L? Estimates for Approximations to Minimal Surfaces

GERHARD DZIUK & JOHN E. HUTCHINSON!

Abstract In a previous paper the authors developed a new algorithm for finding discrete
approximations to (possibly unstable) disc-like minimal surfaces. Optimal convergence rates
in the H! norm were obtained. Here we recall the key ideas and prove optimal L? convergence
rates.

1 Introduction

Suppose I' is a smooth curve in IR™. We are interested in the problem of obtaining discrete
approximations to (possibly unstable) disc-like minimal surfaces spanning I'.
Let D be the unit disc in IR? and let

C={u:D — IR" | Au=0, u|spp is a monotone parametrisation of I'}.

Denote the Dirichlet energy by
1
Du) = —/ | Dul?.
2Jp

It is well-known that if u is a critical point for D restricted to C then u[D] is a mini-
mal surface spanning I'. Moreover, u is then conformal. Conversely, any minimal surface
spanning [ can be obtained in this manner. We will make this the basis of the numerical
algorithm.

Harmonic maps are uniquely determined by their boundary values. Thus if T' = y[S!] is

given by the parametrisation
y:St =T,
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then instead of C one can equivalently consider the class
M = {s:0D — S* | s is monotone}.
For s € M the corresponding harmonic map spanning I is
u=®(yos)

where ® denotes harmonic extension.
The energy functional on M is defined by

B(s) = D(®(yo5))
= 5 [ Ip@Gos)P (1)

1\ |2
L[ @ (el
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The last integral is known as the Douglas Integral, c.f. [N2; §§310-311].

There is a three parameter family of conformal maps from the unit disc D parametrising
a given simply connected smooth surface. The usual normalisation is to specify the image of
three points on dD. Here it is theoretically more convenient, and numerically more stable,
to consider maps s such that

[T -0 =0
/0% (s(8) — ) cosfdf = O, 2)
/027r (s(6) — 0)sin0d) — 0.
Thus we define
M = {s € C°aD,S") : s is monotone, s satisfies (2), E(s) < 0o} (3)

See [St; Section I1.2].
If s is critical for E restricted to M we say s is stationary and the corresponding harmonic
map u = ®(y o s) is called the minimal surface corresponding to s.

Given a fixed grid ¢;, j = 1,..., N, on 0D, with typical grid-size h (i.e. the distance
between successive points is controlled above and below by multiples of h), the discrete
analogue of (3) is

My, = {sn, = (s1,...,8n) : S, is a monotone sequence of points on S'}.

It is convenient to identify both dD and S* with the interval [0,27), and we will often do
this. It is also convenient to identify s; € M) with the corresponding piecewise linear map
sn:0D — S* for which sj,(¢;) = s; (“piecewise linear” with respect to arc length, i.e. angle
variable).



The discrete energy functional is simply the restriction of the energy functional E to My,
and is defined by

Bi(sn) = B(si) = 5 [ ID(@(y0 ).

If sy, is critical for £, restricted to My, we say s, is stationary and the corresponding harmonic
map u, = P(y o sy) is called the semi-discrete minimal surface corresponding to s.

Numerically, one approximates the Douglas functional in order to compute Ej, and one
computes discrete harmonic approximations to w, with boundary data uj,(¢;) = v(s;). The
numerical algorithm for finding critical points for Ej, restricted to My, is:

Algorithm Given a grid ¢;, j = 1,...,n, on 0D, initial values s, = (s1,...,5,) and
parametrisation y:

Compute the derivative of the approzimate energy Ej (sp).
If |E; (sk)|/|sk| < € then stop.

Compute the second derivative of the approzimate energy Ejl(sp).

e v o~

Solve the linear system Ej (sp)d = —E} (sy), update the solution sy, := sp +d and go to
step 1.

Here |sy| is the >-norm of s, and € is a given tolerance.
Suppose g is stationary and wug is the corresponding minimal surface. In [DH] we showed,

as h — 0, the existence of a sequence of discrete stationary s, and corresponding semi-
discrete minimal surfaces uy, such that

Isn = sollzr2py < ch®?, (4)
lun = wollarpy < ch®?. (5)
In this paper we show that
Ish = sollg-1r20m) < ch®?, (6)
Huh—UOHL2(D) S Ch5/2. (7)

The proof of (6) and (7) will use a variant of the Aubin-Nitsche technique.

