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Abstract

V -variable fractals, for V = 1, 2, 3, . . . , interpolate between random homogeneous fractals and
random recursive fractals. We compute the almost sure Hausdorff dimension of V -variable fractals
satisfying the uniform open set condition. Important roles are played by the notion of a neck, leading
to spatial homogeneity at various levels of magnification, and a variant of the Furstenberg Kesten
theorem for products of certain random V × V matrices.

1. Introduction

In this paper we begin the study of analysis on V -variable fractals by computing the Hausdorff
dimension, under the assumption of an open set condition. Important tools used in the proof are the
notion of a neck, and a variant of the Furstenberg Kesten theorem for products of random matrices.

Fractal sets generated by a single iterated function system [IFS], and random fractal sets generated
from a family of IFSs, are studied as mathematical models of disordered systems. In this latter setting
the most commonly studied random fractals are random recursive fractals and random homogeneous
fractals. In particular, Hausdorff, walk and spectral dimensions have been computed in special cases.

Let F be a family of IFSs operating on Rn, together with a probability distribution P on F . For
each natural number V there is a corresponding family of V -variable random fractals; these families
interpolate between the family of random homogeneous fractals (V = 1), and the family of random
recursive fractals (V →∞), corresponding to F . Each class of V -variable random fractals, with its
probability distribution, has the surprising property that it can be obtained from the attractor of a
single IFS operating on V -tuples of compact subsets of Rn.

See [Fal03,Fal97,Ham03] for general background on fractals and random fractals, including their
applications, and see [Mor46,Hut81,Fal86,Gra87,Gra91,MW86,Ham92,Ham97,Bar98,Kig01,Str06]
and the references therein for the study of the various dimensions and other analytic properties of
fractals. For the general development of V -variable fractals see [BHS08], and for other examples and
discussion, see [BHS05,Bar06].

In order to fix ideas let F = (R2; f1, f2, f3) be the IFS consisting of three contraction maps on
R2, each with contraction ratio 1/2, and having fixed points that are the vertices of an equilateral
triangle T of unit diameter. Let G = (R2; f1, f2, f3) be the IFS consisting of three contraction maps,
each with contraction ratio 1/3, and having the same fixed points as the corresponding maps in F .
The attractors of F and G are denoted by SF and SG respectively, see Figure 1.

Figure 1. Prefractal approximations to the attractors SF and SG respectively.

Consider F = {F,G}, together with the probability distribution P = {1/2, 1/2} on F . Let Ω
denote the set of labelled trees which are rooted, 3-branching, and infinite, where the label at each
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node is either F or G; see Section 2.1. A modified Sierpinski triangle Kω can be generated from
each ω ∈ Ω, see Figure 2.

Such fractals Kω are examples of recursive fractals. If the nodes of ω at each fixed level are the
same, but may vary from level to level, then Kω is called a homogeneous fractal.

It will also be convenient to consider finite, level k, labelled trees for each k ≥ 0; see Figure 2.
Such trees correspond to level k prefractals.

Figure 2. Level 3 recursive prefractals that are 1, 2 and 3-variable respectively,
together with the corresponding finite labelled trees. Each vertex of the triangle T
is labelled according to the function which fixes it.

Fractals such as SF and SG have the following properties:
(1) Spatial self similarity : loosely expressed, at each fixed “scale” the component parts are

equivalent up to simple transformations, for example, translations in the case here.
(2) Scale self similarity : the equivalence class at each scale is the same.

Homogeneous fractals have spatial self similarity but, generically, do not have scale self similarity.
Recursive fractals generically have neither spatial nor scale self similarity. Both classes have further
statistical self similarity when we impose suitable probability distributions on their construction.

Now assume that, at each level of ω ∈ Ω, the subtrees rooted at that level have the property that
they belong to at most V distinct isomorphism classes. In this case, ω is said to be a V -variable
labelled tree, and the fractal Kω is said to be a V -variable fractal. Such fractals have a form of partial
spatial self similarity. Similarly, define V -variable finite labelled trees and V -variable prefractals, see
Figure 2. Notice that homogeneous fractals and 1-variable fractals are the same.

Let ΩV denote the class of V -variable trees ω corresponding to F , and let KV denote the corre-
sponding class of V -variable fractals Kω.

Prefractal approximations to recursive fractals and homogeneous fractals are built by assigning
labels to nodes, beginning with the root node and working upwards through the tree. If the labels
of ω are chosen in an iid manner according to P , except that in the homogeneous case all labels at
each fixed level are same, then one obtains a random recursive fractal and a random homogeneous
fractal respectively. For V -variable fractals with V > 1, one cannot directly build the appropriate
labelled trees and so obtain a natural probability distribution in this manner.

However, one can do something similar by building certain V -tuples of labelled trees as follows, see
Figure 3. There are natural maps Φa from infinite, or level k , V -tuples of labelled trees (ω1, . . . , ωV )
to infinite, or level k + 1, V -tuples of labelled trees (ω′1, . . . , ω

′
V ), respectively. That is,

(1.1) (ω′1, . . . , ω
′
V ) = Φa(ω1, . . . , ωV ).

The label at the base node of each ω′v is determined by Φa and is either F or G. The three subtrees of
each ω′v rooted at level one are also determined by Φa and taken from the set {ω1, . . . , ωV }, possibly
with repetition.
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Figure 3. The map Φa0 is described by the array a0. It is also described by the
labels in the level 0 (bottom) boxes, and the network of lines between these boxes
and the level 1 (middle) boxes. For example, row 3 of a0 is G, 2, 4, 2. It contains
the information that the third component of Φa0(ω1, ω2, ω3, ω4) is the tree whose
root node is labelled G, and whose three subtrees, rooted at the next level, are ω2,
ω4 and ω2 respectively. This information is also provided by the facts that box 3 at
level 0 contains the symbol G, and the three lines from this box in the order left to
right connect to boxes 2, 4 and 2 at level 1. Similar remarks apply to Φa1 .

