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Abstract. We study the general asymptotic behavior of critical points, in-
cluding those of non-minimal energy type, of the functional for the Van der
Waals-Cahn-Hilliard theory of phase transitions. We prove that the interface
is close to a hypersurface with mean curvature zero when no Lagrange mul-
tiplier is present, and with locally constant mean curvature in general. The
energy density of the limiting measure has integer multiplicity almost every-

where modulo division by a surface energy constant.

1. Introduction

In this paper we study the general asymptotic behavior of critical points of the
energy functional for the Van der Waals-Cahn-Hilliard theory of phase transitions.
The functional in question is

(1.1) Eε(u) =

∫

U

ε|∇u|2
2

+
W (u)

ε
,

where u : U ⊂ R
n → R is the normalized density distribution of a two-phase fluid

and W is a double well potential with strict local minima at ±1, see [26]. A similar
functional also appears in the study of pattern formation (e.g. [33, 34]) for ε ≈ 0.
Critical points of the functional (1.1) satisfy

(1.2) ε∆u = ε−1W ′(u) − λ,

where λ is the Lagrange multiplier associated with a global volume constraint of
the form

∫
U
u = m.

For absolutely energy minimizing solutions with such a volume constraint, Mod-
ica [31] and Sternberg [41] used the technique of Γ-convergence [17] to show that
(on passing to a subsequence) the limit of minimizers of (1.1) as ε → 0 is a func-
tion with value ±1 almost everywhere and with area minimizing interface in the
appropriate class of competing functions. There have been works by many authors
on various generalizations and related problems in this direction, see for example
[6, 21, 28, 32, 36, 42, 43].

The focus of this paper is on general critical points which may not be absolutely
energy minimizing. A good understanding of such solutions is important in the
study of dynamical problems such as the Allen-Cahn equation [2] and the Cahn-
Hilliard equation [12] in bounded domains, since it has been observed numerically
[25] that the solution often seems to undergo patterns similar to unstable equilibria
before settling down to a stable pattern. Moreover, from a purely mathematical
point of view, one can show the existence of unstable mountain-pass type solutions
[38] due to the non-convexity of the functional (1.1), and it is interesting to know
the asymptotic limit of such solutions as ε → 0 in this generality. On the other
hand, Γ-convergence techniques essentially rely on energy minimality of solutions
and thus do not deal with general non-minimizing solutions.

Roughly speaking, for λ = 0 and any solution of (1.2), we show that as ε → 0
the interface converges in the Hausdorff distance sense to a generalized minimal
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hypersurface. Moreover, the energy concentrates near the hypersurface and after

division by twice the surface energy constant σ =
∫ 1

−1

√
W (s)/2 ds, the energy

density in the limit is an integer Hn−1 a.e. on the hypersurface. This integer
multiplicity allows for “folding” of the interface as ε → 0. When λ 6= 0, we prove
that the hypersurface has locally constant mean curvature Hn−1 a.e., with the
situation otherwise similar to the λ = 0 case. As a corollary, we show that the
additional assumption of local energy minimality implies no loss of energy in the
limit, and the limit interface is a locally area minimizing hypersurface of multiplicity
one.

The proof of our results depends on a local maximum bound on the discrepancy
function ξ = ε

2 |∇u|2 − 1
εW (u). For a bounded entire solution of (1.2) on R

n with
λ = 0, Modica showed in [30] that ξ ≤ 0. We show that ξ is locally uniformly
bounded for small ε, and use this to establish a local monotonicity formula for
the scaled energy density. We note that in his study of the Allen-Cahn equation
with domain R

n ([27]), Ilmanen assumed that the initial data satisfies ξ ≤ 0, which
is preserved in time by the maximum principle, and which implies a parabolic
monotonicity formula for the energy. In [40], Soner was able to drop this assumption
on the initial data and showed with |u| ≤ 1 that (essentially) ξ is bounded uniformly
on R

n for t > 0. Our results also point to the way that one may localize [27, 40] to
the case of bounded domains in R

