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Abstract. We consider the variational regularization for inverse problems in
a general form. Based on the discrepancy principle, we propose a heuristic

parameter choice rule for choosing the regularization parameter which does

not require the information on the noise level and is therefore purely data
driven. Under variational source conditions, we obtain a posteriori error es-

timates. According to the Bakushinskii veto, convergence in the worst case

scenario can not be expected in general. However, by imposing certain condi-
tions on the random noise, we establish a convergence result for the heuristic

rule. Applications of the results are addressed and numerical simulations are
reported.

1. Introduction

Inverse problems have received tremendous attention due to their wide applica-
tions. In this paper we consider a general framework of variational regularization
for solving inverse problems. Let (Q, τQ) and (U , τU ) be two topological spaces
with the topology τQ and τU respectively. We consider inverse problems that can
be formulated as the form

S(q, u†) = 0, (1.1)

where u† ∈ U is the exact data, q ∈ Q is the parameter to be determined, and
S : Q× U → [0,∞] is a proper data misfit functional. Here the properness means
that S takes a finite value at some point in Q×U . The formulation (1.1) provides
a general framework to cover a broad range of inverse problems. For instance, the
inverse problems of the form

F (q) = u† (1.2)

has been studied extensively, where F : Q → U is an operator from a topological
space (Q, τQ) to a Banach space U . This type of inverse problems can be formulated
in the form (1.1) by taking

S(q, u) = ‖F (q)− u‖r, ∀(q, u) ∈ Q× U ,

where 0 < r <∞ is a number and ‖ · ‖ denotes the norm on U . More examples of
inverse problems that can be formulated in the form (1.1) will be provided later.

The equation (1.1) may have many solutions if there exists one. In order to pick
the one with the desired feature, we choose a proper penalty functional R : Q →
(−∞,∞] to determine a solution q† such that

R(q†) = min
{
R(q) : q ∈ Q and S(q, u†) = 0

}
, (1.3)
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which, if exists, is called an R-minimizing solution of (1.1). Determining an R-
minimizing solution of (1.1) is ill-posed in general. In order to determine an R-
minimizing solution stably, regularization techniques should be employed.

Let ũ be a noisy data. The variational regularization for solving (1.1) is to use
the solution of the minimization problem

q̃α ∈ arg min
q∈Q
{S(q, ũ) + αR(q)} (1.4)

to approximate an R-minimizing solution q†, where α > 0 is the so-called reg-
ularization parameter. The approximation accuracy of q̃α to q† depends heavily
on the choice of the regularisation parameter α > 0. In case a good estimate on
S(q†, ũ) is known, one may choose α by a priori or a posteriori manner. However,
the knowledge on S(q†, ũ) is usually obtained by estimation and a good estimate
may be difficult to obtain. In case S(q†, ũ) is overestimated or underestimated, it
could result in a poor approximate solution. Therefore, it is necessary to develop
parameter choice rules which depends only on the data ũ.

For variational regularization for linear ill-posed inverse problems in Hilbert
spaces, Hanke and Raus proposed in [13] a heuristic rule for selecting the regu-
larization parameter α, which can be viewed as a heuristic variant of the discrep-
ancy principle. This heuristic parameter choice rule was extended in [24] for con-
vex variational regularization for solving linear ill-posed problems Fq = u†, where
F : Q → U is a bounded linear operator from a Banach space Q to a Hilbert space
U , and a convergence result was established under a source condition on the sought
solution and a randomness condition on the noisy data. The heuristic rule of Hanke
and Raus was further generalized in [25] for the variational regularization methods
for solving linear as well as nonlinear ill-posed inverse problems of the form (1.2)
in Banach spaces and some convergence results were proved under a randomness
condition on the noisy data without relying on any source conditions on the sought
solution. Since U is allowed to be a general Banach space, the results in [25] can
be used to deal with the situation that the data is corrupted by various types of
noise. However, the results in [25] requires the forward operator F to satisfy certain
conditions, such as the tangential cone condition, when F is a nonlinear operator,
which restricts the range of applications. In this paper we will extend the heuris-
tic discrepancy principle of Hanke and Raus to the variational regularization (1.4)
under most general conditions and provide applications which can not be covered
by the model in [25].

This paper is organized as follows. In Section 2 we first give the precise descrip-
tion of the heuristic discrepancy principle, we then derive an a posteriori error esti-
mates when the sought solution satisfies a variational source condition and establish
a convergence result under a randomness condition on the noisy data without using
any source condition on the sought solution. We also give a discussion on the varia-
tional source condition for inverse problems of the form (1.1) by borrowing an idea
from the recent work [9]. In Section 3 we will provide examples of inverse problems
which can be cast into the form (1.1); in particular we give a detailed discussion
on a convex regularization framework for a class of elliptic parameter estimation
problems and on the Kohn-Vogenius formulation for the electrical impedance to-
mography. In Section 4 we provide numerical simulations to test the theoretical
results.
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2. Theory

Throughout this paper we will assume that (1.1) has a solution in dom(R), the
domain of R. In this section we will consider the variational regularization (1.4)
for solving (1.1). We will formulate the heuristic discrepancy principle and give its

detailed analysis. Throughout the paper we will use
τQ−→ and

τU−→ to denote the
convergence with respect to the topologies τQ and τU respectively. Our analysis is
based on the following conditions on the penalty functional R : Q → [0,∞] and the
data misfit term S : Q× U → [0,∞].

Assumption 2.1. (i) R : Q → [0,∞] is proper, nonnegative and τQ-lower
semi-continuous.

(ii) For every ρ > 0, the sublevel set

Mρ := {q ∈ Q : R(q) ≤ ρ}

is τQ-sequentially compact. That is, every sequence {qn} in Mρ has a τQ-
convergent subsequence in Q.

(iii) The mapping (q, u)→ S(q, u) is (τQ× τU )-lower semi-continuous over Q×
U , i.e. {(qn, un)} ⊂ Q × U with qn

τQ−→ q ∈ Q and un
τU−→ u ∈ U implies

that

S(q, u) ≤ lim inf
n→∞

S(qn, un).

(iv) For each q ∈ Q the function u→ S(q, u) is τU -continuous.

Under Assumption 2.1, by a standard argument one can show that (1.1) has an
R-minimizing solution q† and the minimization problem (1.4) has a solution q̃α for
each α > 0. In case a good estimate on S(q†, ũ) is available, one may choose α
by a priori or a posteriori manner to investigate the approximation property of q̃α.
Since the knowledge on S(q†, ũ) is usually hard to obtain, we consider to choose the
regularization parameter α by a heuristic rule which depends only on ũ. Motivated
by the work in [13], [7, Chapter 4] and [25], we propose the following heuristic
discrepancy principle to choose the regularization parameter.

Rule 2.1. Let A ≥ 0, α0 > 0 and 0 < γ < 1 be given numbers, and let

∆γ =
{
α0γ

j : j = 0, 1, · · ·
}
.

Define α∗ := α∗(ũ) ∈ ∆γ such that

α∗ ∈ arg min
α∈∆γ

{
Θ(α, ũ) :=

(
1

α
+A

)
S(q̃α, ũ)

}
and use q̃α∗ as an approximate solution.

When using Rule 2.1, we should avoid to choose α0 > 0 too small since otherwise
it may produce a small regularization parameter α∗ and hence result in a bad
approximate solution that is oscillatory. On the other hand, by the definition of q̃α
we have

S(q̃α, ũ) + αR(q̃α) ≤ S(qm, ũ) + αR(qm),

where qm ∈ Q denotes an element such that R(qm) = minq∈QR(q) whose existence
is guaranteed by Assumption 2.1. Thus S(q̃α, ũ) ≤ S(qm, ũ) and so

1

α
S(q̃α, ũ)→ 0 as α→∞.
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Consequently, if α0 is too large and A = 0, Rule 2.1 may output a large parameter
α∗ which may result in an approximate solution with less accuracy. Therefore,
when using Rule 2.1, we suggest to choose A > 0 to be suitably large and α0 > 0
to be suitably small. The choice of α0 > 0 can be based on a rough guess of the
optimal regularization parameter.

2.1. A posteriori error estimates. We first derive a posteriori error estimates
on q̃α∗ with α∗ chosen by Rule 2.1. To achieve this, we need conditions on the
sought R-minimizing solution q†. We will assume the following variational source
condition on q†.

Assumption 2.2. There is an error function E : Q×Q → [0,∞) with E(q, q) = 0
whenever q ∈ Q such that

E(q, q†) ≤ R(q)−R(q†) + ϕ(S(q, u†)) (2.1)

for all q ∈ Mρ := {q ∈ Q : R(q) ≤ ρ} with ρ > R(q†), where ϕ : [0,∞) → [0,∞)
is a concave index function. Here ϕ is called an index function if it is continuous
and strictly increasing with ϕ(0) = 0.

We will give a detailed discussion on Assumption 2.2 in Proposition 2.4. In order
to carry out the derivation of the error estimate, we need the following “quasi-
triangle inequality” on the data misfit term S.

Assumption 2.3. There is a constant CS ≥ 1 such that for any u† ∈ U and q† ∈ Q
satisfying S(q†, u†) = 0 and any u ∈ U and q ∈ Q there holds

S(q, u†) ≤ CS
(
S(q†, u) + S(q, u)

)
.

Now we are ready to prove the following a posteriori error estimate.