The computational significance of our results is as follows. Suppose s, — 5o in C° N
H'Y2(0D) as h — 0, where the s;, are discrete stationary points. Then it is straightforward
to prove sq is stationary, see [DH; Theorem 6.4]. Moreover, if sy is monotone and non-
degenerate and | In 2[*?||s;, — sollcongr/2apy — 0, then the convergence rates of (4)-(7) will
apply. By non-degeneracy we mean that there are no non-zero Jacobi fields for sqo. If sy has
no branch points (and this can be determined by observation of the approximating sequence)
then non-degeneracy is generically true, see [BT].

The theoretically predicted rates of convergence typically appear after a small number
of iterations, and provide strong evidence that the sequence of discrete stationary points (or
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corresponding sequence of semi-discrete minimal surfaces) is indeed converging towards a
non-degenerate stationary point (or corresponding non-degenerate minimal surface).

For related results and further references, see [DH].
This research has been partially supported by the Australian Research Council.

2 Background Material

We recall the main ideas and results from [DH]. We follow the approach (in the non-discrete
setting) of [St1, St2].

Assume ~ is C" where r > 5.

It is necessary to enlarge M as it is not linear, or even affine. We do this by first selecting
a fixed member of M, which for convenience we take to be the identity map

id:0D — S, id(¢) = ¢.

We will consider maps
s=id+o
such that o € H/2(0D; IR) and

2

27 27
/ o(6) dé = 0, / () cos $dp = 0, / o(¢) sinéde =0, ®)
0 0 0
c.f. (2). Thus we define

H = HY*(0D;IR)N{¢: (8) is satisfied with o replaced by £}
H = id+ H.

The H'/? semi inner product is defined by

o /w /M ((0) — s<¢| ;)_- gi@ —n(¢")) 1648 )

The corresponding seminorm | - |z1/2 is in fact a norm on H, by the first equality in (8) and
the Poincaré inequality.

The definition of E is extended to H by (1).
Unfortunately E is not C! on H, and so for this reason we define

T = HNC%0OD;IR)
T = id+T
1€l = 1€lav2op) + lI€llco-

In particular,
McCTCH, TCH.
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If s € ‘H the corresponding harmonic map spanning I" is denoted by
s=®(yos).

If s € M is fixed and € € H, then the corresponding vector field along v o s will be denoted
by
=(0s8)E=7(s)¢
The harmonic extension of £, which is an harmonic vector field over v[D], will also be denoted
by €.
Then one has

Proposition 2.1 The energy functional E:T — IR is C™'. Let s =id +o. Then
AB(s)(§) = [ Ds-DE,
D
e 03
CEE)6.&) = [ D&-Do+ [ 59 (s) Gk
Also

B(s) < e(hlle) (14 lof%us).
PES) &) < ellllos) 1+ Pl .- ligllr 1<j<r—1.

If o € C°(0D; S) then

IN

lolf2 < e (E(s) + 1),

where ¢ depends on ||y~ |c1 and the modulus of continuity of o.

The expressions for dF and d?FE are straightforward computations. For the remainder, see
[St, Section II] and [DH, Proposition 4.3].
The following will be applied in case s is stationary, see Proposition 2.5.

Proposition 2.2 If s is C? then dE(s) and d*E(s) extend to bounded linear and bilinear
operators respectively on H, and

[dE(s)(©)] < clle2 llsller) €lme,
[*E(s)(&1,62)] < ez, Isller) [€al vz l€l e

See [St, Section II] and [DH, Proposition 4.4].

Definition 2.3 The function s € M is a stationary point for E if

— B t&) >0
| BTz

whenever s+¢& € M. If s is stationary for F then we say that the harmonic map u = ®(yos)
is a minimal surface or that u is a solution of the Plateau Problem.
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One has:

Proposition 2.4 The function s € M 1is stationary for E with respect to monotone varia-
tions iff s is stationary in the sense of T, i.e. iff

dE(s)(§) =0 VEeT. (10)
The regularity results of [Hil], [Ja], [N1], [He| imply the regularity of stationary s.