n. The question of integer multiplicity density of
the limiting energy measure (modulo division by the surface energy constant) was
raised in [27, Section 13] for the Allen-Cahn equation. Our result proves that, at
least for the time-independent and local case, this is generally true. This paper also
extends the results in [37], in which locally stable or energy minimizing solutions
were analyzed. Finally, we mention the recent work by Sternberg and Zumbrun [44],
which showed that the interface for stable solutions on strictly convex domains is
topologically connected. There have been numerous works on associated dynamical
problems in recent years, we cite [3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 18, 20, 27, 35, 40]
and further references therein.

The organization of the paper is as follows. In Section 2, we state the assump-
tions, certain terminology and the main results. In Section 3, we derive the local
maximum bound on the discrepancy function, and the energy monotonicity for-
mula. We then show in Section 4 that the limiting varifold defined in Section 2 is
rectifiable. Section 5 shows integer multiplicity of the limiting varifold. We discuss
various additional matters in the last section.

The authors acknowledge the support of the Australian Research Council for
this research.

2. Preliminaries and main results

2.1. Hypotheses and easy consequences. Except where stated otherwise we
take the following as the starting point of this paper. Note that we do not assume
any energy minimality for the ui.

Assumptions.

A: The function W : R → [0,∞) is C3 and W (±1) = 0. For some γ ∈
(−1, 1), W ′ < 0 on (γ, 1) and W ′ > 0 on (−1, γ). For some α ∈ (0, 1) and
κ > 0, W ′′(x) ≥ κ for all |x| ≥ α.

B: U ⊂ R
n is a bounded open set with Lipschitz boundary ∂U . A sequence of

C3(U) functions {ui}∞i=1 satisfies

(2.1) εi∆u
i = ε−1

i W ′(ui) − λi
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on U . Here, limi→∞ εi = 0, and we assume there exist c0, λ0 and E0 such
that supU |ui| ≤ c0, |λi| ≤ λ0 and

∫

U

εi|∇ui|2
2

+
W (ui)

εi
≤ E0

for all i.

Assumption A requires that W has a standard W-shape with non-degenerate
minima at ±1, and local maximum at γ. The uniform supremum bound on |ui|
may be obtained by imposing some structural conditions on W as in Section 6.1
and [25], and also follows from the existence proof in other situations such as in
Section 6.2. The regularity of u is then standard ([22]).

We next discuss a few immediate consequences of the assumptions. Let

Φ(s) =

∫ s

0

√
W (s)/2 ds,

and define new functions

wi = Φ ◦ ui

for each i.
Since |∇wi| =

√
W (ui)/2 |∇ui|, it follows by the Cauchy-Schwartz inequality

that ∫

U

|∇wi| ≤ 1

2

∫

U

εi|∇ui|2
2

+
W (ui)

εi
≤ E0

2
.

We also have Φ(−c0) ≤ wi ≤ Φ(c0). By the compactness theorem for bounded
variation functions ([19]), there exists a subsequence also denoted by {wi} and an
a.e. pointwise limit w∞, such that

lim
i→∞

∫

U

|wi − w∞| = 0 and

∫

U

|Dw∞| ≤ lim inf
i→∞

∫

U

|∇wi|.

Here, |Dw∞| is the total variation of the vector-valued Radon measure Dw∞.
Let Φ−1 be the inverse of Φ and define

u∞ = Φ−1(w∞).

Then ui → u∞ a.e., and by the Lebesgue dominated convergence theorem
∫

U

|ui − u∞| → 0.

Also by Fatou’s Lemma and the energy bound, we have
∫

U

W (u∞) =

∫

U

lim
i→∞

W (ui) ≤ lim inf
i→∞

∫

U

W (ui) = 0.

