assure you that with respect to the quantum, I have nothing new to say...
I am now exclusively occupied with the problem of gravitation and I hope to
master all difficulties with the help of a friendly mathematician here. But
one thing is certain: in all my life I have labored not nearly as hard, and I
have become imbued with great respect for mathematics, the subtler part of
which I had in my simple-mindedness regarded as pure luxury until now.

Compared with this problem, the original relativity is child’s play.” - Albert
Einstein3

Georg Friedrich Bernhard Riemann (1826 – 1866).
1Einstein is purported to have said this before 1910, although I cannot find a solid source for this.

Besides, it is clearly taken out of context. In any case, it is clear that, before his work with Grossmann,
Einstein certainly believed that overuse of mathematics in physics was undesirable.

2In a letter to Marcel Grossmann August 1912.
3In a letter to Arnold Sommerfeld 29 October 1912.
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In this lecture, we’ll study the beautiful language in which the theory of general relativity
is written: Riemannian geometry. The development of Riemannian geometry and general
relativity are closely tied, with both mathematicians and physicists making significant
contributions to both fields.

2. Housekeeping: Manifolds and Miscellany

Recall that a manifold M is a topological space4 that ‘looks locally like’ Euclidean
space. By ‘locally’, we mean that each point p has a neighbourhood which looks like Rn.
By ‘looks like’, we mean different things depending on the type of structure in question.
For a topological manifold, ‘looks like’ means homeomorphic: there is a continuous map φp
of the neighbourhood to Rn that is invertible, and the inverse is also continuous. The pair
(Up, φp) is called a coordinate chart. An atlas for the manifold is a compatible class of charts
{(Ua, φa)} that cover the manifold. That isM =

⋃
a Ua, and, whenever Ua∩Ub is non-empty,

the transition function φa ◦φ−1
b : Rn → Rn is a homeomorphism. A differentiable manifold

is a topological manifold with an atlas whose transition functions are diffeomorphisms.
That is, they are differentiable invertible maps with differentiable inverses. The atlas is
called a differentiable structure for the manifold, and allows us to differentiate functions
f at a point p by differentiating the corresponding function f ◦ φ−1

p : Rn → R of the
coordinates. The set of functions for which this is possible everywhere are called the
differentiable functions. A smooth manifold has smooth (i.e differentiable of all orders)
transition functions. From now on, manifold will mean smooth manifold, and function will
mean smooth function. We denote the set of smooth functions on M by C∞(M), which
forms a ring under pointwise addition and scalar multiplication.

Aristotlean, Galilean and Minkowskian spacetime are all examples of manifolds. In each
case we were able to define global coordinate charts. This is not always the case – for
example, the sphere admits no global coordinate chart.

2.1. Tangent vectors.

The tangent plane at some point on a surface in R3 is the span of all tangent vectors (at
the point) to smooth curves that lie in the surface and pass through the point. Phrased in
this way, the idea generalises easily to manifolds: consider curves γ : I :→M , where I ⊂ R
is some interval. We say that γ is smooth if, given some (and hence any) local coordinates
φ : U → Rn, the curve φ ◦ γ : I → Rn is smooth. The tangent space to M at p, denoted
TpM , is the set of equivalence classes of curves through p having the same tangent at p:

TpM := {γ′ := [γ]∼} ,
where γ ∼ λ if γ(0) = λ(0) = p and

d

ds

∣∣∣∣
s=0

(φ ◦ γ) =
d

ds

∣∣∣∣
s=0

(φ ◦ λ)

for some (and hence any) chart (U, φ) about p.

4A space where ‘open set’ makes sense.
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The tangent vectors have a natural action on functions:

γ′f =
d

ds

∣∣∣∣
s=0

(f ◦ γ)

for any representative γ. This action of tangent vectors on functions identifies TpM with
the space of derivations, v, of smooth functions at p:

v : C∞(p)→ R
such that v(af + g) = avf + vg

and v(fg) = (vf)g(p) + f(p)(vg)

for all a ∈ R and f, g ∈ C∞(p) (the functions that are smooth at p).
Now, given some coordinate chart φ : U → Rn, whose components we denote xi : U → R,

we can define derivations ∂i|p ≡ ∂xi|p by

∂i|pf :=
∂

∂xi

∣∣∣∣
p

f ◦ φ−1 ,

In fact5, at each point p ∈ U , the derivations ∂i|p form a basis for the space of derivations
at p (and hence TpM).