The maps Φa, or equivalently the indices a, are described by V × (M + 1) arrays, where M = 3
here, and in general M bounds the number of functions in each IFS from the family F , see Figure 3.
Let AV denote the set of all such indices a, corresponding to the family F . The cardinality of AV

in the example here is 2V (3V )V .
The maps Fa act on V -tuples of compact subsets of Rn in an analogous manner, see Figure 4.
If a = a0a1 . . . ak . . . ∈ A∞V then

(1.2)
(ωa

1 , . . . , ωa
V ) := lim

k→∞
Φa0 ◦ · · · ◦ Φk−1(ω0

1 , . . . , ω0
V ),

(Ka
1 , . . . ,Ka

V ) := lim
k→∞

Fa0 ◦ · · · ◦ Fk−1(K0
1 , . . . ,K0

V ).

The limits exist and are independent of (ω0
1 , . . . , ω0

V ) and (K0
1 , . . . ,K0

V ) respectively. Up to level k,
the labelled trees (ωa

1 , . . . , ωa
V ) depend only on Φa0 , . . . ,Φak−1 , see Figure 4 where k = 2.

There are two ways of representing V -variable fractals. First, any V -variable fractal K can be
represented by a labelled tree ω ∈ Ω. Second, and more useful here, the fractal sets Ka

v in (1.2)
are also described by the infinite sequence a. The labelled trees ωa

v and the fractal sets Ka
v are

V -variable, and every V -variable tree and fractal set can be obtained in this manner. Not only is
(ωa

1 , . . . , ωa
V ) a V -tuple of V -variable trees, but it satisfies the stronger condition that, for each k,

there are at most V isomorphism classes of trees rooted at level k, chosen from all the ωa
1 , . . . , ωa

V

taken together. A similar remark applies to (Ka
1 , . . . ,Ka

V ).
So far we have not required a probability distribution on the class ΩV of V -variable trees or

on the class KV of V -variable fractals. However, there is a natural probability distribution PV on
AV that is inherited from P . This induces a probability distribution on A∞V , thence from (1.2) on
(ΩV )V ⊂ ΩV and (KV )V , and thence on ΩV and KV .
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Figure 4. The map Fa1 followed by Fa0 act on C(R2)4, the space of 4-tuples of
compact subsets of R2, in a manner which is encoded in the corresponding arrays a0

and a1. For example, row 3 of a0 is G, 2, 4, 2 and contains the information that, for
any (K1,K2,K3,K4), component 3 of F(K1,K2,K3,K4) will be g1(K2)∪ g2(K4)∪
g3(K2). Note that a0 and a1 are the same as in Figure 3.

More precisely, all components of a ∈ AV are chosen independently; those in the first column from
F according to P and the remaining entries from {1, . . . , V } according to the uniform distribution.
The resulting probability distribution PV on AV induces a probability distribution on A∞V , obtained
by choosing the elements ak of the sequence a = a0a1 . . . ak . . . in an iid manner according to PV .
The mapping A∞V → ΩV given by (1.2) now induces a probability distribution on (ΩV )V ⊂ ΩV . The
projected distribution on ΩV in any coordinate direction is independent of the coordinate direction,
and similarly for KV . The probability distribution on Ω1 obtained in this manner is the same as the
random homogeneous distribution. The distribution on ΩV (⊂ Ω) converges to the random recursive
distribution on Ω as V →∞. See [BHS08] for details.

Recall that the three fixed points of f1, f2 and f3 are also the fixed points of g1, g2 and g3; namely,
the vertices of an equilateral triangle T of unit diameter. Suppose K = Kω is a recursive Sierpinski
triangle with labelled tree ω ∈ Ω. The 3k scaled triangles in the k-level prefractal approximation
provide an efficient cover of K for large k, see Figure 2 where k = 3, and Figure 4 where k = 2. In
order to study the Hausdorff measure Hα(K), it is natural to consider

S(ω, k, α) :=
∑

{m∈ω:|m|=k}

|Tm|α.

Here, on the right side, we are summing the diameters to the power α of the 3k triangles in the level
k prefractal for K, see also (3.4).

As in Figure 5, let (K ′
1, . . . ,K

′
V ) = Fa(K1, . . . ,KV ), where (K1, . . . ,KV ) has labelled trees

ω = (ω1, . . . , ωV ) and (K ′
1, . . . ,K

′
V ) has labelled trees ω′ = (ω′1, . . . , ω

′
V ). By examining Figure 5,

and setting S(ω, k, α) = (S(ω1, k, α), . . . , S(ωV , k, α)), one can see that

(1.3) S(ω′, k, α) = Ma(α)S(ω, k − 1, α),

where, in general, Ma(α) is the V × V matrix constructed from a as in Definition 3.2. See also
Proposition 3.1. If ωa = (ωa

1 , . . . , ωa
V ) and (Ka

1 , . . . ,Ka
V ) are as in (1.2), it follows on iterating (1.3)

that
S(ωa, k, α) = Ma0 ◦ · · · ◦Mak−11.

The vector 1 is a vector of units, see also Proposition 3.3.
For a matrix M , let ‖M‖ be obtained by summing the absolute values of all components. It is

now plausible that there is a unique d such that ‖Ma0 ◦ · · · ◦Mak−1‖ should diverge exponentially
fast to +∞ a.s. for α < d, decay exponentially fast to 0 a.s. for α > d, and that this d should be
the a.s. Hausdorff dimension of Ka

1 , . . . ,Ka
V . We show this is the case in the main theorem, see

Sections 3 and 4. In Section 5 we compute some examples.
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Figure 5. The first row represents fractals (K1, . . . ,K4), or prefractals of level
≥ k−1, corresponding to labelled trees ω = (ω1, . . . , ω4). The second row represents
(K ′

1, . . . ,K
′
4) = Fa(K1, . . . ,K4) with labelled trees ω′ = (ω′1, . . . , ω

′
4). If the vth

component of S(ω, k − 1, α) is the k − 1 level approximation to Hα(Kv) then, in
the case here, S(ω′3, k, α) =

(
1
3

)α
S(ω2, k − 1, α) + 2

(
1
3

)α
S(ω3, k − 1, α). Similarly,

S(ω′, k, α) = Ma(α)S(ω, k − 1, α).