Theorem 2.2. Let R and S satisfy Assumption 2.1 and Assumption 2.3. Assume
that q† is an R-minimizing solution of (1.1) satisfying Assumption 2.2 with Φ(t) :=
t/ϕ(t) being strictly increasing. Let α∗ be determined by Rule 2.1. If q̃α∗ ∈ Mρ

and δ∗ := S(q̃α∗ , ũ) 6= 0, then

E(q̃α∗ , q
†) ≤ C

(
1 +

δ

δ∗

)
(δ + ϕ(δ + δ∗)) . (2.2)

where δ := S(q†, ũ) denotes the noise level and C is a constant depending only on
α0, γ, A and CS .

Proof. We first show that if q̃α ∈Mρ, then

E(q̃α, q
†) ≤ δ

α
+ CSϕ(δ + S(q̃α, ũ)), (2.3)

S(q̃α, ũ) ≤ 2δ + Φ−1(3CSα). (2.4)

To see this, by using the minimality of q̃α we have

α
(
R(q̃α)−R(q†)

)
+ S(q̃α, ũ) ≤ S(q†, ũ) = δ.

From Assumption 2.2 it then follows that

αE(q̃α, q
†) + S(q̃α, ũ) ≤ δ + αϕ(S(q̃α, u

†)). (2.5)
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Note that ϕ is a concave index function, we have ϕ(bt) ≤ bϕ(t) for any t ≥ 0 and
b ≥ 1. By virtue of Assumption 2.3 we then have

ϕ(S(q̃α, u
†)) ≤ ϕ(CS(S(q†, ũ) + S(q̃α, ũ))

≤ CSϕ(δ + S(q̃α, ũ)).

Combining this with (2.5) yields

αE(q̃α, q
†) + S(q̃α, ũ) ≤ δ + CSαϕ(δ + S(q̃α, ũ)). (2.6)

Since S(q̃α, ũ) ≥ 0, by dropping this term on the left hand side of (2.6) we can
obtain (2.3). Next, by dropping the nonnegative term αE(q̃α, q

†) on the left hand
side of (2.6) we have

S(q̃α, ũ) ≤ δ + CSαϕ(δ + S(q̃α, ũ)). (2.7)

If CSαϕ(δ + S(q̃α, ũ)) ≤ δ, then

S(q̃α, ũ) ≤ 2δ. (2.8)

If CSαϕ(δ + S(q̃α, ũ)) > δ, we have from (2.7) that

δ + S(q̃α, ũ) ≤ 2δ + CSαϕ(δ + S(q̃α, ũ))

≤ 3CSαϕ(δ + S(q̃α, ũ)).

Consequently Φ(δ + S(q̃α, ũ)) ≤ 3CSα and hence

S(q̃α, ũ) ≤ δ + S(q̃α, ũ) ≤ Φ−1(3CSα)

which together with (2.8) shows (2.4).
Now we are ready to derive the a posteriori error estimate (2.2). Since q̃α∗ is

assumed to be in Mρ, we may use (2.3) to derive that

E(q̃α∗ , q
†) ≤ δ

α∗
+ CSϕ(δ + S(q̃α∗ , ũ))

≤ δ

δ∗
Θ(α∗, ũ) + CSϕ(δ + δ∗). (2.9)

We need to estimate Θ(α∗, ũ). If S(q̃α, ũ) ≤ 3δ for all α ∈ ∆γ , we have

Θ(α∗, ũ) ≤ Θ(α0, ũ) ≤
(

1

α0
+A

)
S(q̃α0

, ũ)

≤ 3

(
1

α0
+A

)
δ. (2.10)

Next we will assume that S(q̃α, ũ) > 3δ for some α ∈ ∆γ . By the minimality of q̃α
and the nonnegativity of R we have

S(q̃α, ũ) ≤ S(q̃α, ũ) + αR(q̃α)

≤ αR(q†) + S(q†, ũ)

= αR(q†) + δ.

This implies that limα↘0 S(q̃α, ũ) ≤ δ. Therefore there must exist a largest number
α̂ in ∆γ such that

S(q̃γα̂, ũ) ≤ 3δ < S(q̃α̂, ũ).
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We need a lower bound for α̂. By the minimality of q̃α̂ we have

3δ + α̂R(q̃α̂) ≤ S(q̃α̂, ũ) + α̂R(q̃α̂)

≤ S(q†, ũ) + α̂R(q†)

= δ + α̂R(q†).

This implies that R(q̃α̂) ≤ R(q†) < ρ and thus q̃α̂ ∈ Mρ. Consequently we may
use (2.4) to obtain

3δ ≤ S(q̃α̂, ũ) ≤ 2δ + Φ−1(3CS α̂).

Thus δ ≤ Φ−1(3CS α̂). This together with the monotonicity of Φ gives

α̂ ≥ 1

3CS
Φ(δ).

Now we may use the minimality of Θ(α∗, ũ) to derive that

Θ(α∗, ũ) ≤ Θ(γα̂, ũ) =

(
1

γα̂
+A

)
S(q̃γα̂, ũ)

≤ 3

(
1

γα̂
+A

)
δ ≤ 3Aδ +

9CS
γ

δ

Φ(δ)

= 3Aδ +
9CS
γ

ϕ(δ). (2.11)

Combining (2.10) and (2.11) with (2.9) we obtain the desired estimate (2.2). �

The a posteriori estimate in Theorem 2.2 involves the quantity δ∗. If δ∗ is about
the order of δ, it gives convergence rate O(ϕ(δ)). If δ∗ is much larger than δ, only
weaker convergence rates are available. If δ∗ is significantly smaller than δ, the
factor δ/δ∗ blows up and the approximation may diverge. Therefore, the quantity
δ∗ provides an a posteriori check of Rule 2.1, its value should always be monitored
and the computed approximation should be discarded if δ∗ is presumably too small.

In Theorem 2.2 we have assumed that Rule 2.1 defines a positive number α∗
with q̃α∗ ∈ Mρ. This requirement can be guaranteed if the noisy data ũ satisfies
the following condition.

Assumption 2.4. There is a constant κ > 0 such that

S(q̃α, ũ) ≥ κS(q†, ũ) (2.12)

for any minimizer q̃α of (1.4) with any α ∈ ∆γ .

For an interpretation of Assumption 2.4 one may refer to [25] when the inverse
problem takes the form (1.2). Rough speaking, Assumption 2.4 stipulates a ran-
domness condition on the noise that corrupts the data. It would be interesting to
explore a statistical interpretation on Assumption 2.4 which however remains open.

Lemma 2.3. Let R and S satisfy Assumption 2.1 and Assumption 2.3. Let the
noisy data ũ satisfy Assumption 2.4. If

S(q†, ũ) ≤ α0R(q†) and

(
1 +

2(1 +Aα0)

κ

)
R(q†) ≤ ρ,

then Rule 2.1 determines a positive parameter α∗ ∈ ∆γ with q̃α∗ ∈Mρ.
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Proof. Let δ := S(q†, ũ). From Assumption 2.4 it follows that

Θ(α, ũ) =

(
1

α
+A

)
S(q̃α, ũ) ≥

(
1

α
+A

)
κS(q†, ũ) =

(
1

α
+A

)
κδ

for all α > 0. This implies that Θ(α, ũ)→∞ as α→ 0. Therefore there must exist
an α∗ ∈ ∆γ that gives the minimum of Θ(α, ũ) over ∆γ . By using Assumption 2.4
and the minimizing property of q̃α0

we have(
1

α∗
+A

)
κδ ≤ Θ(α∗, ũ) ≤ Θ(α0, ũ) =

(
1

α0
+A

)
S(q̃α0

, ũ)

≤
(

1

α0
+A

)(
δ + α0R(q†)

)
= (1 +Aα0)

(
δ

α0
+R(q†)

)
.

In view of the condition δ = S(q†, ũ) ≤ α0R(q†) we can obtain

κδ

α∗
≤
(

1

α∗
+A

)
κδ ≤ 2(1 +Aα0)R(q†)

which shows that

α∗ ≥
κδ

2(1 +Aα0)R(q†)
.

Consequently, it follows from the minimizing property of q̃α∗ that

R(q̃α∗) ≤
δ

α∗
+R(q†) ≤

(
2(1 +Aα0)

κ
+ 1

)
R(q†) ≤ ρ.

Thus q̃α∗ ∈Mρ and the proof is complete. �

We remark that the a posteriori error estimate in Theorem 2.2 is based on the
variational source condition on q† specified in Assumption 2.2. Variational source
conditions were first introduced in [21], as a generalization of the standard source
conditions in Hilbert spaces, to derive convergence rates of Tikhonov regularization
in Banach spaces. This kind of source conditions was further generalized and refined
later, see [2, 12, 22, 33] for more information. Recently it has been shown in [9]
that, for inverse problems of the form (1.2) in Banach spaces, under certain natural
conditions, a variational source condition is always satisfied with a suitable concave
index function ϕ. The error function E in Assumption 2.2 is used to measure
the speed of convergence. In the original version of variational source conditions,
Bregman distance induced by R is used as an error function. Use of a general error
function has the advantage of covering a wider range of applications, see [9, 11].
In the following result we extend the work in [9] for inverse problems of the form
(1.1).