Proposition 2.5 If v is C"* wherer > 1 and 0 < o < 1, and s € M 1is stationary for E,
then s is C™ and ||s||cre is controlled by ||y||cr.e.

Definition 2.6 Suppose s is a stationary point for £. The self-adjoint bounded linear map
V2E(s):H — H

is defined by
(VPEGS)©:1) 1120, = CE)(Em) Y& me H.

Definition 2.7 A stationary s € M is non-degenerate if d*E(s): H x H — IR is a non-
degenerate bilinear operator. Equivalently, V2E(s) is invertible with bounded inverse.

We next define discrete approximations to H as follows. For each h > 0 let G, be any
grid on 0D = [0, 27) such that

c'h<|I| <ch VI an interval of Gy,
where |I| is the length of I and ¢ is independent of h. If I is an interval, denote by
Py(I)
the space of first order polynomials (in the arc length variable) defined over I.
Definition 2.8 Let

Hy = {& € C°0D,IR): & € Pi(I) VI € Gy, (8) is satisfied
with o there replaced by &,} .

Then
H, cTCH.

Let
Hy, = {id} +H,CTCH

be the corresponding finite dimensional affine space of continuous piecewise affine maps (with
respect to arc length) from 9D to S*.



Definition 2.9 A function s, € Hj, is called a semi-discrete stationary point for E if
dEh<Sh)<§h) =0 Vﬁh S Hh.

The associated function u, = ®(y o s5,) is called a semi-discrete minimal surface.

The main result from [DH] is:

Theorem 2.10 (Energy Estimate) Assume r > 5. Let s9 € M be a non-degenerate
stationary point for E with associated minimal surface ug = ®(7y o s).

Then there exist constants hg, €y and ¢, depending on sg, such that if 0 < h < hqy then
there is a unique semi-discrete stationary point s, € Hjy such that

’80 - Sh‘Hl/Q(é)D) < 60‘ In h‘73/2.
Moreover,

|81 — Sol /290y < ch®? and ||s, — so||co@p) < ch®?|In k|2,
Finally, if up, = ®(y 0 sp,) is the corresponding semi-discrete minimal surface, then

[ — ol (py < ch®?  and  ||up, — uol|copy < ch®?|In k|2,

See [DH, Theorem 6.3]. The computational significance of this is a consequence of the
following result:

Theorem 2.11 Suppose sy, is a sequence of semi-discrete stationary points and ||s,—so||r —
0 as h — 0. Then sq is a stationary point for the Plateau Problem.

If sy is monotone and non-degenerate and moreover |In h|*2||s, — so||r — 0, then the
convergence rates of Theorem 2.10 will apply.

See [DH Theorem 6.4].

3 Some Technical Results

In this Section we recall or prove some technical results needed for the L?(0D) estimate.
First note the following basic properties of the H'/2(D) and T norms.

Proposition 3.1

(i) For any&,neT
1€ nllr < cligllzlinllz.

(ii) For any £ € CY(OD;IR) andn € H

€ 77|H1/2(8D) < C||§||Cl|7I|H1/2(aD)~



See [St, Lemma I1.2.6].

Approximations to elements of T" are given by the following result.
Proposition 3.2 There is a bounded linear map
I,: T — Hy
such that
ch®|€|| 2 (o),
ch*? €] |H3/2(6D)a

chl|¢] |H3/2(8D)=
ch?|€]lc2(op)-

Hf - [h5”H1/2(aD)
1€ — Inél|z20)

1§ = In&ll 2 o)
1€ — Inél|coop)

PRrROOF: The main point is to preserve the normalisation conditions.
The first and last inequalities are from [DH, Proposition 5.2]. The other estimates follow
in the same manner from the standard estimates

1€ = Inéllr2om) < ch*||€]| 372 (o)
||§—[h§||H1/2(aD) < Ch||§||H3/2(aD)7

(VAR VAN VAN

where I}, is the usual interpolation operator uniquely defined by requiring

Iné(¢) = &(¢1)
for all vertices ¢; of G, and by requiring that I,¢ be linear between vertices. 1

The following estimate shows that the | - |y1/29p) and | - [r norms are equivalent on Hy,
up to a factor | Inh|'/2. In particular, this factor is dominated by any positive power of A.