Results for walk and spectral dimensions of V -variable fractals, and their properties, have been
obtained in work by Uta Freiberg and Hutchinson.

We are interested in V -variable fractals for the following reasons, see [BHS08,BHS05].

(1) Families of V -variable fractals, together with their probability distributions, interpolate
between random homogeneous fractals and random recursive fractals.

(2) The families of functions (Φa, a ∈ AV , PV ) and (Fa, a ∈ AV , PV ), including the probability
distribution PV on AV , each form a standard IFS, one acting on ΩV and the other on
C(R2)V . The attractors, projected in any of the V component directions, give the set of
V -variable fractal trees and sets, together with their probability distributions.

(3) The chaos game for these IFSs can be used to generate a sample of V -variable fractals, whose
empirical distribution will approach the probability distribution on V -variable fractals.

(4) Analogous results apply to V -variable fractal measures under weak local contractive con-
ditions. Such conditions are natural, for example, in modelling stochastic processes where
individual sample paths may be bounded, but there is no uniform bound. In this case one
has an IFS operating on a non locally compact state space. But the chaos game result can
be extended to this setting.

(5) By taking large V the chaos game gives a fast forward process for the generation of a sample
of fractals approximating random recursive fractals and their probability distribution. This
is of practical interest, since normally one builds individual examples of random recursive
fractals by a computationally expensive backward process.

2. Notation and Assumptions

The diameter of a set A is denoted by |A|. The Hausdorff measure of A in the dimension α is
denoted by Hα(A). The Hausdorff dimension of A is denoted by dimH(A).

Fix a family F = {Fλ : λ ∈ Λ} of IFSs acting on Rn, where Fλ = (Rn; fλ
1 , . . . , fλ

Mλ
), each

fλ
m : Rn → Rn with Lipschitz constant rλ

m < 1, and Λ may be infinite. Fix a probability distribution
P on Λ, or equivalently on F .

Assume

(2.1) 0 < rmin ≤ rλ
m ≤ rmax < 1, M := max

λ∈Λ
Mλ < ∞.
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We usually further assume the fλ
m : Rn → Rn are similitudes. That is,

(2.2) |fλ
m(x)− fλ

m(y)| = rλ
m|x− y| ∀x, y ∈ Rn.

In this case we will also assume that F satisfies a uniform open set condition. That is, there exists
a non empty open set O such that

(2.3)
Mλ⋃

m=1

fλ
m(O) ⊂ O, fλ

m(O) ∩ fλ
n (O) = ∅ if m 6= n and λ ∈ Λ.

We note explicitly when (2.2) and (2.3) apply.

2.1. Labelled trees. We characterise the set Ω of labelled trees ω, corresponding to the family F
of IFSs, as follows:

A tree is a set ω of finite sequences m = m1 . . .mk where each mj ∈ {1, . . . ,M}, together with
the empty sequence ∅. The set ω is closed under the operation of taking initial segments. Sequences
in ω are called nodes. We write m ∈ ω if m is a node of ω.

The level |m| of the node m = m1 . . .mk ∈ ω is defined to be |m| = k, while |∅| = 0.
A labelled tree, corresponding to the family of IFSs F , is a tree ω together with a map from the

set of nodes of ω into Λ. This map is also denoted by ω. If m ∈ ω and ω(m) = λ then the nodes of
ω whose immediate predecessor is m are precisely m1, . . . ,mMλ. Notice that the number of edges
rooted at a node equals the number of functions in the IFS given by the label at that node.

Let Ω denote the set of all labelled trees which correspond to F . We frequently refer to a labelled
tree simply as a tree.

A V -variable labelled tree ω ∈ Ω is a labelled tree such that, for each level k, there are at most V
non isomorphic subtrees of ω rooted at level k. Let ΩV ⊂ Ω denote the set of all V -variable labelled
trees which correspond to F .

2.2. Approximating fractal sets. For E ⊂ Rn, ω ∈ Ω and nodes m = m1 . . .mk ∈ ω, define

(2.4) E∅ = E0 = E, Em1...mk
= fω(∅)

m1
◦ fω(m1)

m2
◦ · · · ◦ fω(m1...mk−1)

mk
(E), Ek =

⋃
|m|=k

Em1...mk
.

When we need to make the dependence on ω explicit we will write Em(ω) or Ek(ω), for example.
For O as in (2.3) we have

(2.5)

O ⊃ Om1 ⊃ · · · ⊃ Om1...mk
⊃ · · · , O ⊃ Om1 ⊃ · · · ⊃ Om1...mk

⊃ · · · ,

Om ∩ On = ∅ if |m| = |n|,m 6= n,

O ⊃ O1 ⊃ · · · ⊃ Ok ⊃ · · · , O ⊃ O1 ⊃ · · · ⊃ Ok ⊃ · · · ,

Kω :=
⋂
k≥0

Ok
(ω).

The set Kω is the fractal set corresponding to ω. Even if the open set condition does not apply, we
obtain the same set Kω by replacing O by any non empty compact set E for which

(2.6)
Mλ⋃

m=1

fλ
m(E) ⊂ E ∀λ ∈ Λ.

The set KV of V -variable fractals sets is defined by

KV = {Kω : ω ∈ ΩV }.
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3. The Hausdorff dimension of V -variable fractals

3.1. The maps Φa and Fa. (See the examples in Figures 3, 4, 5 and 6.) The index set AV is
defined to be the set of all arrays a of the form

(3.1) a =

 Ia(1) Ja(1, 1) . . . Ja(1,M)
...