Proposition 2.4. Let Assumption 2.1 hold and let ρ > R(q†). Furthermore,
assume that there is an error function E : Q×Q → [0,∞) with E(q, q) = 0 whenever
q ∈ Q such that the following conditions hold:

(i) E(q∗, q†) ≤ R(q∗)−R(q†) for all q∗ ∈Mρ with S(q∗, u†) = 0;
(ii) The mapping q → −E(q, q†) +R(q) is τQ lower semi-continuous on Mρ;
(iii) There exist β > 1 and c ∈ R such that βE(q, q†)−R(q) ≤ c for all q ∈Mρ.
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Then there exists a concave strictly increasing index function ϕ : [0,∞) → [0,∞)
such that

E(q, q†) ≤ R(q)−R(q†) + ϕ(S(q, u†)), ∀q ∈Mρ.

Proof. The proof essentially follows [9] with refinements. For r ≥ 0 we define

D(r) := sup
q∈Mρ

{
E(q, q†)−R(q) +R(q†)− rS(q, u†)

}
.

It is clear that D(r) is monotonically decreasing with respect to r ∈ [0,∞). Fur-
thermore, by (iii) we have D(r) ≤ D(0) ≤ c +R(q†) < ∞ for all r ∈ [0,∞). We
claim that

lim
r→∞

D(r) ≤ 0.

If there is an r̂ ≥ 0 such that D(r̂) ≤ 0, then this claim holds obviously by the
monotonicity of D(r). So we may assume that D(r) > 0 for all r ≥ 0. Let ε > 0
be an arbitrarily small number. For each r ≥ 1 we may choose qr ∈Mρ such that

E(qr, q
†)−R(qr) +R(q†)− rS(qr, u

†) ≥ D(r)− ε. (2.13)

According to (iii) we have

E(qr, q
†)−R(qr) =

1

β

(
βE(qr, q

†)−R(qr)
)
−
(

1− 1

β

)
R(qr)

≤ c

β
−
(

1− 1

β

)
R(qr).

Combining the above two inequalities gives(
1− 1

β

)
R(qr) + rS(qr, u

†) ≤ c

β
+R(q†) + ε−D(r)

≤ c

β
+R(q†) + ε. (2.14)

This implies that {R(qr)} is bounded. Thus, by Assumption 2.1 (ii), there exist

q̂ ∈ Q and a sequence {rn} with rn →∞ such that qrn
τQ−→ q̂ as n→∞. According

to Assumption 2.1 (i) we have q̂ ∈ Mρ. From (2.14) we have S(qrn , u
†) → 0 as

n → ∞. Therefore, in view of Assumption 2.1 (iii), S(q̂, u†) = 0. Thus it follows
from (2.13), the nonnegativity of S, (ii) and (i) that

lim
r→∞

D(r) = lim
n→∞

D(rn) = lim sup
n→∞

D(rn)

≤ lim sup
n→∞

{
E(qrn , q

†)−R(qrn) +R(q†)− rnS(qrn , u
†) + ε

}
≤ lim sup

n→∞

{
E(qrn , q

†)−R(qrn)
}

+R(q†) + ε

≤ E(q̂, q†)−R(q̂) +R(q†) + ε

≤ ε.
Since ε > 0 was arbitrary, we must have limr→∞D(r) = 0.

It is now ready to show the validity of the variational source condition. If D(r) ≤
0 for some r ≥ 0, we may take ϕ(t) = rt. Therefore we may assume D(r) > 0 for
all r ≥ 0. By the definition of D(r) we have

E(q, q†)−R(q) +R(q†) = E(q, q†)−R(q) +R(q†)− rS(q, u†) + rS(q, u†)

≤ D(r) + rS(q, u†)
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for all r ≥ 0 and q ∈Mρ. Let

ϕ(t) := inf
r≥0
{D(r) + rt} .

Then

E(q, q†)−R(q) +R(q†) ≤ inf
r≥0

{
D(r) + rS(q, u†)

}
= ϕ(S(q, u†)).

By definition ϕ is a nonnegative, concave, upper semi-continuous, increasing func-
tion on [0,∞). Because D(r) → 0 as r → ∞, we have ϕ(0) = 0. Moreover, it
follows from (iii) that

ϕ(t) ≤ D(0) ≤ sup
q∈Mρ

{
βE(q, q†)−R(q) +R(q†)

}
≤ c+R(q†) <∞

for all t ≥ 0. Thus ϕ is continuous on [0,∞). Moreover, by replacing ϕ(t) by ϕ(t)+√
t if necessary, we may gurantee the validity of the variational source condition

with a concave strictly increasing index function. �

2.2. Convergence. In Theorem 2.2, we have derived a posteriori error estimates
on E(q̃α∗ , q

†) for a given a noisy data ũ under variational source conditions on q†

for the regularization parameter α∗ chosen by Rule 2.1. It is natural to ask, for a

family of noisy data {uδ} satisfying uδ
τU−→ u† as δ → 0, if qδα is defined as

qδα ∈ arg min
q∈Q

{
S(q, uδ) + αR(q)

}
, (2.15)

and α∗ := α∗(u
δ) is chosen by Rule 2.1 with Θ(α, ũ) replaced by Θ(α, uδ), i.e.

α∗ ∈ arg min
α∈∆γ

{
Θ(α, uδ) :=

(
1

α
+A

)
S(qδα, u

δ)

}
, (2.16)

is it possible to guarantee the convergence of qδα∗ to q† as δ → 0 without using any
source conditions? Bakushinski’s veto ([1]) states that heuristic rules can not lead
to convergence in the sense of worst case scenario for any regularisation method.
In order to obtain a convergence result, certain conditions on the noisy data should
be imposed. We will use the following condition which means that {uδ} satisfies
Assumption 2.4 in a uniform sense.

Assumption 2.5. {uδ} is a family of noisy data with uδ
τU−→ u† as δ → 0, and

there is a constant 0 < κ < 1 such that

S(qδα, u
δ) ≥ κS(q†, uδ)

for every uδ and every solution qδα of (2.15) with all α ∈ ∆γ .

Now we are ready to prove the following convergence result on Rule 2.1.

Theorem 2.5. Let R and S satisfy Assumption 2.1, let {uδ} be a family of noisy
data satisfying Assumption 2.5, and let α∗ := α∗(u

δ) ∈ ∆γ be chosen by (2.16).
Then

S(qδα∗ , u
δ)→ 0 and R(qδα∗)→ R

† as δ → 0,

where

R† := min{R(q) : q ∈ Q and S(q, u†) = 0}.
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Moreover, any sequence from {qδα∗} contains a τQ-convergent subsequence whose
limit is an R-minimizing solution of (1.1). If, in addition, (1.1) has a unique

R-minimizing solution q†, then qδα∗
τQ−→ q† as δ → 0.

Proof. We first show that

Θ(α∗(u
δ), uδ)→ 0 as δ → 0. (2.17)

To this end, let q† ∈ Q be an R-minimizing solution of (1.1). We take a constant
τ > 1 and define α̂ := α̂(uδ) ∈ ∆γ to be the largest number such that

α̂2 + S(qδα̂, u
δ) ≤ τS(q†, uδ). (2.18)

This α̂ is well-defined. In fact, for any α > 0 we have from the minimality of qδα
that

S(qδα, u
δ) + αR(qδα) ≤ S(q†, uδ) + αR(q†)

which implies that

lim sup
α→0

S(qδα, u
δ) ≤ S(q†, uδ). (2.19)

Therefore, for τ > 1, there must exist a finite number α̂ ∈ ∆q satisfying (2.18).

Since uδ
τU−→ u†, by Assumption 2.1 (iv) we have S(q†, uδ) → S(q†, u†) = 0 as

δ → 0. Thus, by the definition of α̂(uδ) we can see that α̂ := α̂(uδ)→ 0 as δ → 0.
We claim that

S(q†, uδ)

α̂
→ 0 as δ → 0. (2.20)

To see this, we use the minimizing property of qδα̂/γ to derive that

S(qδα̂/γ , u
δ) +

α̂

γ
R(qδα̂/γ) ≤ S(q†, uδ) +

α̂

γ
R(q†). (2.21)

Since α̂ < α̂/γ, we have (
α̂

γ

)2

+ S(qδα̂/γ , u
δ) > τS(q†, uδ)

which together with (2.21) implies that

τS(q†, uδ) +
α̂

γ
R(qδα̂/γ) ≤ S(qδα̂/γ , u

δ) +
α̂

γ
R(qδα̂/γ) +

(
α̂

γ

)2

≤ S(q†, uδ) +
α̂

γ
R(q†) +

(
α̂

γ

)2

. (2.22)

Since τ > 1, we obtain

R(qδα̂/γ) ≤ α̂

γ
+R(q†).

In view of α̂→ 0 as δ → 0, we can derive that

lim sup
δ→0

R(qδα̂/γ) ≤ R(q†). (2.23)

This shows that {qδα̂/γ} ⊆ Mρ with ρ = R(q†) + 1 for all small δ > 0. By As-

sumption 2.1 (ii), {qδα̂/γ} has a τQ-convergent subsequence, and, for simplicity of



11

exposition, we denote this subsequence again by {qδα̂/γ}. Let q̂ ∈ Q be the τQ-limit

of this subsequence. By (2.23) and the τQ-lower semi-continuity of R, we have

R(q̂) ≤ lim inf
δ→0

R(qδα̂/γ) ≤ lim sup
δ→0

R(qδα̂/γ) ≤ R(q†). (2.24)

Since uδ
τU−→ u† and qδα̂/γ

τQ−→ q̂ as δ → 0, we may use Assumption 2.1 (iii) and

(2.21) to obtain

S(q̂, u†) ≤ lim inf
δ→0

S(qδα̂/γ , u
δ) ≤ lim inf

δ→0

{
S(q†, uδ) +

α̂

γ
R(q†)

}
= 0.