Proposition 3.3 If &, € Hy then

1€nllir20m) < ll&nllr < el 1€ 1/20m),
for h <1/2, say.
See [DH, Proposition 5.3].

Next define H='/2(0D) to be the dual space of H'/2(9D) with the usual operator norm.
There is a natural imbedding
HY*(D) — H™Y*(dD)

given by
oy = [ cn wme HP(D),
oD

where (-, -) is the dual pairing of H=*/2(0D) and H'?(0D). Thus

WKl = s [ cn
11l 172 5 py =1 oD
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Define
H*(OD) = {¢ € HY/*(dD) : ¢ € H'*(9D)},

where ¢’ is the distributional derivative of £. Define the seminorm
|€|H3/2(8D) = |§/|H1/2(8D)

and norm
1€l 3720y = €l w320y + 1€l L2(0)-
We will need the simple interpolation result

1/2 1/2
[Inllz20m) < ellnll2 ol e om) (11)

which follows easily from the relevant definitions.

If o
n= Z aneiné

then it is standard that [|7]|3p) is comparable to

o0

> (141 an]” (12)

—0o0

4 The L? estimate

The following Theorem will be established by a variant of the Aubin-Nitsche Lemma, c.f.
[C; pp 140-143].

Theorem 4.1 With the same hypotheses and notation as in Theorem 2.10, we have in
addition that

[Isn = sollm-1/20m) < b, Isn — sollz2(op) < ¢h®,  |Jun — uo||L2(p) < b,

PRrOOF: In the following, constants ¢ may depend on so. Ij,: T — Hj is the interpolation-
type operator from Proposition 3.2.

Consider an arbitrary £ € H. From the following Lemma there is a unique ¢ € H
solving the “adjoint problem”

d*E(s0) (¢, n) = /BD §n VneH.
Moreover ¢¢ € H3/2(0D) and

|Pelms2op) < clélurrzop)- (13)



Hence

/ E(sp—s0) = d°E
oD
I’E

But
Al
Also
|B| <
<
<
Thus

for arbitrary £ €
is 0) and so

50) (¢, 5n — S0)

(
(50)(p¢ — Inde, sn — S0) +
(

(dB(s0) (Ine) + d® E(so)(Inde, s — s0) — dE(s) (Tne))
— A+B.

IN

cllsn = sollmr/2p)l|de — In@ellrr2opy by Proposition 2.2
ch3/2h\¢£|H3/z(aD) by Theorem 2.10 and Proposition 3.2

Ch5/2‘5|H1/2(8D) by (13).

IA A

c|lsn — sol|7||Inoe||r by Proposition 2.1
ch?|In h|3/2||lh¢§||H1/2(aD) by Theorem 2.10 and Proposition 3.3
ch?|1In h‘3/2|§|H1/2(8D) by Proposition 3.2 and (13).

/ (s —s0) < Ch5/2|§|H1/2(5vD)
oD

HY2(0D) (if ¢ € HY*(dD) is L*-orthogonal to H then the above integral

||Sh - SO||H_1/2(8D) S Ch5/2.

The second inequality of the Theorem follows from (11) and Theorem 2.10.

To prove the third inequality of the Theorem we estimate

170 5n = 70 soll =120y < [V 050+ (51— 50)

H=1/2(dD;R")

H (/01 7" 0 (s0 + t(sn — 30))dt> (sp — SO)2H

H-1/2(dD;R")

= C+D.
But
C < cl|sn = sollp-1729p) < ch®/?
from the operator definition of || - |[;-1/2(9p), Proposition 3.1(ii), and the previous estimate

for HSh — 80||H—1/2(6D).

Also

D

1
1" 2

< CH (/0 7" o (so + t(sn — so))dt) (sn — so) HH*l/Q(aD;R”)

< c||5h - SOHCO(aD)HSh - SO||H—1/2(8D)

< ch*|Inn|"?,
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from Proposition 3.1 and Theorem 2.10.

Hence
7 080 =7 © soll g-1/20s10) < b
and so
l|un — uol|L2(pirm) < ch®?,
as required. |

The following Lemma completes the proof of the previous Theorem.