The tangent bundle of M , denoted TM , is the disjoint union of all of the tangent spaces:

TM := tp∈M TpM := ∪p∈M{(p, v) : v ∈ TpM} .

So its elements are pairs (p, v) of points p ∈ M and tangent vectors v ∈ TpM . There is a
natural projection map

π : TM →M

(p, v) 7→ p ,

which makes TM into a vector bundle. This can be seen by constructing the local triviali-
sations:

ψp : Up × Rm → π−1(Up)

(q, (v1, . . . , vn)) 7→

(
q,

n∑
i=1

vi∂xi

∣∣
q

)
,

where (Up, φ ≡ {xi}) is a coordinate neighbourhood of p and ∂xi ≡ ∂i are the corresponding
coordinate vector fields for TM , defined as derivations by

∂i
∣∣
q
f =

∂f ◦ φ
∂xi

(φ−1(q)) .

Moreover, TM inherits a smooth differentiable structure from M via the coordinate charts
(π−1(U), (xi, dxi)), where (U, {xi}) is a coordinate chart on M , and the coordinates on

5All unsubstantiated claims should be considered (possibly rather difficult) exercises!
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π−1(U) are defined by (
xi, dxj

)
:
(
p, vi∂xi

∣∣
p

)
7→
(
xi(p), v

j
)
.

This makes TM a smooth 2n-dimensional differentiable manifold.
We may similarly construct the cotangent bundle T ∗M from the cotangent spaces6

T ∗pM := (TpM)∗. Analogous procedures as above provide the cotangent bundle with the
structures of a smooth vector bundle and a smooth 2n-dimensional differentiable manifold.

Several constructions on vector spaces extend to vector bundles by defining them fibre-
wise and using naturally induced local trivialisations. For example, we constructed T ∗M ,
the dual bundle of TM , its fibres being the dual vector spaces of the fibres of TM . Also
of importance is the tensor product, ⊗, and direct sum, ⊕, of two vector bundles, whose
fibres are respectively the tensor product and direct sum of the fibres of each bundle in the
product resp. sum. The tensor bundle over M is the vector bundle generated by TM and
the operations ∗, ⊕ and ⊗. So its elements are all the possible sums of tensor products of
tangent vectors and cotangent vectors.

Vector fields on M are smooth sections of TM : smooth maps X : M → TM such that
the vector X(p) is ‘attached to M at p’, that is, π(X(p)) = p. The set Γ(TM) of smooth
sections of TM forms a module over the ring of smooth functions. Sections of the tensor
bundle form an algebra (with product ⊗) over the ring of smooth functions, called the
tensor algebra.

We remark that the universal property allows us to identify tensors with corresponding
multilinear maps between cartesian products of vector bundles. For example, we can
identify an endomorphism L : TM → TM with a tensor L ∈ T ∗M ⊗ TM by identifying
TM with TM∗∗ and setting

L(X, θ) := θ(L(X)) .

3. The Lie Derivative

Associated with any vector field X ∈ Γ(TM) are its integral curves. These are the
solutions φ : I →M of the ODEs:

φ′ = X ◦ φ .

The flow of a X is the one parameter family of diffeomorphisms φ : M × I → M
generated by the integral curves:

φ′p = X ◦ φp ,

where we have denoted φ(p, s) = φp(s). That is, for each s ∈ I, the diffeomorphism
φs = φ(·, s) sends a point p a distance s along the integral curve of X through p.

6Recall that, given a real linear space V , its dual space V ∗ is the linear space of linear maps from V
to R.
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The Lie derivative LXY of a vector field Y with respect to a vector field X is the vector
field obtained by differentiating Y along the flow of X. That is,

LXY |p :=
d

ds

∣∣∣∣
s=0

φ∗pY =
d

ds

∣∣∣∣
s=0

Y ◦ φp ,

where phi is the flow of X (and we apologise for the subscript gymnastics). In fact, we
could replace Y by any section (e.g a tensor) to obtain other Lie derivatives.