...
. . .

...
Ia(V ) Ja(V, 1) . . . Ja(V,M)

 ,

where Ia(v) ∈ Λ, M is as in (2.1), Ja(v,m) ∈ {1, . . . , V } if 1 ≤ m ≤ MIa(v) and Ja(v,m) = 0 if
MIa(v) < m ≤ M . See also [BHS08, Section 5.3].

The probability distribution PV on AV is obtained by selecting all elements of a independently.
The elements in the first column are chosen according to P . The elements Ja(v,m) for 1 ≤ m ≤
MIa(v) are chosen according to the uniform distribution on {1, . . . , V }. Any remaining elements
Ja(v,m) for m > MIa(v) are set equal to 0.

The map Φa
V : ΩV → ΩV is defined by requiring, for any V -tuple (ω1, . . . , ωV ) ∈ ΩV , that the

vth component of Φa(ω1, . . . , ωV ) ∈ ΩV is the labelled tree whose base node is labelled F Ia(v), and
whose mth subtree rooted at level one is ωJa(v,m) for 1 ≤ m ≤ MIa(v). Any zeros at the end of each
row of a are markers so that all rows have equal length, but otherwise play no role.

Similarly, for any V -tuple of sets (K1, . . . ,KV ), the map FaV : C(Rn) → Rn) is defined by

(3.2) Fa(K1, . . . ,KV ) =

MIa(1)⋃
m=1

f Ia(1)
m (KJa(1,m)), . . . ,

MIa(V )⋃
m=1

f Ia(V )
m (KJa(V,m))

 .

For a = a0 . . . ak−1 . . . ∈ A∞V , assuming (2.6) for some compact E, we define

(3.3)
(ωa

1 , . . . , ωa
V ) := lim

k→∞
Φa0 ◦ · · · ◦ Φak−1(ω0

1 , . . . , ω0
V ),

(Ka
1 , . . . ,Ka

V ) := lim
k→∞

Fa0 ◦ · · · ◦ Fak−1(K0
1 , . . . ,K0

V ).

The limits exist, and are independent of (ω0
1 , . . . , ω0

V ) and (K0
1 , . . . ,K0

V ), respectively.
If v ∈ {1, . . . , V } then ωa

v ∈ ΩV , and every V -variable labelled tree can be obtained in this manner.
However, if Ω∗V is the set of V -tuples of labelled trees obtained in this manner then Ω∗V ( (ΩV )V .

The probability distribution P∞
V on A∞V is defined by selecting the ak in an iid manner according

to PV . This induces a probability distribution on Ω∗V ⊂ (ΩV )V via (3.3), and thence a probability
distribution ρV on ΩV by projecting in any of the V coordinate directions. Similarly one obtains a
probability distribution KV on KV . Both ρV and KV are independent of choice of projection direction,
although the initial distributions are not product distributions. See [BHS08].

3.2. Approximating Hausdorff measure. Assume the open set condition (2.3), and without loss
of generality assume |O| = 1. (See Figure 2 and take O to be the interior of the triangle T .)

Suppose ω ∈ Ω is a labelled tree with labels from F . Keeping in mind (2.5), we think of the
collection of sets {Om : m ∈ ω, |m| = k} as an “efficient” cover of Kω for large k. In order to
compute the Hausdorff dimension of Kω, we consider the following quantities for α > 0:

(3.4)
r∅(ω) := |O| = 1, rm1...mk

(ω) := |Om1...mk
| = rω(∅)

m1
· . . . · rω(m1...mk−1)

mk
for m1 . . .mk ∈ ω,

S(ω, k, α) :=
∑

{m∈ω:|m|=k}

|Om|α =
∑

{m∈ω:|m|=k}

(rm(ω))α
, noting S(ω, 0, α) = 1.

We are interested in the behaviour of S(ω, k, α) as k →∞ since, for large k, it is an approximation
to the Hausdorff measure Hα(Kω).

3.3. Flow Matrices. (See the example in Figure 5.) As remarked in the introduction, there are
two ways of representing a V -variable fractal K. One can either use the corresponding labelled tree
ω ∈ Ω, or one can use a sequence a ∈ (AV )∞ as in (3.3) which generates a V -tuple containing K as
a component. We use the latter in order to study S(ω, k, α).

For (ω1, . . . , ωV ) ∈ ΩV define the following vector of real numbers:

(3.5) S
(
(ω1, . . . , ωV ), k, α

)
= (S(ω1, k, α), . . . , S(ωV , k, α)) .
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Then S
(
(ω1, . . . , ωV ), 0, α

)
= 1, the V -vector whose components all equal 1.

Proposition 3.1. If (ω1, . . . , ωV ) ∈ ΩV , and (ω′1, . . . , ω
′
V ) = Φa(ω1, . . . , ωV ), then

S(ω′v, k, α) =
V∑

w=1

( ∑
{m:Ja(v,m)=w}

(
rIa(v)
m

)α
)

S(ωw, k − 1, α).

Proof. For any ω ∈ Ω it follows from (3.4) that

rm1...mk
(ω) = rω(∅)

m1
rm2...mk

(ω(m1)),

where ω(m1) is the labelled subtree of ω rooted at node m1 at level one. From the definition of
Φa(ω1, . . . , ωV ) in Section 3.1, it follows that

rm1...mk
(ω′v) = rIa(v)

m1
rm2...mk

(ωJa(v,m1)).