Therefore, it follows from the nonnegativity of S that S(q̂, u†) = 0. Consequently,
q̂ is a solution of S(q, u†) = 0 with R(q̂) ≤ R(q†). By the R-minimality of q†, we
must have R(q̂) = R(q†) which together with (2.24) shows that

lim
δ→0
R(qδα̂/γ) = R(q̂) = R(q†). (2.25)

In view of (2.22), we have

(τ − 1)
S(q†, uδ)

α̂
≤ α̂

γ2
+

1

γ

(
R(q†)−R(qδα̂/γ)

)
.

Since τ > 1, we may use α̂ → 0 and (2.25) to conclude that S(q†, uδ)/α̂ → 0 as
δ → 0 which shows (2.20).

Now we are ready to show (2.17). In fact, by the minimality of α∗(u
δ), the choice

of α̂, and (2.20) we have

0 ≤ Θ(α∗, u
δ) ≤ Θ(α̂, uδ) =

(
1

α̂
+A

)
S(qδα̂, u

δ)

≤ τ
(

1

α̂
+A

)
S(q†, uδ)→ 0

as δ → 0 which shows (2.17). Note that

Θ(α∗, u
δ) =

(
1

α∗
+A

)
S(qδα∗ , u

δ) ≥
S(qδα∗ , u

δ)

α∗
,

we may use (2.17), α∗ ≤ α0 and S(qδα∗ , u
δ) ≥ κS(q†, u†) from Assumption 2.5 to

derive that

S(qδα∗ , u
δ)→ 0 and

S(q†, uδ)

α∗
→ 0 as δ → 0. (2.26)

Next we show the convergence result. By using the minimality of qδα∗ , the non-
negativity of S and (2.26) we have

lim sup
δ→0

R(qδa∗) ≤ lim sup
δ→0

{
S(q†, uδ)

α∗
+R(q†)

}
= R(q†).

Thus qδα∗ ∈ Mρ with ρ = R(q†) + 1 for all small δ > 0. Therefore, we can use a

similar argument for dealing with the convergence of {qδα̂/γ} to conclude that, by

choosing a subsequence if necessary, there exists an R-minimizing solution q∗ of

(1.1) such that qδα∗
τQ−→ q∗ and R(qδα∗)→ R(q∗) = R(q†) as δ → 0.

If q† is the unique R-minimizing solution (1.1), then the above argument shows
that every sequence from {qδα∗} has a subsequence converging to q†. Using a

subsequence-subsequence argument, the whole sequence {qδα∗}δ>0 must converge

to q†. The proof is complete. �
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3. Applications

In this section we will address the choices of the regularization functional R and
the data misfit term S with applications of the theory developed in section 2.

The regularization functional R can be chosen in various manners depending on
a priori information on the sought parameters. If the parameter to be reconstructed
is a function defined on a bounded domain Ω in Rn, one may take ([32])

R(q) = a‖q‖L1(Ω) + b‖q‖2L2(Ω) + c

ˆ
Ω

|Dq|

with 0 < p < ∞ and nonnegative a, b, c in which at least one of them is nonzero,
where ˆ

Ω

|Dq| := sup

{ˆ
Ω

qdivfdx : f ∈ C1
0 (Ω,Rn) and ‖f‖L∞(Ω) ≤ 1

}
denotes the total variation of q on Ω. If the sought parameter is a finite or infinite
sequence, one may take ([3])

R(q) = a‖q‖0 + b‖q‖p`p + c‖q‖TV

with nonnegative a, b, c in which at least one of them is nonzero, where ‖q‖0 denotes
the “0-norm” counting the number of nonzero elements in q and ‖q‖TV denotes a
discrete total variation of q which can be defined in various ways. One can even
take

R(q) = ‖q‖`1 − η‖q‖`2 ,
with 0 ≤ η < 1, for sparsity recovery ([6, 8, 35]).

The choices of the data misfit term S depend on the modelling of inverse problems
and the type of noise which corrupts the data. In case an inverse problem can be
formulated in the form (1.2) with U being a Banach space, one may take S(q, u) =
‖F (q) − u‖r with r > 0. For inverse problems of the form (1.2) with F : Q → U
being a mapping from a topological space Q to a topological space U , one may take

S(q, u) = Φ(F (q), u),

with Φ : U × U → [0,∞] satisfying suitable properties. One may refer to [10, 30]
for numerous choices of Φ including the Kullback-Leibler functional.

In the following we will provide further examples by discussing two groups of
inverse problems for partial differential equations.

3.1. A convex framework for elliptic parameter estimation. We will provide
a unified framework for treating parameter estimation in a class of elliptic problems
which have been considered in [14, 15, 16, 20, 31, 36] individually. To this end, we
consider the elliptic problems whose weak formulation takes the form

a(u, v; q) + b(u, v) = `(v), ∀v ∈ V, (3.1)

where V is a Hilbert space, ` ∈ V ∗, i.e. ` is a bounded linear functional on V , q
is a parameter belonging to a Banach space Z, and a(·, ·; ·) and b(·, ·) satisfy the
following conditions:

(A1) a(·, ·; ·) is trilinear over V × V ×Z, and b(·, ·) is bilinear over V × V . Both a
and b are symmetric with respect to the first two arguments.
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(A2) There exists a constant C0 such that

|a(u, v; q)| ≤ C0‖u‖V ‖v‖V ‖q‖Z and |b(u, v)| ≤ C0‖u‖V ‖v‖V
for all u, v ∈ V and q ∈ Z.

(A3) There is a bounded convex set A ⊂ Z and a constant c0 > 0 such that

a(u, u; q) + b(u, u) ≥ c0‖u‖2V
for all u ∈ V and q ∈ A.

(A4) There is a reflexive Banach space B such that Z ↪→ B and A is closed in B;
moreover for any sequence {qn} ⊂ A and q ∈ A satisfying ‖qn − q‖B → 0
there holds

sup
‖u‖V ≤β

|a(u, v; qn − q)| → 0 as n→∞

for each v ∈ V and each constant β > 0.

We are interested in estimating the parameter q ∈ A from a measurement ũ of u
in V . We will use the minimizer

q̃α = arg min
q∈A
{a(u(q)− ũ, u(q)− ũ; q) + b(u(q)− ũ, u(q)− ũ) + αR(q)} (3.2)

to approximate the sought parameter q† ∈ A, where R(q) is a suitably chosen
regularization functional, and u(q) ∈ V denotes the unique solution of (3.1) for
q ∈ A, whose existence, according to the conditions (A1)–(A3), is guaranteed by
the Lax-Milgram theorem; moreover

‖u(q)‖V ≤
1

c0
‖`‖V ∗ . (3.3)

In order to apply the theory developed in Section 2, we take U = V , Q = A,
τU = strong topology on V , τQ = weak topology on B, and define S : Q → U by

S(q, u) := a(u(q)− u, u(q)− u; q) + b(u(q)− u, u(q)− u),

then the identification of q† becomes the equation (1.1) and (3.2) becomes the form
(1.4). Our heuristic rule then choose the regularization parameter α∗ ∈ ∆γ by Rule
2.1 with

Θ(α, ũ) =

(
1

α
+A

)
[a(u(q̃α)− ũ, u(q̃α)− ũ; q̃α) + b(u(q̃α)− ũ, u(q̃α)− ũ)] . (3.4)

We need to check that S satisfies Assumption 2.1 (iii) and (iv) and Assumption
2.3.

The verification of Assumption 2.3 can be proceeded as follows. By using (A1),
(A2) and the boundedness of A in Z there is a constant C1 ≥ 1 such that

1

C1
‖u(q)− u‖2V ≤ S(q, u) ≤ C1‖u(q)− u‖2V

for all q ∈ A and u ∈ V . Therefore, for any q ∈ A and u ∈ V we have

S(q, u†) ≤ C1‖u(q)− u†‖2V = C1‖u(q)− u(q†)‖2V
≤ 2C1

(
‖u(q†)− u‖2V + ‖u(q)− u‖2V

)
≤ 2C2

1

(
S(q†, u) + S(q, u)

)
which shows Assumption 2.3.
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To check Assumption 2.1 (iv) for S, we note that

S(q, ū)− S(q, u) = a(u− ū, u− ū; q) + b(u− ū, u− ū) + 2a(u− ū, u(q)− u; q)

+ 2b(u− ū, u(q)− u)

for any q ∈ A and u, ū ∈ V . Therefore, it follows from (A2) that

|S(q, ū)− S(q, u)|
≤ C0(‖q‖Z + 1)‖u− ū‖2V + 2C0(‖q‖Z + 1)‖u− ū‖V ‖u(q)− u‖V (3.5)

which immediately implies that, for each fixed q ∈ A, the function u → S(q, u) is
τU -continuous, and hence Assumption 2.1 (iv) is verified.

The verification of Assumption 2.1 (iii) is more subtle. We will achieve it by
showing that for each fixed u ∈ V , the function q → S(q, u) on A is convex and
continuous with respect to the strong topology on B. To this end, we need a series
of lemmas.