It turns out that the Lie derivative of two vector fields is just their commutator.

Difficult Exercise. Let X and Y be two vector fields. Define their commutator [X, Y ] by

[X, Y ]f = XY f − Y Xf

for any function f .

(a) Show that [X, Y ] is a derivation on C∞(M). That is, [X, Y ] is a vector field.
(b) Show that

LXY = [X, Y ] .

4. Connections and Covariant Differentiation.

Recall that, in Euclidean space, we can differentiate a vector field X in the direction of
a vector v, by differentiating X along the line defined by v, that is,

DvX
∣∣
p

:=
d

ds

∣∣∣∣
s=0

(X(p+ sV )) = lim
s→0

X(p+ sv)−X(p)

s
.

We might try to generalise this to a manifold as follows: Let γ : I → M be any curve
whose initial tangent is v = γ′(0). Then consider

DvX :=
d

ds

∣∣∣∣
s=0

(X ◦ γ) = lim
s→0

X(γ(s))−X(γ(0))

s
.

Of course, this doesn’t make any sense–X(γ(s)) and X(γ(0)) live in different tangent
spaces, and hence their difference is undefined.

Note that the Lie derivative is not sufficient here, since LXY
∣∣
p

depends on values of both

vector fields in a neighbourhood of p, so that values of Y along a curve, and the value of
X at p are not enough.

What we need is a way of identifying, or ‘connecting’, different tangent spaces along the
curve; that is, a family of isomorphisms

τs : Tγ(s)M → Tγ(0)M .

Then we could define

d

ds

∣∣∣∣
s=0

(X ◦ γ) = lim
s→0

τsX(γ(s))−X(γ(0))

s
.
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4.1. Connections.

A connection on TM is a map

∇ : TM × Γ(TM)→ TM

(v,X) 7→ ∇vX ∈ Tπ(v)M

that satisfies the following rules

R-linearity: ∇v(aX + Y ) = a∇vX +∇vY ;

Leibniz rule: ∇v(fX) = (vf)X(p) + f(p)∇vY ;

Smoothness: ∇XY ∈ Γ(TM) ;

C∞-linearity: ∇fY+ZX = f∇YX +∇ZX .

for all a ∈ R, u, v ∈ TpM , f ∈ C∞(M), X, Y, Z ∈ Γ(TM) and p ∈ M , where ∇XY (p) :=
∇X(p)Y . Given a vector (field) X, the map ∇X is called covariant differentiation with
respect to X.

Now consider some local coordinates (U, {xi}ni=1) on a neighborhood U of a point p ∈M .
Then, for each Y ∈ Γ(TU), we may write Y = Y i∂i, for some Y i ∈ C∞(U). Then, for any
v ∈ TpM , we have

∇vY = ∇vY
iXi = (vY i)Xi(p) + viY j(p)∇Xi(p)Xj

= (vY i)Xi(p) + viY j(p)Γij
k(p)Xk(p) .

for some n3 functions Γij
k. It follows that ∇ is completely determined (on U) by these

functions. Conversely, we can specify some functions Γij
k on coordinate charts, and glue

them together to form a connection on M ; there are, in general, many ways to do this.
Thus, given a manifold M , there is no canonical connection on TM , and hence no canonical
way to specify a ‘directional derivative’ ∇v of vector fields.

4.2. Parallel Transport.

Let γ : I →M be a smooth curve. We may ‘pull the connection back’ along γ to define
a connection on TI by defining

∇∂s(Y ◦ γ)|s = ∇γ′Y |γ(s)

for Y ∈ Γ(TM), where s is the curve parameter and ∂s a basis for TI. We’ll denote
∇∂s = ∇s. If Y ∈ Γ(γ∗TM) is a vector field along γ such that ∇sY = 0, we say that Y is
parallel along γ. Conversely, we may consider the differential equation

∇γ′Y = 0 .
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Utilising local coordinates {xi}, we may expand γ′ and Y in terms of the local coordinate
basis {∂i}ni=1 as follows

0 = ∇γ′Y = (γ′Y k)(Xk ◦ γ) + γ′
i
(Y j ◦ γ)(Γij

k ◦ γ)(∂k ◦ γ)

=

(
d(Y k ◦ γ)

ds
+
dγi

ds
(Y j ◦ γ)(Γij

k ◦ γ)

)
(∂k ◦ γ) ,

where γk := xk ◦γ. This is a system of n first order ODEs for the functions Y k ◦γ : I → R,
which, given n initial conditions Y (γ(0)) := v, we can solve uniquely (on any coordinate
patch, and thereby, using a partition of unity, also globally).