Lemma 4.2 Assume v > 5 and sy is a non-degenerate stationary point for E. Suppose
&€ H. Then the “adjoint” problem

CE(s0)(¢em) = [ en ¥neH (14)
has a unique solution ¢¢ € H. Moreover, ¢ € H*?(9D) and

|9l sr2om) < cl€lrzom)-

The constant ¢ depends on sg.

PROOF: In the following, constants ¢ may depend on sp.
Define ¢ € H by

&M rzepy = | &n e M.
oD
Then € exists and is unique by the Riesz representation theorem and

€l ir120p) = Il m-17200) < Clélmr2opy,s

using (12).
Define o
de = (V2E(s0))  (§),
see Definition 2.6. It follows ¢, satisfies (14). Moreover, ¢¢ is the unique solution since
d*E(sq) is non-degenerate. Also

Pl 1200y < clélmrzopy < clélmrzeop- (15)

We next estimate [¢¢|zs/2(9py. See [St2, Section I1.5] for similar arguments.
If n:0D — IR* and h > 0 is fixed we use the notation

ne(0) = n(@=+h),
O = %(TH—U)-

If n € H then so are n+ and 97, since the normalisation conditions (8) are preserved. Note
that

On(¥n) = Op¥ny + 1Y 0wy,
O_nOu(Ym) = O0_nOuhn + O (0-nn) 4+ + O_pp(Onn) - + VO_pOWN.
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The operator Jy, extends to a difference operator in the angle variable for functions defined
over D. Moreover, 0, commutes with the harmonic extension operator by the uniqueness of
harmonic extension. Also

/ch  DB(D_pg) = /D<I> Onf) - DB(g),

as follows from integrating in polar coordinates and using parts.
We next substitute n = 0_,0,¢¢ in (14). From Proposition 2.1 and the previous formulae,

d*E(s0)(¢¢, O—_nOnoe)
= /DD<‘1>(7'(80)¢£))'D(@(W'(So)a—hahqsﬁ))Jr/aD%
___/péﬁwmwmf
= [ D(@0/(50)60)) - (D@00 (50) 62))
4 D(9(017 (0) (0-40¢)2)) + D(B(0_17 () (9u5)-))

Jso
+/8D 80 "(50) PeO-nOn e

— —A+B+C.

7" (80) PeO—nOn e

Hence

A= —/aDﬁa_hahQ%—i-B—l-C. (16)

To estimate A from below, we first claim for any n € H that

|77|§{1/2(3D) < C|’Y/(50)77‘§{1/2(3D;Rn) + C|77|§1—1/2(3D)~ (17)

To see this compute

7 (50(6))1(8) = 7' (s0(6")n(®")]]
17/ (50(0)) (n(6) —n(6)) +n(0) (7 (s0(6)) — 7/ (s0(6))|

> ailn(®) — n@)] — @)} (50(6)) — 7 (s0(8))]

where ¢; = inf |y/(s0(6))|> > 0. Hence from (9),

’77\%1/2(313) < 0’7/<30>77’§{1/2(8D;R”) + CM‘%Q(&)D)'
Inequality (17) now follows from (11).
Since

On(7'(50)de) = On'(50)(de)+ + 7' (50)On e
it follows from (17) with 1 = Oj¢¢, the definition of A and Proposition 3.1 that

‘ah¢§|12ﬂll/2(6D) < C(‘ah(7/(50)¢£)‘2Hl/2(6D;R")+|ah7/(50)(¢§)+ﬁ[l/?(aD;R")
‘Hahﬁﬁ&ﬁ]—m(am)

C(A + |¢§|i]1/2(8D) + |8h¢§|?{—1/2(8D)>'

IN
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It follows from (12) that for any n € H,

10w 17200y < clnlrr2op)

Hence, from (15),
|8h¢£|§{1/2(8p) <c (A + |§|12ql/2(aD)> :

We next compute

-B = (7’(50)% O-n0nY' (50)Pe + ' (50)(O-ne) +
+0-17'(50) (Dne)-)

Hence using Proposition 3.1 and then (15),

|B| < E’ah¢gﬁq1/z(ap) + C(G)Wéﬁ{l/?(am
< €|ah¢§|§{1/2(aD) + C(e)|§|§{1/2(aD)'