Hence,

S(ω′v, k, α) =
∑

m1...mk∈ω′v

(
rIa(v)
m1

)α (
rm2...mk

(ωJa(v,m1))
)α from (3.4) and the above

=
MIa(v)∑
m1=1

((
rIa(v)
m1

)α ∑
m2...mk∈ωJa(v,m1)

(
rm2...mk

(ωJa(v,m1))
)α)

=
V∑

w=1

∑
{m1:Ja(v,m1)=w}

((
rIa(v)
m1

)α ∑
m2...mk∈ωw

(
rm2...mk

(ωw)
)α)

=
V∑

w=1

( ∑
{m:Ja(v,m)=w}

(
rIa(v)
m

)α
)

S(ωw, k − 1, α).

�

Motivated by this we make the following definition.

Definition 3.2. The V × V flow matrix Ma = Ma(α) for a ∈ AV , is defined by

Ma
vw =

∑
{m:Ja(v,m)=w}

(
rIa(v)
m

)α

, 1 ≤ v, w ≤ V.

Flow matrices are the main book keeping tool for tracking the size of covers of V -variable fractals.

Proposition 3.3. Suppose a ∈ A∞V , and ω = (ω1, . . . , ωV ) = ωa ∈ ΩV has address a as in (3.3).
Then,

S(ωa, k, α) = Ma0 ◦ · · · ◦Mak−1 1, i.e. S(ωa
v , k, α) =

V∑
w=1

(Ma0 ◦ · · · ◦Mak−1)vw for 1 ≤ v ≤ V.

Proof. From Proposition 3.1 and Definition 3.2, for any ω ∈ ΩV ,

S
(
Φa(ω), k, α

)
= Ma S(ω, k − 1, α).

Hence,

S
(
Φa0 ◦ · · · ◦ Φak−1(ω), k, α) = Ma0 ◦ · · · ◦Mak−1 S(ω, 0, α)

= Ma0 ◦ · · · ◦Mak−1 1.

Since ωa is of the form Φa0 ◦ · · · ◦ Φak−1(ω) for some ω, the result follows. �

For fixed a = a0 . . . ak−1 . . . and ω as in Proposition 3.3, we often write

(3.6) Sv(k, α) = S(ωv, k, α).

Note that Sv(k, α) depends only on a0, . . . , ak−1, and not on aj for j ≥ k.
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3.4. Computing the Hausdorff dimension. If A is a matrix we define the norm ‖A‖ :=
∑

v,w |Avw|.
It is easily checked that this norm is submultiplicative, ‖AB‖ ≤ ‖A‖ · ‖B‖.

MAIN THEOREM. Fix F = {Fλ : λ ∈ Λ}, a probability distribution P on Λ, an integer V ≥ 1
and a real number α > 0. Under the assumption (2.1),

γ(α) := lim
k→∞

E
1
k

log ‖Ma0(α) · . . . ·Mak−1(α)‖ = lim
k→∞

1
k

log ‖Ma0(α) · . . . ·Mak−1(α)‖ a.s.

In particular, the second limit is independent of a = a0 . . . ak−1 . . . for P∞
V a.e. a ∈ A∞V . The

function γ(α) is monotonically decreasing in α, and there is a unique d such that γ(d) = 0.
Assuming (2.2), and the open set condition (2.3), dimH(Kω) = d for ρV a.e. ω ∈ ΩV .

This theorem is proved in Section 4. For an example see Section 5.

Remark 3.4. The limit γ(α) is sometimes called a “Lyapunov exponent”, since ‖Ma0(α) · . . . ·
Mak−1(α)‖ grows like ekγ(α) as k →∞.

The fact γ(α) exists and is independent of a, for a.e. a ∈ A∞V , is a consequence of the version of the
Furstenberg Kesten theorem [FK60] in [Coh88, Theorem C, p72]. Individual terms 1

k log(Ma0(α) ·
. . . ·Mak−1(α))vw will not normally converge as k →∞. In particular, for fixed v and w, (Ma0(α) ·
. . . ·Mak−1(α))vw = 0 infinitely often a.s. In fact, if Jak−1(u, m) 6= w for all u and m, which happens
with positive probability, then all entries in the w column of Mak−1(α) are zero, and hence all entries
in the w column of Ma0(α) · . . . ·Mak−1(α) are also zero. However, limk→∞

1
k log Sv(k, α) exists a.s.

and equals γ(α), for every v ∈ {1, . . . , V }, see Lemma 4.4.

Remark 3.5. Assuming the open set condition it follows, for random homogeneous fractals Kω

(the V = 1 case), that

(3.7) dimH(Kω) is the unique α for which Eλ log
Mλ∑

m=1

(rλ
m)α = 0, for a.e. ω.

See [Ham92] for the direct computation of the dimension in some particular cases. For random
recursive fractals Kω, the “V →∞” case,

(3.8) dimH(K) is the unique α for which Eλ

Mλ∑
m=1

(rλ
m)α = 1, for a.e. ω.

See [Fal86,MW86,Gra87,Gra91].

4. Proof of the Main Theorem

The proof is broken into a number of lemmas.

Assumptions. We continue the assumptions from the beginning of Section 2, and the notation
from Sections 2 and 3. The integer V ≥ 1 is fixed and α is non negative.

Define

(4.1) Rmin(α) = inf
λ

Mλ∑
m=1

(rλ
m)α, Rmax(α) = sup

λ

Mλ∑
m=1

(rλ
m)α.

The sequence a = a0 . . . ak−1 . . . ∈ AV is chosen according to P∞
V as in Section 3.1. The V -tuple

of fractal sets corresponding to a is denoted Ka, and the corresponding V -tuple of labelled trees is
ωa. Let

(4.2)
Ka = (Ka

1 , . . . ,Ka
V ) = (K1, . . . ,KV ),

ωa = (ωa
1 , . . . , ωa

V ) = (ω1, . . . , ωV ).