This shows that u∞ = ±1 a.e. on U , and the sets {u∞ = ±1} have finite perimeter
in U , since

‖∂{u∞ = 1}‖(U) =
1

2

∫

U

|Du∞| =
1

σ

∫

U

|Dw∞| ≤ E0

2σ
,

where we define

σ =

∫ 1

−1

√
W (s)/2 ds,

and where ‖∂A‖ denotes the perimeter of A in the measure-theoretic sense (see
[19]).

By the generalized Gauß-Green theorem for sets of finite perimeter ([19, page
209]), there exists an (n − 1)-rectifiable set M∞ (the “reduced boundary”) ⊂
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supp‖∂{u∞ = 1}‖, and an Hn−1 measurable unit vector function ν∞ defined on
M∞ (pointing into {u∞ = 1}) such that

∫

{u∞=1}
divg = −

∫

M∞

ν∞ · g dHn−1,

for any g ∈ C1
c (U).

2.2. The associated varifolds. In this section we recall various definitions con-
cerning varifolds and associate to each solution of (1.2) a varifold in a natural way.
We refer to [1, 39] for a comprehensive treatment of varifolds.

Let G(n, n−1) denote the Grassman manifold of unoriented (n−1)-dimensional
planes in R

n. We also regard S ∈ G(n, n − 1) as the orthogonal projection of R
n

onto S, and write S1 · S2 = trace(St
1 · S2). We say V is an (n − 1)-dimensional

varifold in U ⊂ R
n if V is a Radon measure on Gn−1(U) = U × G(n, n − 1). Let

Vn−1(U) denote the set of all (n−1)-dimensional varifolds in U . Convergence in the
varifold sense means convergence in the usual sense of measures. For V ∈ Vn−1(U),
we let the weight ‖V ‖ be the Radon measure in U defined by

‖V ‖(A) = V
(
{ (x, S) | x ∈ A, S ∈ G(n, n− 1) }

)

for each Borel set A ⊂ U . If M is a (n − 1)-rectifiable subset of U we define
v(M) ∈ Vn−1(U) by

v(M)(E) = Hn−1
(
{x ∈ U | (x,Tann−1(Hn−1bM , x)) ∈ E }

)

for each Borel set E ∈ Gn−1(U), where Tann−1(Hn−1bM , x) is the approximate
tangent plane to M at x and so exists for Hn−1 a.e. x ∈ M . We say V ∈ Vn−1(U)
is an (n − 1)-dimensional rectifiable varifold if there exist positive real numbers
{ck}∞k=1 and (n− 1)-rectifiable sets {Mk}∞k=1 such that

V =
∞∑

k=1

ckv(Mk).

The density or multiplicity function θ for V is given by

θ(x) =
∑

{ ck | x ∈Mk },

and then ‖V ‖ = θHn−1bM , where M =
⋃

k Mk. If {ck}∞k=1 may be taken to be
positive integers, we say V is an (n− 1)-dimensional integral varifold.

For V ∈ Vn−1(U), we define the first variation of V by

δV (g) =

∫
Dg(x) · S dV (x, S)

for any vector field g ∈ C1
c (U ; Rn), and we say V is stationary if δV (g) = 0 for

all such g. We also denote the total variation of δV by ‖δV ‖. If ‖δV ‖ is a Radon
measure and is absolutely continuous with respect to ‖V ‖ on U , we define the
generalized mean curvature H(x) by

δV (g) = −
∫
g ·H d‖V ‖,

where H is defined ‖V ‖ a.e. on U .
Finally we remark that if µ is a measure on U (e.g., ‖V ‖ or ‖∂{u∞ = 1}‖) then

by suppµ we will always denote the support of µ in U .