This observation allows us to identify nearby tangent spaces: given p, q ∈M , v ∈ TpM ,
and a curve γ : [0, 1] → M joining p = γ(0) and q = γ(1), we define the parallel translate
of v to TqM by

τp,q(v) = V (q) ,

where V is the unique parallel extension of v along γ; that is, the unique solution of

∇γ′V = 0

V (p) = v .

This map defines an isomorphism between different tangent spaces. However, given dif-
ferent curves, we obtain different isomorphisms. We shall see the deviation of parallel
transport along different curves characterises the curvature of the connection.

Moreover, given the parallel transport map, we can recover the connection:

∇sY |s=0 = lim
s→0

τγ(s),p(Y (s))− Y (0)

s
.

4.3. Geodesics.

A curve γ : I → M is said to be geodesic if its tangent vector is parallel along itself.
That is, if

∇γ′γ′ = 0 . (4.1)

We can again expand this locally in terms of a coordinate basis {∂i}ni=1, obtaining

0 = ∇γ′γ′ =

(
d2γk

ds2
+
dγi

ds

dγj

ds
(Γij

k ◦ γ)

)
∂k ◦ γ .

This is a system of second order ODEs for the components γk, which has a unique solution
given initial position γ(0) = p and velocity γ′(0) = v.
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4.4. Torsion.

The Leibniz rule ensures that the map X, Y 7→ ∇XY is not a tensor, since it is not
C∞-linear in the ‘Y ’ argument. However, it is C∞-linear in the ‘X’ argument. Now, if we
antisymmetrise in X and Y we get

∇X(fY )−∇fYX = (Xf)Y + f∇XY − f∇XY

= f(∇XY −∇YX) + [X, fY ] ,

where [X, Y ] is the commutator of X and Y , which is the vector field defined (as a deriva-
tion7.) by

[X, Y ]f = X(Y f)− Y (Xf).

It follows that the map

T (X, Y ) := ∇XY −∇YX − [X, Y ]

is a tensor. T is called the torsion tensor of ∇.

4.5. Curvature.

Although the second iterated covariant derivative operator X, Y, Z 7→ ∇X(∇YZ) is not
tensorial either, we can construct a tensor which is second order with respect to ∇ in a
similar manner to the construction of T . This tensor is called the curvature tensor of ∇.
It is defined by

X, Y, Z 7→ R(X, Y )Z := ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z .

We leave it as an exercise to prove that this operator is in fact C∞-linear in X, Y and Z.
In Rn, we expect that second (coordinate) derivatives should compute. We can’t expect

this to be true in general, and the curvature tensor quantifies the obstruction. In fact, the
curvature tensor can also be seen to measure the lack of commution of parallel transport.

4.6. Covariant Differentiation of Tensors.

We may covariantly differentiate covector fields θ ∈ Γ(T ∗M) by ‘commuting ∇ with
contractions’:

(∇Xθ)(Y ) := X (θ(Y ))− θ (∇XY ) .

Defining the covariant derivative of a function f to simply be the derivative with respect
to the vector field: ∇Xf := Xf , the above definition can be easily remembered as a kind
of Leibniz rule:

∇X (θ(Y )) = (∇Xθ)(Y ) + θ (∇XY ) .

7It is a simple exercise to show that [X,Y ] is a derivation
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We can define the covariant derivative of any tensor by generalising this rule. For example,
if T is once contra- once co-variant, then

(∇XT )(θ, Y ) = X (T (θ, Y ))− T (∇Xθ, Y )− T (θ,∇XY ) .