Also
C < / 0_10
< cf |Pe] [O-nOne|
< clO-nOnPell 11200y |Pel 11720
< |0l mrr2opy |96l 117200y from (18)
< €|ah¢£|§{1/2(ap) + C(e)|§|§{1/2(8D) from (15).
Finally,

’/6D fa—hah%’ “a—hahQSEHH*l/?(BD) |5|H1/2(6D)

<
< c|Ondel oy 1€l a2 om)
< €lOndelin zop) + c(OIElin 2oy

From (19), (16), (22), (20) and (21)
|Oh e 31/20m) < cl€linrzom)-
Since this is true for any h > 0, it follows for example from (12) that

’¢£/|?{1/2(8D) < C|€’?{1/2(8D)7

and so
|¢5|§{3/2(8D) < C|§|§{1/2(8D)‘

This completes the proof of the Lemma and hence of the Theorem.
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5 Numerical Results

For the sake of completeness we recall some of the numerical results from [DH].
The possibly unstable Enneper surface is given by the harmonic extension of

Y1(¢) = rocos¢ —ry/3cos3g,
Y2(¢) = rosing + ry/3sin3e,
v3(¢) = ricos2o,

for ¢ € [0,2m). It is well known that for 0 < ry < 1 there is exactly one solution of Plateau's
problem for I' = v([0,27)) and for 1 < ry < /3 there are two minima and one unstable
minimal surface bounded by I'.
We computed the discrete analogue for ro = 0.5, rg = 1.0 and rq = 1.5 using the fixed
parametrisation
v =~orT, 7(s) = s+ 0.1cos2s.

The error
en = |[so — snl|

between the piecewise linear discrete solution s, and the continuous solution s = 771 o id
was computed for various norms and for uniform grid sizes h = 27/n. The experimental
order of convergence eoc between two grid sizes hy and hs is given by

eoc = In %/ln E

6h2 hg
As the following tables show, the numerical results confirm the asymptotic convergence
in the H/2(0D) and L?(0D) norms predicted by our results. The experimental error in
the H~Y/2(0D) norm behaves like O(h?) only, due to the fact that we used an integration
formula for E (and its derivatives) which restricts the order of convergence to 2. The use
of a higher order quadrature would lead to a much more complicated scheme and would not

change the order of convergence in the other norms.

Stable Enneper Surface (r=0.5)

n ‘ H~'Y2_error ‘ eoc ‘ L?-error ‘ eoc ‘ H'2-error ‘ eoc
20 | 2.7913e-3 7.6477e-3 1.5378e-2
40 | 6.6122e-4 2.08 | 1.7860e-3 | 2.10 | 4.2490e-3 | 1.86
80 | 1.6041e-4 2.04 | 4.2902e-4 | 2.06 | 1.2859%¢e-3 | 1.72
160 | 2.9575e-5 2.44 | 8.3727e-5 | 2.36 | 4.0727e-4 | 1.66
320 | 4.1573e-6 2.83 | 1.5176e-5 | 2.46 | 1.3790e-4 | 1.56
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Enneper Surface (r = 1.0)

n | H Y%-error ‘ eoc ‘ L?-error ‘ eoc ‘ H'2¢rror | eoc
20 | 3.4175e-3 9.7364e-3 1.9275e-2
40 | 7.1311e-4 1.9620e-3 4.5275e-3
80 | 1.6602e-4 4.4812e-4 1.3098e-3
160 | 4.0129¢-5 1.0722e-4 4.1841e-4
320 | 9.8698e-6 2.6237e-5 1.4062e-4

2.26
2.10
2.05
2.02

2.31
2.13
2.06
2.03

2.09
1.79
1.67
1.57

Unstable Enneper Surface (r=1.5),

S

H~Y2_error ‘ eoc ‘ L?-error ‘ eoc ‘ H'2-error ‘ eoc
20 | 3.8572e-3 1.1189e-2 2.2074e-2
40 | 7.2308e-4 1.9958e-3 4.5825e-3
80 | 1.6672e-4 4.5050e-4 1.3128e-3

160 | 4.0202e-5 1.0747e-4 4.1864¢-4

320 | 9.8783e-6 2.6266e-5 1.4064e-4

2.42
2.12
2.05
2.02

2.49
2.15
2.07
2.03

2.27
1.80
1.65
1.57
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