We associate to each function wi a varifold V i defined naturally as follows ([27,
37]). By Sard’s theorem, {wi = t} ⊂ U is a C3 hypersurface for L1 almost all t.
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Define V i ∈ Vn−1(U) by

V i(A) =

∫ ∞

−∞
v({wi = t})(A) dt

for each Borel set A ⊂ Gn−1(U). By the coarea formula ([19]), we have

‖V i‖(A) =

∫ ∞

−∞
Hn−1({wi = t} ∩ A) dt =

∫

A

|∇wi|

for each Borel set A ⊂ U . One may interpret the varifold V i as a weighted averaging
of the level sets of ui, which is concentrated around the transition region. The first
variation of V i is given by (see [37, Section 2.1])

(2.2) δV i(g) =

∫

U

(
divg −

n∑

j,k=1

wi
xj

|∇wi|
wi

xk

|∇wi|g
j
xk

)
|∇wi|

for each g ∈ C1
c (U ; Rn).

2.3. Main results. With the above terminology and assumptions A and B, we
show the following. More detailed information is obtained in the appropriate lem-
mas and propositions in the paper.

Theorem 1. Let V i be the varifold associated with ui (via wi) as in Sections 2.1
and 2.2. On passing to a subsequence we can assume

λi → λ∞, ui → u∞ a.e., V i → V in the varifold sense.

Moreover,

(1) For each φ ∈ Cc(U),

‖V ‖(φ) = lim
i→∞

∫
φ
εi|∇ui|2

2
= lim

i→∞

∫
φ
W (ui)

εi
= lim

i→∞

∫
φ |∇wi|.

(2) supp‖∂{u∞ = 1}‖ ⊂ supp‖V ‖, and {ui} converges locally uniformly to ±1
on U \ supp‖V ‖.

(3) For each Ũ ⊂⊂ U and 0 < b < 1, {|ui| ≤ 1−b}∩Ũ converges to Ũ∩supp‖V ‖
in the Hausdorff distance sense.

(4) σ−1V is an integral varifold. Moreover, the density θ(x) = σN(x) of V
satisfies

N(x) =

{
odd Hn−1 a.e. x ∈M∞,
even Hn−1 a.e. x ∈ supp‖V ‖ \M∞,

where M∞ is the reduced boundary of {u∞ = 1}.
(5) The generalized mean curvature H of V is given by

H(x) =

{ λ∞

θ(x)ν
∞(x) Hn−1 a.e. x ∈M∞,

0 Hn−1 a.e. x ∈ supp‖V ‖ \M∞,

where ν∞ is the inward normal for M∞.

(2) follows from Proposition 4.2, (1) from Propositions 4.3 and 4.4. (3) follows
from a contradiction argument using Propositions 4.2 and 4.1. (5) is established
in Proposition 4.4 (although at that stage the varifold V is only known to be
rectifiable) and (4) is proved in Section 5.

Heuristic interpretations may be given as follow. ¿From (1), we see that in the
limit the energy is equally divided between the two terms of the energy functional
(1.1). (4) suggests that folding of the interface as ε→ 0 occurs locally as an integer
multiple of 1-D traveling wave solutions ([30]), almost everywhere in the measure-
theoretic sense. This can be seen more clearly in the proof of integrality in Section
5. (5) suggests that, whenever there is a cancellation of interface in the oriented
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sense, the mean curvature is zero there. More generally, if N -folding occurs, the
mean curvature decreases by that factor.

Without loss of generality, we may assume that M∞ ⊂ supp‖∂{u∞ = 1}‖. We
were not able to prove or disprove that Hn−1(supp‖∂{u∞ = 1}‖ \M∞) = 0 in
general. This is due to the lack of a uniform lower density estimate for the measure
‖∂{u∞ = 1}‖ (as opposed to ‖V ‖) at Hn−1 a.e. x in the closure of M∞. On the
other hand, if N(x) is odd Hn−1 a.e. for x ∈ supp‖V ‖, the result (4) shows that
Hn−1(supp‖V ‖ \M∞) = 0 and supp‖V ‖ = supp‖∂{u∞ = 1}‖. If N(x) = 1 a.e.,
then σ−1‖V ‖ = ‖∂{u∞ = 1}‖ and V has constant mean curvature on U by (4) and
(5). This last situation corresponds to “no energy loss”, since

∫
|Dw∞|φ = σ ‖∂{u∞ = 1}‖(φ) = ‖V ‖(φ) = lim

i→∞

∫
|∇wi|φ

for all φ ∈ Cc(U). The relation (5) between the Lagrange multiplier λ∞ (or chem-
ical potential in the two-phase fluid model) and the mean curvature of the limit
interface, called the Gibbs-Thompson relation, was established by Luckhaus and
Modica in [29] in the case of no energy loss.