5. Metric Tensors.

A metric tensor g is a smooth assignment of a pseudo-Euclidean structure to each tangent
space of M . That is, g is a smooth, symmetric, non-degenerate section of T ∗M ⊗ T ∗M .
We call the pair (M, g) a pseudo-Riemannian manifold. Since g is non-degenerate, it may
be used to set up isomorphisms between tensor spaces of the same rank. To see this for
tensors of rank one (i.e vectors and their duals, the covectors), we consider the map that
takes a vector v to the covector ṽ := g(v, ·). That is, for any other vector u, we have
ṽ(u) = g(u, v). We leave it to the reader to prove that this is an isomorphism of each
TpM with T ∗pM . By taking the inverse isomorphism, we can define a metric on T astM
by hitting the corresponding vectors with the metric on TM . This generalises to other
tensors in the natural way–by expanding each tensor into its homogeneous parts (those
which are just tensor products of vectors and covectors) and defining the inner product of
two homogeneous tensors of the same type as the product of the inner products of their
vector and covector factors. We then complete the picture by distributing over addition.
For example,

g(u⊗ θ, v ⊗ α + w ⊗ β) = g(u, v)g(θ, α) + g(u,w)g(θ, β) .

Of course, we can extend this further, to the whole tensor algebra, by distributing further
over direct sums.

5.1. The Levi-Civita Connection.

Given a manifold M equipped with both a metric g and a connection ∇, we say that ∇
is compatible with g, or ∇ is metric compatible, if parallel translation is an isometry. This
holds if and only if

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) .

Exercise. Show that the operator

(X, Y, Z) 7→ Xg(Y, Z)− g(∇XY, Z) + g(Y,∇XZ)

is a tensor, which we denote

∇g : (X, Y, Z) 7→ (∇Xg)(Y, Z) := Xg(Y, Z)− g(∇XY, Z) + g(Y,∇XZ) .

Exercise.

(1) Show that, given a pseudo-Riemannian manifold (M, g), M admits a unique torsion-
free (T = 0), metric compatible connection ∇, called the Levi-Civita connection.

(2) Show that, in fact, given any A ∈ Γ(T ∗M ⊗ T ∗M ⊗ T ∗M), and B ∈ Γ(T ∗M ⊗
T ∗M⊗TM), M admits a unique connection with metric compatibility ∇Xg(Y, Z) =
A(X, Y, Z) and torsion T (X, Y ) = B(X, Y ) (so long as A and B have the correct
symmetries).
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From now on, we shall only consider pseudo-Riemannian manifolds equipped with the
Levi-Civita connection.

5.2. Symmetries of the Curvature Tensor.

We may identify the curvature tensor with a covariant rank 4 tensor using the metric:

R(X, Y, Z,W ) := g(R(X, Y )Z,W ) .

Exercise. Clearly the curvature tensor has the anti-symmetry R(X, Y, Z,W ) = −R(Y,X,Z,W ).
Show that it has the following additional symmetries:

(1) Since ∇ is torsion free:

Ξ
X,Y,Z

R(X, Y )Z := R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0 ,

and

Ξ
X,Y,Z

∇XR(Y, Z)W = 0 ,

where we recall that ∇R is the tensor defined by

∇XR(Y, Z)W := ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)(∇XW ) .

(2) Since ∇ is metric compatible,

R(X, Y, Z,W ) = −R(X, Y,W,Z) .

(3) Since ∇ is both torsion free and metric compatible,

R(X, Y, Z,W ) = R(Z,W,X, Y ) .

(4) Deduce that R has only one non-trivial trace (up to a minus sign), the Ricci tensor:

Ric(X, Y ) := Tr (Z 7→ R(Z,X)Y ) = θi(R(Xi, X)Y ) ,

where {Xi}ni=1 and {θi}ni=1 are a pair of dual bases, that is, θi(Xj) = δij. The trace
of the Ricci tensor is called the scalar curvature of ∇:

R := Tr (X → Ric(X)) = Ric(Xi, θ
i) = gijRic(Xi, Xj) ,

where we have identified the twice covariant Ric with the corresponding endomor-
phism of TM using the metric.

(5) Show, using the second Bianchi identity, that

div Ric = − 1

2
dR ,

where the divergence operator is defined by the rule: ‘differentiate and contract’, for
example,

div Ric := gij(∇iRic)(Xj) ,

and the differential (a.k.a exterior derivative) d takes functions to one forms via
the rule df(X) := Xf .
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