Given q ∈ A we can define a mapping u′(q) : Z → V such that, for each h ∈ Z,
η := u′(q)h is a solution of the problem

a(η, v; q) + b(η, v) = −a(u(q), v;h), ∀v ∈ V. (3.6)

According to the given conditions (A1)–(A3), this η := u′(q)h is uniquely defined
with the property

‖u′(q)h‖V ≤
C0

c0
‖u(q)‖V ‖h‖Z ≤

C0

c20
‖`‖V ∗‖h‖Z .

Therefore u′(q) : Z → V is a bounded linear map.

Lemma 3.1. For any p, q ∈ A there holds

‖u(p)− u(q)− u′(q)(p− q)‖V ≤
C0

c30
‖`‖V ∗‖p− q‖2Z .

Proof. To see this, we recall that

a(u(q), v; q) + b(u(q), v) = `(v), ∀v ∈ V,
a(u(p), v; p) + b(u(p), v) = `(v), ∀v ∈ V.

From these two equations we can derive that

a(u(p)− u(q), v; p) + b(u(p)− u(q), v) = −a(u(q), v; p− q).

In view of the definition of u′(q)(p− q) we then have

a(u(p)− u(q)− u′(q)(p− q), v; p) + b(u(p)− u(q)− u′(q)(p− q), v)

= −a(u′(q)(p− q), v; p− q).

By taking v = u(q + h)− u(q)− u′(q)(p− q) we can obtain

c0‖u(q + h)− u(q)− u′(q)(p− q)‖V ≤ C0‖u′(q)(p− q)‖V ‖p− q‖Z

≤ C0

c20
‖`‖V ∗‖p− q‖2Z .

The proof is thus complete. �

Lemma 3.2. For each u ∈ V , the function q → S(q, u) is a convex function on
the convex set A.



15

Proof. For any two points q0, q1 ∈ A let qt := (1 − t)q0 + tq1 for 0 ≤ t ≤ 1. It
follows from Lemma 3.1 that

d

dt
u(qt) = u′(qt)h, (3.7)

where h := q1− q0. Therefore, by using the definition of S(qt, u) and (3.6) we have

d

dt
S(qt, u) = a(u(qt)− u, u(qt)− u;h) + 2a(u′(qt)h, u(qt)− u; qt)

+ 2b(u′(qt)h, u(qt)− u)

= a(u(qt)− u, u(qt)− u;h)− 2a(u(qt), u(qt)− u;h)

= a(u, u;h)− a(u(qt), u(qt);h). (3.8)

Consequently, by using (3.7), (3.6) and (A3) we further have

d2

dt2
S(qt, u) = −2a(u(qt), u

′(qt)h;h)

= 2 [a(u′(qt)h, u
′(qt)h;h) + b(u′(qt)h, u

′(qt)h)]

≥ 2c0‖u′(qt)h‖2V ≥ 0.

This implies that S((1−t)q0 +tq1, u) ≤ (1−t)S(q0, u))+tS(q1, u) for any q0, q1 ∈ A
and 0 ≤ t ≤ 1. Therefore q → S(q, u) is convex over A. �

Lemma 3.3. For each u ∈ V the function q → S(q, u) is continuous on the set A
with respect to the strong topology in B.

Proof. Let {qn} ⊂ A and q ∈ A be such that ‖qn − q‖B → 0 as n → ∞. Since A
is a bounded set in Z, we may use (3.3) to conclude that {‖u(qn)‖V } is a bounded
sequence. Note that (A2) and (A3) imply that

|||v||| :=
√
a(v, v; q) + b(v, v), v ∈ V

is an equivalent norm on V under which (V, ||| · |||) becomes a Hilbert space. Thus, by
taking a subsequence if necessary, we may assume that {u(qn)} converges weakly
to some u in (V, ||| · |||), i.e.

a(u(qn), v; q) + b(u(qn), v)→ a(u, v; q) + b(u, v)

as n → ∞ for all v ∈ V . In view of the definition of u(qn) and the linearity of
q → a(·, ·; q) we have

`(v) = a(u(qn), v; qn) + b(u(qn), v) = a(u(qn), v; q) + b(u(qn), v)

+ a(u(qn), v; qn − q).

By taking n→∞ and using (A4) we can obtain

`(v) = a(u, v; q) + b(u, v), ∀v ∈ V.

This shows that u = u(q) and thus {u(qn)} converges weakly to u(q) in (V, ||| · |||),
i.e.

a(u(qn), v; q) + b(u(qn), v)→ a(u(q), v; q) + b(u(q), v), ∀v ∈ V.
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Moreover, since ` ∈ V ∗, it is also a bounded linear functional on (V, ||| · |||) and hence
`(u(qn))→ `(u(q)). Using these facts, (A1) and (A4) we can derive that

S(qn, u) = a(u(qn)− u, u(qn)− u; qn) + b(u(qn)− u, u(qn)− u)

= a(u(qn), u(qn)− u; qn) + b(u(qn), u(qn)− u)

− a(u, u(qn)− u; q)− b(u, u(qn)− u)

− a(u, u(qn)− u; qn − q)
= `(u(qn)− u)− a(u(qn)− u, u; q)− b(u(qn)− u, u)

− a(u(qn)− u, u; qn − q)
→ `(u(q)− u)− a(u(q)− u, u; q)− b(u(q)− u, u)

= `(u(q)− u)− a(u, u(q)− u; q)− b(u, u(q)− u). (3.9)

According to the definition of u(q) we have

`(u(q)− u) = a(u(q), u(q)− u; q) + b(u(q), u(q)− u).

Therefore we can obtain from (3.9) that S(qn, u) → S(q, u) as n → ∞. Thus
q → S(q, u) is continuous on A with respect to the strong topology in B. �

Lemma 3.4. For each u ∈ V the function q → S(q, u) is τQ lower semi-continuous
on A.

Proof. Since A is convex and closed in B and since, by Lemma 3.2 and Lemma 3.3,
q → S(q, u) is convex and continuous on A with respect to the strong topology in
B, the τQ lower semi-continuity of q → S(q, u) then follows from a well-known fact
in functional analysis. �

Now we are ready to verify Assumption 2.1 (iii) for S. Let {qn} ⊂ A and

{un} ⊂ V be such that qn
τQ−→ q ∈ A and un

τU−→ u ∈ V . We write

S(qn, un)− S(q, u) = [S(qn, un)− S(qn, u)] + [S(qn, u)− S(q, u)] . (3.10)

According to (3.5) we have

|S(qn, un)− S(qn, u)| ≤ C0(‖qn‖Z + 1) (‖un − u‖V + ‖u(qn)− u‖V ) ‖un − u‖V .

Since {qn} ⊂ A is a bounded, {‖u(qn)‖V } is also bounded by virtue of (3.3). Thus,

by using un
τU−→ u we can conclude that

lim
n→∞

(S(qn, un)− S(qn, u)) = 0.

Consequently, it follows from (3.10) and Lemma 3.4 that

lim inf
n→∞

(S(qn, un)− S(q, u))

= lim
n→∞

(S(qn, un)− S(qn, u)) + lim inf
n→∞

(S(qn, u)− S(q, u))

= lim inf
n→∞

(S(qn, u)− S(q, u)) ≥ 0,

i.e. S(q, u) ≤ lim infn→∞ S(qn, un) and thus Assumption 2.1 (iii) is verified.

Example 3.1. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω.
We consider the determination of q in the diffusion problem

−div(q∇u) = f in Ω,

u = 0 on ∂Ω
(3.11)
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from an measurement ũ of u in H1
0 (Ω). If we take V = H1

0 (Ω), Z = L∞(Ω),
B = L2(Ω), and define A = {q ∈ L∞(Ω) : γ0 ≤ q ≤ γ1 a.e. } for some positive
constants γ0 and γ1, then the elliptic problem (3.11) can be formulated into the
form (3.1) with

a(u, v; q) =

ˆ
Ω

q∇u · ∇vdx, b(u, v) = 0, `(v) =

ˆ
Ω

fvdx,

and the inverse problem takes the form (1.1) with

S(q, u) =

ˆ
Ω

q|∇(u(q)− u)|2.

It is easy to see that (A1)–(A3) hold. For verifying (A4), we first use the Cauchy-
Schwarz inequality and the Poincaré inequality to obtain

|a(u, v; qn − q)| ≤ C‖u‖V
(ˆ

Ω

|qn − q|2|∇v|2
)1/2

for some universal constant C. Thus

sup
‖u‖V ≤β

|a(u, v; qn − q)| ≤ Cβ
(ˆ

Ω

|qn − q|2|∇v|2
)1/2

.

By virtue of ‖qn− q‖L2(Ω) → 0 and {qn} ⊂ A, we may use the Lebesgue dominated
convergence theorem to concludeˆ

Ω

|qn − q|2|∇v|2 → 0 as n→∞.

We thus verify (A4).

Example 3.2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω.
We consider the estimation of the parameters q = (q1, q2) in the problem

−div(q1∇u) + q2u = f in Ω, u = 0 on ∂Ω (3.12)

from a measured data ũ of u in H1(Ω). If we take V = H1
0 (Ω), Z = L∞(Ω)×L∞(Ω),

B = L2(Ω)× L2(Ω) and define

A = {(q1, q2) ∈ L∞(Ω)× L∞(Ω) : γ0 ≤ q1 ≤ γ1 and γ2 ≤ q2 ≤ γ3 a. e. }

for some positive constants γ0, γ1, γ2 and γ3, then the elliptic problem has the weak
formulation (3.1) with

a(u, v; (q1, q2)) =

ˆ
Ω

(q1∇u · ∇v + q2uv)dx, b(u, v) = 0, `(v) =

ˆ
Ω

fvdx

and the inverse problem takes the form (1.1) with

S((q1, q2), u) =

ˆ
Ω

(
q1|∇(u(q1, q2)− u)|2 + q2|u(q1, q2)− u|2

)
,

where u(q1, q2) ∈ H1
0 (Ω) denotes the unique solution of (3.12) for given (q1, q2) ∈ A.