From the next lemma, it follows there is a unique d such that as k → ∞ the product ‖Ma0(α) ·
. . . ·Mak−1(α)‖ grows exponentially fast to ∞ if α < d, and decays exponentially fast to 0 if α > d.
This does not imply convergence to a non zero limit or boundedness of ‖Ma0(d) · . . . ·Mak−1(d)‖,
but it does imply that any infinite growth, or decay to zero, should be slower than exponential.
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Lemma 4.1. The limit

lim
k→∞

E
1
k

log ‖Ma0(α) · . . . ·Mak−1(α)‖ =: γ(α)

exists. In addition,

lim
k→∞

1
k

log ‖Ma0(α) · . . . ·Mak−1(α)‖ = γ(α) a.s.,

and in particular is a.s. independent of a. Moreover,

log Rmin(α) ≤ γ(α) ≤ log Rmax(α).

The function γ is strictly decreasing, Lipschitz, has derivative in the interval [log rmin, log rmax],
γ(0) > 0 and γ(α) → −∞ as α →∞. In particular, there is a unique d such that γ(d) = 0.

Proof. The first two claims in the lemma hold for some γ(α) with −∞ ≤ γ(α) < ∞. This follows
from the version of the Furstenberg Kesten theorem in [Coh88, Theorem C p72], since the ak are
chosen in an iid manner.

Suppose A and B are square matrices of the same size with non negative entries. Assume

α1 ≤
∑

j

Aij ≤ α2, β1 ≤
∑

j

Bij ≤ β2, for all i.

Let C = AB. Since
∑

j Cij =
∑

k Aik

(∑
j Bkj

)
,

α1β1 ≤
∑

j

Cij ≤ α2β2 for all i.

In particular, from Definition 3.2 and (4.1),

Rk
min(α) ≤

∑
w

(
Ma0(α) · . . . ·Mak−1(α)

)
vw

≤ Rk
max(α) for all v,

and so
V Rk

min(α) ≤ ‖Ma0(α) · . . . ·Mak−1(α)‖ ≤ V Rk
max(α).

Taking logs of both sides, and letting k →∞, gives the third claim in the lemma.

From Definition 3.2, if 0 ≤ α < β,

r
k(β−α)
min ‖Ma0(α) · . . . ·Mak−1(α)‖ ≤ ‖Ma0(β) · . . . ·Mak−1(β)‖ ≤ rk(β−α)

max ‖Ma0(α) · . . . ·Mak−1(α)‖.
Taking logs and letting k →∞,

(β − α) log rmin ≤ γ(β)− γ(α) ≤ (β − α) log rmax.

Hence γ is Lipschitz, differentiable a.e., monotonically decreasing to −∞, and has derivative in the
range log rmin to log rmax.

Since
γ(0) ∈ [log Rmin(0), log Rmax(0)] = [log(min

λ
Mλ), log M = log(max

λ
Mλ)],

it follows that γ(0) > 0, and so there exists a unique d such that γ(d) = 0. �

In the next following lemmas, the notion of a “neck” a ∈ AV will play an important role, see
Figure 6.

Definition 4.2. The element a ∈ AV is a neck if all Ja(v,m) are equal for v ∈ {1, . . . , V } and if
m ∈ {1, . . . ,MIa(v)}.

A neck occurs at level k in a = a0 . . . ak−1 . . . ∈ A∞V , or more simply we say that k is a neck, if
ak−1 is a neck.

Remark 4.3. An element a chosen according to PV is a neck with probability at least V 1−MV . It
follows that necks in a sequence a ∈ A∞V occur infinitely often a.s.

If a neck occurs in a at level k then all subtrees of (ωa
1 , . . . , ωa

V ) rooted at level k are equal.
That is, if |m| = |m′| = k and v, v′ ∈ {1, . . . , V }, then mn ∈ ωv iff m′n ∈ ωv′ , and in this case
ωv(mn) = ωv′(m′n).
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Figure 6. A neck a with IFSs F , G and H, and with Ja(v,m) = 2 or 0 for all v and m.

For the following lemma recall that Sv(k, α) is the sum of the elements in the vth row of Ma0(α) ·
. . . ·Mak−1(α). From (3.4) we have that S(ω, k, α), for large k, is an approximation to the Hausdorff
measure Hα(Kω). See also Remark 3.4.

Lemma 4.4. For a ∈ A∞V and ω = ωa = (ω1, . . . , ωV ),

(4.3) lim
k→∞

1
k

log Sv(k, α) = γ(α) a.s.

Proof. Let Sv(k, α) = S(ωv, k, α), as in (3.6).
Suppose the address sequence a has a neck at level p, where Jap−1(v,m) = u for all v ∈ {1, . . . , V }

and m ∈ {1, . . . ,MIap−1 (v)}. It follows that all columns of Map−1 are zero, except for the uth column,
and hence the same is true for Ma0 ◦ · · · ◦Map−1 .

Suppose A and B are V × V matrices, such that all columns of A are zero except for the uth
column, which we denote by a. Let b be the uth row of B. Then

AB = [ b1a b2a . . . bV a ] .

It follows that ∑
w

(AB)vw = av

∑
w

bw =

(∑
w

Avw

)∑
w

bw.

In particular, the second factor is independent of v.
Apply this to

(4.4) Sv(k, α) =
∑
w

(Ma0 ◦ · · · ◦Mak−1)vw ,

see Proposition 3.3 and (3.6), with

A = Ma0 ◦ · · · ◦Map−1 , B = Map ◦ · · · ◦Mak−1 .

It follows that

(4.5) Sv(k, α) = Sv(p, α) g(k, α),

where g(k, α) is independent of v, and where Sv(p, α) > 0 for all v.
From (4.4), summing over v,

‖Ma0 ◦ · · · ◦Mak−1‖ =
∑

v

Sv(k, α) = g(k, α)
∑

v

Sv(p, α).

Hence from Lemma 4.1,

γ(α) = lim
k→∞

1
k

log ‖Ma0(α) · . . . ·Mak−1(α)‖ = lim
k→∞

log
1
k

g(k, α) a.s.