It is easy to see that (A1)–(A4) hold.
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3.2. Electrical impedance tomography. Let Ω ⊂ Rd be a bounded open do-
main with Lipschitz boundary ∂Ω, let ν denote the unit outward normal on ∂Ω,
and let ρ ∈ H−1(Ω) be given. We consider the electrical impedance tomography
which consists in determining the conductivity q in the elliptic equation

−div(q∇u) = ρ in Ω (3.13)

by virtue of a family of Cauchy data

(f`, g`), ` = 1, · · · , L,
where f` = u|∂Ω and g` = q ∂u∂ν

∣∣
∂Ω

for some u ∈ H1(Ω) satisfying (3.13). We assume
that

q ∈ Q := {q ∈ L∞(Ω) : q ≤ q(x) ≤ q̄ a.e. in Ω}
with known positive constants q and q̄.

We will adopt the variational approach of Kohn and Vogelius [26, 27, 28] to
identify q. To this end, for a given f ∈ H1/2(∂Ω) we use uD[q, f ] ∈ H1(Ω) to
denote the unique weak solution of

−div(q∇u) = ρ in Ω, u = f on ∂Ω, (3.14)

i.e. u = f on ∂Ω and ˆ
Ω

q∇u · ∇φ =

ˆ
Ω

ρφ, ∀φ ∈ H1
0 (Ω),

where
H1

0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.
For a given g ∈ H−1/2(∂Ω) we also use uN [q, g] ∈ H1

� (Ω) to denote the unique weak
solution of

−div(q∇v) = ρ in Ω, q
∂v

∂ν
= g on ∂Ω (3.15)

with vanishing boundary mean, i.e.ˆ
Ω

q∇v · ∇ψ =

ˆ
Ω

ρψ +

ˆ
∂Ω

gψ, ∀ψ ∈ H1
� (Ω), (3.16)

where

H1
� (Ω) :=

{
u ∈ H1(Ω) :

ˆ
∂Ω

u = 0

}
.

According to the theory of elliptic equations, uD[q, f ] and uN [q, g] are well-defined
and

‖uD[q, f ]‖H1(Ω) ≤ CD
(
‖ρ‖H−1(Ω) + ‖f‖H1/2(∂Ω)

)
,

‖uN [q, g]‖H1(Ω) ≤ CN
(
‖ρ‖H−1(Ω) + ‖g‖H−1/2(∂Ω)

) (3.17)

for some universal constants CD and CN depending only on q, q̄ and Ω.

Now we define the mapping S : Q× (H1/2(∂Ω)×H−1/2(∂Ω))L → [0,∞) by

S(q, {(f`, g`)}L`=1) :=

L∑
`=1

ˆ
Ω

q|∇(uD[q, f`]− uN [q, g`])|2

for q ∈ Q and {(f`, g`)}L`=1 ∈ (H1/2(∂Ω)×H−1/2(∂Ω))L. Then for the exactly given

Cauchy data {(f†` , g
†
` )}L`=1 ∈ (H1/2(∂Ω) × H−1/2(∂Ω))L, the electrical impedance

tomography amounts to solving

S(q, {(f†` , g
†
` )}

L
`=1) = 0 in Q.
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In case only measurement data {(f̃`, g̃`)}L`=1 ∈ (H1/2(∂Ω)×H−1/2(∂Ω))L is avail-
able, we may construct the conductivity q ∈ Q by considering the minimization
problem

q̃α ∈ arg min
q∈Q

{
L∑
`=1

ˆ
Ω

q|∇(uD[q, f̃`]− uN [q, g̃`])|2 + αR(q)

}
(3.18)

with a suitably chosen regularization functional R : Q → [0,∞). This minimization
problem clearly takes the form (1.4). The regularization property of (3.18) has been
analyzed recently in [19] under a priori choice of the regularization parameter. Our
heuristic rule chooses the regularization parameter as

α∗ ∈ arg min
α∈∆γ

{(
1

α
+A

) L∑
`=1

ˆ
Ω

q̃α|∇(uD[q̃α, f̃`]− uN [q̃α, g̃`])|2
}
.

In order to apply the convergence result for Rule 2.1 in Section 2, we are going

to show that if {q(n)} ⊂ Q and {(f (n)
` , g

(n)
` )} ⊂ H1/2(∂Ω) ×H−1/2(∂Ω) satisfying

‖q(n) − q‖L1(Ω) → 0 and ‖f (n)
` − f`‖H1/2(∂Ω) + ‖g(n)

` − g`‖H−1/2(∂Ω) → 0 as n→∞
for ` = 1, · · · , L, then

lim
n→∞

S(q(n), {(f (n)
` , g

(n)
` )}L`=1) = S(q, {(f`, g`)}L`=1)

which implies that Assumption 2.1 (iii) and (iv) hold with U := (H1/2(∂Ω) ×
H−1/2(∂Ω))L, τQ := strong topology on L1(Ω) and τU := strong topology on U .
To see this, it suffices to show that if {q(n)} ⊂ Q and {(f (n), g(n))} ⊂ H1/2(∂Ω)×
H−1/2(∂Ω) satisfy ‖q(n)−q‖L1(Ω) → 0 and ‖f (n)−f‖H1/2(∂Ω)+‖g(n)−g‖H−1/2(∂Ω) →
0 as n→∞, then

lim
n→∞

Γ(q(n), (f (n), g(n))) = Γ(q, (f, g)), (3.19)

where

Γ(q, (f, g)) :=

ˆ
Ω

q|∇(uD[q, f ]− uN [q, g])|2.

We first show that

‖uD[q(n), f ]− uD[q, f ]‖H1(Ω) → 0, ‖uN [q(n), g]− uN [q, g]‖H1(Ω) → 0 (3.20)

as n → ∞. By the definition of uD[q(n), f ] and uD[q, f ] we have uD[q(n), f ] −
uD[q, f ] ∈ H1

0 (Ω) and
ˆ

Ω

q(n)∇uD[q(n), f ] · ∇φ =

ˆ
Ω

ρφ =

ˆ
Ω

q∇uD[q, f ] · ∇φ

for any φ ∈ H1
0 (Ω). Therefore

0 =

ˆ
Ω

q(n)∇uD[q(n), f ] · ∇φ−
ˆ

Ω

q∇uD[q, f ] · ∇φ

=

ˆ
Ω

q(n)∇
(
uD[q(n), f ]− uD[q, f ]

)
· ∇φ+

ˆ
Ω

(q(n) − q)∇uD[q, f ] · ∇φ.
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By taking φ = uD[q(n), f ] − uD[q, f ] in the above equation, using the condition
q(n) ≥ q, and the Cauchy-Schwartz inequality we have

q

ˆ
Ω

|∇(uD[q(n), f ]− uD[q, f ])|2 ≤
ˆ

Ω

q(n)|∇(uD[q(n), f ]− uD[q, f ])|2

=

ˆ
Ω

(q − q(n))∇uD[q, f ] · ∇(uD[q(n), f ]− uD[q, f ])

≤
(ˆ

Ω

|∇(uD[q(n), f ]− uD[q, f ])|2
)1/2(ˆ

Ω

|q(n) − q|2|∇uD[q, f ]|2
)1/2

Consequently

q2

ˆ
Ω

|∇(uD[q(n), f ]− uD[q, f ])|2 ≤
ˆ

Ω

|q(n) − q|2|∇uD[q, f ]|2.

Since {q(n)} ⊂ Q and ‖q(n) − q‖L1(Ω) → 0, by the dominated convergence theorem
we can show that the right hand side converges to zero as n → 0. Therefore, we
may use the Poincare inequality to conclude the first result in (3.20). The second
result in (3.20) can be proved in a similar way.

Next we will show that

lim
n→∞

Γ(q(n), (f, g)) = Γ(q, (f, g)). (3.21)

We first write

Γ(q(n), (f, g))− Γ(q, (f, g))

=

ˆ
Ω

q(n)|∇(uD[q(n), f ]− uN [q(n), g])|2 −
ˆ

Ω

q|∇(uD[q, f ]− uN [q, g])|2

= I
(n)
1 + I

(n)
2 + I

(n)
3 , (3.22)

where

I
(n)
1 =

ˆ
Ω

q(n)|∇uD[q(n), f ]|2 −
ˆ

Ω

q|∇uD[q, f ]|2,

I
(n)
2 = −2

ˆ
Ω

q(n)∇uD[q(n), f ] · ∇uN [q(n), g] + 2

ˆ
Ω

q∇uD[q, f ] · ∇uN [q, g],

I
(n)
3 =

ˆ
Ω

q(n)|∇uN [q(n), g]|2 −
ˆ

Ω

q|∇uN [q, g]|2.

Note that

I
(n)
1 =

ˆ
Ω

(q(n) − q)|∇uD[q, f ]|2

+

ˆ
Ω

q(n)∇(uD[q(n), f ]− uD[q, f ]) · ∇(uD[q(n), f ] + uD[q, f ]),

we have

|I(n)
1 | ≤

ˆ
Ω

|q(n) − q||∇uD[q, f ]|2

+ q̄
(
‖uD[q(n), f ]‖H1(Ω) + ‖uD[q, f ]‖H1(Ω)

)
‖uD[q(n), f ]− uD[q, f ]‖H1(Ω).