Going back to (4.5), since Sv(p, α) > 0, it follows that

lim
k→∞

1
k

log Sv(k, α) = γ(α) a.s.

�



12 MICHAEL BARNSLEY, JOHN E. HUTCHINSON, ÖRJAN STENFLO

Lemma 4.5. If α > d with d as in Lemma 4.1, then Hα(Ka
v ) = 0 for v ∈ {1, . . . , V } and for a.e. a.

In particular, dimH(Ka
v ) ≤ d.

Proof. We usually drop the reference to a and write Kv for Ka
v , and ωv for ωa

v .
Let E be any set such that K1 ∪ · · · ∪KV ⊂ E, and without loss of generality suppose |E| = 1.

For v ∈ {1, . . . , V } and m = m1 . . .mk ∈ ωv, let

Ev;m1...mk
= fωv(∅)

m1
◦ fωv(m1)

m2
◦ · · · ◦ fωv(m1...mk−1)

mk
(E),

as in (2.4). Then
Kv ⊂

⋃
{m∈ωv :|m|=k}

Ev;m ,

and
Sv(k, α) =

∑
{m∈ω:|m|=k}

|Ev;m|α,

as in (3.6) and (3.4).
Since γ(α) < 0, it follows from (4.3) that

(4.6) lim
k→∞

Sv(k, α) = lim
k→∞

ek( 1
k log Sv(k,α)) = 0 a.s.

Hence Hα(Kv) = 0 a.s. �

Lemma 4.6. Assume F satisfies the open set condition. If α < d, where d is as in Lemma 4.1,
then Hα(Ka

v ) > 0 a.s. for 1 ≤ v ≤ V . In particular, dimH(Ka
v ) ≥ d a.s.

Proof. Suppose α < d. As before, Kv = Ka
v and ωv = ωa

v .
For a.e. a and each 1 ≤ v ≤ V , we construct a unit mass measure µ on Kv, such that for some c,

(4.7) µ(Br(x)) ≤ crα if r > 0, x ∈ Rn.

It then follows by the mass distribution principle [Fal03, p60] that Hα(Kv) > 0, and so dim(Kv) ≥ d.

A. Properties of Necks. For a ∈ A∞V and k ≥ 0, let na(k) = n(k) denote the first level ≥ k at which
a neck occurs.

Then we claim

(4.8) ∀ε > 0 ∃N > 0 such that ∀k
(
n(k)− k ≤ N + εk

)
a.s.,

where N will depend on a.
To see this, fix ε > 0 and k > 0, and let

Ek = {a : na(k)− k > εk}.
It follows from Remark 4.3 that

P∞
V (Ek) ≤

(
1− V 1−MV

)εk
.

Since
∑

k≥1 P∞
V (Ek) < ∞, it follows from the Borel Cantelli lemma that, with probability one, Ek

occurs for only finitely many k, and so n(k)− k ≤ εk for all k sufficiently large. Hence for some N
depending on a and ε, n(k)− k ≤ N + εk for all k. This proves (4.8).

B. Construction of ν and µ. Suppose a is as in (4.8) and consider the tree ωa = (ω1, . . . , ωV ). For
fixed v, a unit measure ν will first be constructed on the set ω̃v of infinite paths through ωv.

For m ∈ ωv the corresponding cylinder set, a subset of ω̃v, is defined by

[m] = {p ∈ ω̃v : m ≤ p},
where m ≤ p means that m is an initial segment of p.

The weight function w is defined on cylinder sets by

(4.9) w([m]) = rα
v;m :=

(
rωv(∅)
m1

· . . . · rωv(m1...mk−1)
mk

)α

.
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We define a unit mass measure ν on ω̃v by setting, if m ∈ ωv and |m| = k is a neck,

(4.10) ν([m]) =
w([m])∑

{w([m′]) : |m′| = k}
=

rα
v;m∑

{rα
v;m′ : m ∈ ωv, |m| = k}

.

The expression for ν([m]), in case |m| is not a neck, can be found in (4.15).
In order to show this does define a (unit mass) measure on ω̃v, first recall that a has necks of

arbitrarily large size. We will prove that if k ≤ j are both necks, m ∈ ωv and |m| = k, then ν
satisfies the consistency condition

(4.11) ν([m]) =
∑

{ν([n]) : m ≤ n ∈ ωv, |n| = j}.

Here, and elsewhere, m ≤ n means m is an initial segment of the finite sequence n.
Note that [m] =

⋃
{[n] : m ≤ n ∈ ωv, |n| = j}, and this is a union of disjoint sets. It follows

from (4.11) that ν extends to a unit mass measure on the σ-algebra of subsets of ω̃v generated by
the cylinder sets [m] for which |m| is a neck. This is just the σ-algebra generated by all cylinder
sets, i.e. the class of Borel sets.

In order to prove (4.11), note that if m ∈ ωv, |m| = k where k is a neck for a, and ms ∈ ωv,
then it follows from (4.9) and Remark 4.3 that

(4.12) rα
v;ms = θα(s) rα

v;m,

where θ(s) does not depend on either m or v. Suppose now that j ≥ k. Then from (4.9) and (4.12),∑
{w([n]) : m ≤ n ∈ ωv, |n| = j} = rα

v;m

∑
{θα(s) : ms ∈ ωv, |s| = j − k}

=: λ(k, j, α) rα
v;m = λ(k, j, α) w([m]),(4.13)

where λ does not depend on m or v. Replacing m by m′ and n by n′, and summing also over m′,∑
{w([n′]) : n′ ∈ ωv, |n′| = j} = λ(k, j, α)

∑
{w([m′]) : m′ ∈ ωv, |m′| = k}.(4.14)

Dividing (4.13) by (4.14) and using (4.10) gives (4.11).
If m ∈ ωv with |m| = k, not necessarily a neck, and j ≥ n(k), then

ν([m]) =
∑

{ν([n]) : m ≤ n ∈ ωv, |n| = n(k)} =
∑
{w([n]) : m ≤ n ∈ ωv, |n| = n(k)}∑
{w([n′]) : n′ ∈ ωv, |n′| = n(k)}

=
∑
{rα

v;n : m ≤ n ∈ ωv, |n| = n(k)}∑
{rα

v;n′ : n′ ∈ ωv, |n′| = n(k)}
=
∑
{rα

v;p : m ≤ p ∈ ωv, |p| = j}∑
{rα

v;p′ : p′ ∈ ωv, |p′| = j}
,(4.15)

using (4.12) in the final equality.