The first term converges to zero by the dominated converhence theorem and the

second term converges to zero by the first result in (3.20). Hence I
(n)
1 → 0 as
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n→∞. By a similar argument we can also show that I
(n)
3 → 0 as n→∞. For the

term I
(n)
2 we can write

I
(n)
2 = 2

ˆ
Ω

q(n)∇(uD[q, f ]− uD[q(n), f ]) · ∇uN [q(n), g]

+ 2

ˆ
Ω

q(n)∇uD[q, f ] · ∇(uN [q, g]− uN [q(n), g])

+ 2

ˆ
Ω

(q − q(n))∇uD[q, f ] · ∇uN [q, g].

Therefore

|I(n)
2 | ≤ 2q̄‖uN [q(n), g]‖H1(Ω)‖uD[q, f ]− uD[q(n), f ]‖H1(Ω)

+ 2q̄‖uD[q, f ]‖H1(Ω)‖uN [q, g]− uN [q(n), g]‖H1(Ω)

+ 2

ˆ
Ω

|q − q(n)||∇uD[q, f ]||∇uN [q, g]|.

By using (3.20), the first two terms on the right hand side converge to zero, and,
by the dominated convergence theorem, the last term on the right hand side also

converges to zero. Therefore I
(n)
2 → 0 as n → ∞. Combining the above results

with (3.22) we thus obtain (3.21).
Finally we show (3.19). According to (3.21), it remains only to show that

lim
n→∞

(
Γ(q(n), (f (n), g(n)))− Γ(q(n), (f, g))

)
= 0. (3.23)

Let v(n) := uD[q(n), f (n)]−uD[q(n), f ] and w(n) := uN [q(n), g(n)]−uN [q(n), g]. Then
v(n) ∈ H1(Ω) and w(n) ∈ H1

� (Ω) are weak solutions of{
−div(q(n)∇v(n)) = 0 in Ω
v(n) = f (n) − f on ∂Ω

and

{
−div(q(n)∇w(n)) = 0 in Ω

q(n) ∂w(n)

∂ν = g(n) − g on ∂Ω

respectively. Thus, it follows from (3.17) that

‖v(n)‖H1(Ω) ≤ CD‖f (n) − f‖H1/2(∂Ω),

‖w(n)‖H1(Ω) ≤ CN‖g(n) − g‖H−1/2(∂Ω).
(3.24)

Note that

Γ(q(n), (f (n), g(n)))− Γ(q(n), (f, g)) =

ˆ
Ω

q(n)
∣∣∣∇(uD[q(n), f (n)]− uN [q(n), g(n)])

∣∣∣2
−
ˆ

Ω

q(n)
∣∣∣∇(uD[q(n), f ]− uN [q(n), g])

∣∣∣2
=

ˆ
Ω

q(n)∇(v(n) − w(n)) · ∇η(n),

where

η(n) := uD[q(n), f (n)]− uN [q(n), g(n)] + uD[q(n), f ]− uN [q(n), g].

By using (3.17) it is easy to see that ‖η(n)‖H1(Ω) ≤ C for a universal constant C
independent of n. Therefore, we can use (3.24) to conclude that

|Γ(q(n), (f (n), g(n)))− Γ(q(n), (f, g))|

≤ C‖η(n)‖H1(Ω)‖v(n) − w(n)‖H1(Ω) ≤ C
(
‖f (n) − f‖

H
1
2 (∂Ω)

+ ‖g(n) − g‖
H−

1
2 (∂Ω)

)
.
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This shows (3.23).

4. Numerical simulations

In this section we will present numerical results to validate the theory developed
in Section 2 by considering the inverse problems discussed in Section 3.1 and Section
3.2.

For the inverse problems discussed in Section 3.1, the regularized solutions are
defined by (3.2) and our heuristic rule chooses the regularization parameter α∗ ∈ ∆γ

by Rule 2.1 with Θ(α, ũ) given by (3.4). Therefore we need to solve for α ∈ ∆γ

the minimization problem (3.2). When B is a Hilbert space and the regularization
functional R(q) = φ(q, q) for a bounded symmetric bilinear form φ, we may use a
Newton-type method to solve it. To be more precise, according to (3.8) and the
convexity of S, solving (3.2) is equivalent to finding (u, q) ∈ V ×A such that

a(u, v; q) + b(u, v) = `(v), ∀v ∈ V,
a(ũ, ũ; p− q)− a(u, u; p− q) + 2αφ(q, p− q) ≥ 0, ∀p ∈ A.

(4.1)

We then solve (4.1) by applying the projected Newton method or the semi-smooth
Newton method [4, 18, 23, 34]) which enables us to consider (4.1) first by replacing
the inequality by equality and then by projecting the computational result for q
back onto A after each iteration. This thus leads to Algorithm 1. In case R(q)
is nonsmooth, e.g. R(q) is the total variation of q, we will use an iteratively
reweighted least-squares (IRLS) algorithm [5, 29] and then apply the projected
Newton method.

Algorithm 1 Projected Newton method for (4.1)

1: Given initial guess u0, q0.
2: for k = 0, 1, 2, ... do
3: Obtain uk+1, q̃k+1 by solving

a(uk+1, v; qk) + b(uk+1, v) + a(uk, v; q̃k+1) = `(v) + a(uk, v; qk), ∀ v ∈ V,

2αφ(q̃k+1, p)− 2a(uk, uk+1, p) = −a(ũ, ũ; p)− a(uk, uk, p), ∀p ∈ B.
4: Project q̃k+1 onto A to obtain qk+1.
5: Check stop condition.
6: end for

We remark that the projected Newton method is robust and efficient and enjoys
a local superlinear convergence. Since our heuristic rule requires to compute q̃α for
a number of α ∈ ∆γ , we adopt a path-following strategy: let αn = α0γ

n and use
Algorithm 1 on the decreasing sequences {αn} with the solution q̃αn as an initial
guess for computing q̃αn+1

. According to a remark after Rule 2.1 in Section 2, the
constant A appearing in Θ(α, ũ) need to be large enough in order to avoid getting
an unwanted large regularization parameter. In our computations, we will always
choose A = 105.

In order to implement Algorithm 1 numerically, we need to discretize the vari-
ational equations. We may replace V and B by suitably chosen finite-dimensional
spaces Vh and Bh and replace A by Ah := A∩Bh in Algorithm 1. When V and B
are spaces consisting of functions defined on a bounded domain Ω ⊂ Rn, we may
construct Vh and Bh by finite elements. Let Th be a regular triangulation of Ω with
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maximum mesh size h := maxT∈Th diam(T ) and suppose that Ω̄ is the union of the
elements of Th. We may take

Vh := {vh : vh ∈ C(Ω̄), vh|T ∈ P2(T ) ∀ T ∈ Th},
Bh := {vh : vh ∈ C(Ω̄), vh|T ∈ P1(T ) ∀ T ∈ Th},
Ah := A ∩Bh,

(4.2)

where Pl(T ) denotes the spaces of polynomials of degree l defined on T .
In the following we will provide some numerical results for which the experiments

are performed using FreeFem++ [17] with 128 grid points on ∂Ω.

Example 4.1. We consider the inverse problem given in Example 3.1, where

Ω = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 < 1}
is the unit disk in R2. We first consider the case that the sought solution is smooth
given by

q†(x) = 1 + x2
1 + x2

2.

Assume that u†(x) = sin(π(x2
1 + x2

2)). Then f can be obtained via the elliptic
equation. The noisy data ũ is produced from u† by adding random Gaussian noise
with ‖ũ − u†‖L2(Ω)/‖u†‖L2(Ω) = 5%. Now we use ũ to reconstruct q†. Since the
sought solution is smooth, we take

R(q) =

ˆ
Ω

|∇q|2dx.

Then the corresponding minimization problem (3.2) can be solved by Algorithm 1.

1
1

1.2

1.4

0.5 1

1.6

0.5

exact q(x)

1.8

0
0

2

-0.5
-0.5

-1 -1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 5 10 15 20 25 30
n

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

lo
g

(
θ
(z

,α
))

1
1

1.2

1.4

0.5 1

1.6

0.5

q(x) (δ=5%)

1.8

0
0

2

-0.5
-0.5

-1 -1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(a) (b) (c)

Figure 1. The reconstruction for Example 4.1 with (a) exact pa-
rameter. (b) the relation between Θ(αn, ũ) and n. (c) reconstruc-
tion result

In our computation, we take γ0 = 0.1 and γ1 = 20 in the definition of A. In order
to determine the regularization parameter by our heuristic rule, we use the set ∆γ

of grid points with α0 = 10 and γ = 0.6. Let αn := 10 × 0.6n. Then the relation
between Θ(αn, ũ) and n is plotted in Figure 1 (b). The plot demonstrates that
Θ(α, ũ) achieves its minimum at α∗ = 10 × 0.620. The corresponding regularized
solution q̃α∗ is plotted in Figure 1 (c). Comparing with the exact parameter plotted
in Figure 1 (a), the reconstruction result is clearly satisfactory.
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Example 4.2. We consider again the inverse problem given in Example 3.1 with
Ω being the unit disk in R2. In this example we assume the sought solution is
piecewise constant given by

q†(x) =

 5, x ∈ [−0.7,−0.2]× [−0.2, 0.2],
2, x ∈ [0.2, 0.5]× [−0.5, 0.1],
1, otherwise.