Define the map τ̃ : ω̃v → Kv by

τ̃(p1p2 . . . pk . . .) = lim
k→∞

fωv(∅)
p1

◦ fωv(p1)
p2

◦ · · · ◦ fωv(p1...pk−1)
pk

(x0) ∈ Kv,

and note that the limit does not depend on x0.
The measure ν on ω̃v projects to the unit mass measure µ on Kv, defined

(4.16) µ(A) = ν{p ∈ ω̃v : τ̃(p) ∈ A}

for A a Borel subset of Kv.

C. An upper estimate for ν. Again assume a satisfies (4.8), and consider the corresponding tree
ωa = (ω1, . . . , ωV ). Fix v. We show for m = m1 . . .mk ∈ ωv that

(4.17) ν([m]) ≤ c1r
α
v;m,

for some constant c1 depending on a but not on m.

From (4.15),

(4.18) ν([m]) =
∑
{rα

v;n : m ≤ n ∈ ωv, |n| = n(k)}∑
{rα

v;n′ : n′ ∈ ωv, |n′| = n(k)}
≤

rα
v;mMn(k)−k

Sv(n(k), α)
.
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To establish this inequality use (4.9) with m there replaced by n, note that each rα
j ≤ 1 and

the branching number of ωv is bounded by M , and use the expression in (3.4) for Sv(n(k), α) =
S(ωv, n(k), α).

From (4.8), for any ε > 0, there exists N(ε) such that

(4.19) Mn(k)−k ≤ MN(ε)Mkε

for all k.
From (4.3), since α < 0 and so γ(α) > 0, there exists c2 ∈ R such that for all j,

log Sv(j, α) ≥ c2 +
j

2
γ(α).

Hence,

(4.20) Sv(n(k), α) ≥ c3e
1
2 n(k)γ(α) ≥ c3e

1
2 kγ(α)

for some c3 > 0 and all k.
Choose ε ≤ 1

2γ(α)/ log M so that e
1
2 kγ(α) ≥ Mkε, and then choose N = N(ε). Dividing (4.19) by

(4.20), and using (4.18), gives (4.17) with c1 = MN/c3.

D. The estimate for µ. Fix a ∈ A∞V satisfying (4.8), in which case (4.17) holds. Assume the open
set condition (2.3) holds with the open set O.

Fix x ∈ Rn and r > 0. With µ the measure on Kv as in (4.16), we show by a standard argument,
see [Hut81, p737] or [Fal03, p131], that

(4.21) µ(Br(x)) ≤ crα.

Here c is independent of x and r, and Br(x) is the open ball of radius r centred at x.

First note that, for each infinite sequence p = m1m2 . . .mk . . . ∈ ω̃v = ω̃a
v , there is a least k such

that

(4.22) rminr ≤ rv;m1...mk
< r.

Let Q(r) = Qa(r) be the set of all such m = m1 . . .mk. The setsOv;m for m ∈ Q(r) are disjoint from
(2.5) and the definition of Q(r), although the |m| are not necessarily equal. Let Q(x, r) = Qa(x, r)
be the set of m ∈ Q(r) such that Ov;m meets Br(x).

Choose a1 and a2 so that O contains an open ball of radius a1, and is contained in an open ball
of radius a2. Then the sets Ov;m each contain a ball of radius a1rv;m, and hence of radius a1rminr,
and they are contained in a ball of radius a2rv;m, and hence of radius a2r. It follows by a volume
comparison that if q = q(x, r) is the cardinality of Q(x, r), since the inner balls are disjoint and are
subsets of B(1+2a2)r, that

q(a1rminr)n ≤ (1 + 2a2)nrn,

and so q is bounded independently of x and r.
Hence,

µ(Br(x)) = µ(Br(x) ∩Kv) = ν
(
{p : τ(p) ∈ Br(x) ∩Kv}

)
≤ ν

(⋃
{[m] : m ∈ Q(x, r)}

)
=
∑

{ν([m]) : m ∈ Q(x, r)}

≤ c1q
∑

{rα
v;m : m ∈ Q(x, r)} ≤ c1qr

α,

using the definition of Q(x, r), the disjointedness of the m ∈ Q(x, r) ⊂ Q(r), the estimate (4.17)
and (4.22). This establishes (4.7) and hence the lemma. �
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Figure 7. Graphs of γV (α) = γ(α) for V = 1, 2, 5 respectively from left to right.
Here F = {F,G} and P = {1/2, 1/2} as in the introduction.

5. Examples

For the model problem in the introduction, with F and G each chosen with probability 1/2,
it follows from (3.7) that, for random homogeneous Sierpinski triangles, the dimension is d(1) =
2 log 3/(log 2+log 3) ≈ 1.226. For the corresponding random recursive case, from (3.8) the dimension
is the solution d of 1

23
(

1
2

)d+ 1
23
(

1
3

)d = 1, i.e. d(∞) ≈ 1.262. For V > 1 we used Maple 10 to compute
the values of γV (α) shown in Figure 7. These values have error at most .001 at the 95% confidence
level, and from this one obtains the dimensions d(2) ≈ 1.241, d(5) ≈ 1.252. The computed graphs
for V > 1 are concave up, although this does not show on the scale used.
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