Assuming f(x) = x1 + x2, we may solve the elliptic problem to obtain the exact
data u†. We then add random Gaussian noise to u† to produce a noisy data ũ
with ‖ũ− u†‖L2(Ω)/‖u†‖L2(Ω) = 5%. We will use ũ to reconstruct q†. Due to the a

priori information on q†, we take the regularization functional R(q) to be the total
variation of q over Ω, i.e.

R(q) =

ˆ
Ω

|Dq|.

Now the corresponding minimization problem (3.2) can not be solved by Algorithm
1 directly. Instead we use an IRLS strategy to reduce (3.2) to a sequence of mini-
mization problems in which each subproblem can be solved by Algorithm 1. More
precisely, we take a sequence of small positive numbers {εj}; with an initial guess
q0, we then define

qj+1 ∈ arg min
q∈A

{ˆ
Ω

q|∇(u(q)− ũ)|2dx+ α

ˆ
Ω

ωj |∇q|2dx
}
, (4.3)

where ωj := (|∇qj |2 + ε2
j )
−1/2. In summary, we have the following algorithm.

Algorithm 2 The IRLS algorithm for Example 4.2

1: Given an initial guess q0, let ω0 = (|∇q0|2 + ε2
0)−

1
2 .

2: for j = 0, 1, ... do
3: Find qj+1 from (4.3) by Algorithm 1;

4: Let ωj+1 = (|∇qj+1|2 + ε2
j+1)−

1
2 ;

5: end for

When using our heuristic rule to determine the regularization parameter, we
use the set ∆γ with α0 = 1.0 and γ = 0.5. For αn := 1.0 × 0.5n the regularized
solutions q̃αn are computed by Algorithm 2 with q0 = 1 and εj = 0.01 for all j. The
constants γ0 and γ1 appearing in A are taken to be 0.1 and 20 respectively. The
relation between Θ(αn, ũ) and n is plotted in Figure 2 (a) which demonstrates that
the regularization parameter determined by our heuristic rule is α∗ = 1.0 × 0.518.
The exact parameter q† and the reconstruction result q̃α∗ are plotted in Figure 2
(b) and (c) respectively. It is clear that the reconstructed parameter is a good
approximation of the exact parameter. For further comparison, we also plot in
Figure 2 (d) the cross section along {x1 = −0.1} for q† and q̃α∗ . We remark that
Algorithm 2 consists of two components: the outer IRLS iteration and the inner
projected Newton iteration. Due to the superlinear convergence of the projected
Newton method, in our numerical experiments we only need to take a few IRLS
iterations and Newton iterations to find q̃α for each α ∈ ∆γ .

Example 4.3. We next consider the electrical impedance tomography discussed
in Section 3.2 with Ω = [−1, 1]× [−1, 1] ⊂ R2 and ρ(x) = 3

2χD −
1
2χΩ\D, where

D := {(x1, x2) ∈ Ω : |x1| ≤ 0.5 and |x2| ≤ 0.5}
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Figure 2. The reconstruction for Example 4.2 with (a) The re-
lation between Θ(αn, ũ) and n. (b) the exact parameter. (c) the
reconstructed result. (d) cross sections along {x1 = −0.1}.

and χD denotes the characteristic function of D. We assume that the sought
parameter is given by q† = 3χΩ1

+ 2χΩ2
+ χΩ\(Ω1∪Ω2), where

Ω1 := {(x1, x2) ∈ Ω : 9(x1 + 0.5)2 + 16(x2 − 0.5)2 ≤ 1},
Ω2 := {(x1, x2) ∈ Ω : (x1 − 0.5)2 + (x2 + 0.5)2 ≤ 1/16}.

We will use multiple measurements of Cauchy data (f̃`, g̃`), ` = 1, · · · , L, to re-
construct q†. Since q† is piecewise constant, we take R(q) =

´
Ω
|Dq|, the total

variation of q over Ω, as the regularization term. Thus the regularized solution q̃α
is determined by the minimizer of the functional

q →
L∑
`=1

ˆ
Ω

q(x)|∇(uD[q, f̃`]− uN [q, g̃`])|2dx+ α

ˆ
Ω

|Dq|

over Q. Due to the nonsmoothness of R(q), we use an IRLS scheme and the
projected Newton method to find an approximation of the regularized solution, i.e.
by taking a sequence of small positive numbers {εj} and an initial guess q0, we
produce an approximate solution by solving the minimisation problem

qj+1 ∈ arg min
q∈Q

{
L∑
`=1

ˆ
Ω

q(x)|∇(uD[q, f̃`]− uN [q, g̃`])|2dx+ α

ˆ
Ω

ωj |∇q|2
}

(4.4)
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iteratively, where ωj = (|∇qj |2 + ε2
j )
−1/2. According to the Karush-Kuhn-Tucker

theory, for (4.4) we have the KKT conditionsˆ
Ω

q∇u` · ∇φ` =

ˆ
Ω

ρφ`, ∀φ` ∈ H1
0 (Ω), ` = 1, · · · , L;

ˆ
Ω

q∇v` · ∇ψ` =

ˆ
∂Ω

gψ` +

ˆ
Ω

ρψ`, ∀ψ` ∈ H1
� (Ω), ` = 1, · · · , L;

ˆ
Ω

[
(q̃ − q)

L∑
`=1

(|∇u`|2 − |∇v`|2) + 2αωj∇q · ∇(q̃ − q)

]
≥ 0, ∀q̃ ∈ Q.

(4.5)

We may use the projected/semismooth Newton method to solve (4.5) which leads
to Algorithm 3.

Algorithm 3 Projected Newton algorithm for (4.4)

1: Given initial guess q0 and u0
` , v

0
` for ` = 1, · · · , L.

2: for k = 0, 1, 2, ... do
3: Obtain the increments ξk` , η

k
` , σ

k of uk` , v
k
` , q

k by solving

ˆ
Ω

qk∇ξ` · ∇φ` +

ˆ
Ω

σ∇uk` · ∇φ`

=

ˆ
Ω

qk∇uk` · ∇φ` − ρφ`, ∀φ` ∈ H1
0 (Ω), ` = 1, · · · , Lˆ

Ω

qk∇η` · ∇ψ` +

ˆ
Ω

σ`∇vk` · ∇ψ`

=

ˆ
Ω

qk∇vk` · ∇ψ` − ρψ` −
ˆ
∂Ω

g̃`ψ`, ∀ψ` ∈ H1
� (Ω), ` = 1, · · · , L

ˆ
Ω

2µ

L∑
`=1

(∇uk` · ∇ξ` −∇vk` · ∇η`) + 2α

ˆ
Ω

ωj∇σ · ∇µ

=

ˆ
Ω

µ

L∑
`=1

(|∇uk` |2 − |∇vk` |2) + 2α

ˆ
Ω

ωj∇qk · ∇µ, ∀µ ∈ Q

4: Update uk` , v
k
` , q

k by uk+1
` = uk` − ξk` , vk+1

` = vk` − ηk` and qk+1 = qk − σk.

5: Projection qk+1 onto Q to get new qk+1.
6: Check stop condition.
7: end for

In our numerical simulations we use four groups of Cauchy data (f†` , g
†
` ), ` =

1, · · · , 4, where

g†1 = χ(0,1]×{−1} − χ[−1,0]×{1} + 2χ(0,1]×{1} − 2χ[−1,0]×{−1}

+ 3χ{−1}×(−1,0] − 3χ{1}×(0,1) + 4χ{1}×(−1,0] − 4χ{−1}×(0,1),

g†2 = x1 + x2, g†3 = x1 − x2, g†4 = x2
1 − x2

2,

and each f†` is produced by solving (3.16) with q = q† and g = g†` and then taking

the trace of the solution on ∂Ω. Now we add random Gaussian noise on (f†` , g
†
` ) to

produce noisy data (f̃`, g̃`) with

‖f̃` − f†` ‖L2(∂Ω)

‖f†` ‖L2(∂Ω)

= 0.1% and
‖g̃` − g†`‖L2(∂Ω)

‖g†`‖L2(∂Ω)

= 0.1%
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for ` = 1, · · · , 4. We then use (f̃`, g̃`), ` = 1, · · · , 4, to reconstruct q†. In our numer-
ical computation, we take εj = 0.01 for all j and solve the variational problems in
Algorithm 3 by FreeFem++ [17]; in the definition of Q we take q = 0.1 and q̄ = 20.
When using our heuristic rule for choosing the regularization parameter, we use
A = 105 and use ∆γ with α0 = 1.0 and γ = 0.6. According to the computations,
our heuristic rule gives the regularization parameter α∗ = 1.0× 0.626. The relation
between Θ(αn, ·), with αn = 1.0× 0.6n, and n is plotted in Figure 3 (a). The exact
parameter q† and the reconstructed parameter q̃α∗ are plotted in Figure 3 (b) and
(c). For further comparison, we also plot the cross section of q† and q̃α∗ along
{x2 = −0.5}. We can see the reconstructed parameter is quite close to the exact
parameter.
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Figure 3. The reconstruction for Example 4.3 with (a) the rela-
tion between Θ(αn, ·) and n. (b) exact parameter. (c) reconstruc-
tion result. (d) cross sections along {x2 = −0.5}.
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