It is well-known that the support of a rectifiable varifold with bounded mean
curvature is locally a C1,α graph on a relatively open dense subset O ([1]). More-
over, the multiplicity of V on O is locally constant, and hence the support has
locally constant mean curvature by (5). Thus O is in fact a C∞ submanifold. On
the other hand, we do not know if Hn−1(supp‖V ‖ \ O) = 0 in general.

If N = 1, Hn−1 a.e. on supp‖V ‖, then the support is locally a C∞ hypersuface
of constant mean curvature, except for a closed set of Hn−1 measure zero. Such a
situation occurs (away from the boundary) in the locally minimizing case discussed
in Theorem 2. First we need the following.

Definition. For Ũ ⊂⊂ U we say u ∈ H1(U) is locally energy minimizing on Ũ for
Eε if there exists a positive constant c such that Eε(u) ≤ Eε(ũ) for all ũ ∈ H1(U)

satisfying
∫

U
|u− ũ| < c and u− ũ = 0 on U \ Ũ . We may also (depending on the

problem) impose the additional volume constraint
∫

U
(u− ũ) = 0.

Note that the definition is local in both the domain and the L1 norm, which
differs from the local minimality discussed in [28]. With this, we prove

Theorem 2. In addition to assumptions A and B, suppose {ui} are locally energy

minimizing on Ũ ⊂⊂ U for Eεi (with or without volume constraint). Then N(x) =

1, Hn−1 a.e. on Ũ ∩ supp||V ||. ∂{u∞ = 1} on Ũ has constant mean curvature
λ∞

σ ν∞ and no energy loss occurs on Ũ .

For absolutely energy minimizing solutions with a volume constraint, Modica
[31] and Sternberg [41] showed that ∂{u∞ = 1} is an absolutely area minimizing
hypersurface with the given volume constraint. For this case, with the additional
assumption A, Theorem 1.(3) gives a new result concerning convergence of the
interface in the Hausdorff distance sense. We also prove a version of the Modica-
Sternberg theorem for local minimizers, which was not known before.

Theorem 3. Suppose that W satisfies assumption A and U is a bounded open set
with Lipschitz boundary. Suppose c > 0, ui ∈ H1(U), εi → 0, m ∈ (−|U |, |U |) and
E0 <∞ satisfy

(1)
∫

U u
i = m and Eεi(u

i) ≤ E0 for all i,

(2) Eεi(u
i) ≤ Eεi(ũ) for all ũ ∈ H1(U) with

∫
U
|ui − ũ| < c and

∫
U
ũ = m.

Then the assumption B is satisfied. Moreover, with u∞ as in Theorem 1, ∂{u∞ =
1} minimizes area locally; i.e. for any ũ satisfying ũ = ±1 Ln a.e. on U ,

∫
U ũ = m
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and
∫

U |u∞ − ũ| < c (the same c in the assumption), we have

||∂{u∞ = 1}||(U) ≤ ||∂{ũ = 1}||(U).

It is well-known that the support of a locally area minimizing perimeter is smooth
except for a closed set of dimension at most n− 8 [23, 24].

The reader is referred to Section 6 for additional applications of our results.

3. Local monotonicity formula

Throughout this section, in addition to assumption A, we assume that the func-
tion u : U → R satisfies assumption B with ui and εi there replaced by u and ε
respectively. We assume Ũ is open and Ũ ⊂⊂ U .

The main result here is the local monotonicity type formula in Proposition 3.4.
Note that the two integrals on the right side are positive and the remaining “error”
term is controlled by r.

The first step is to establish the relationship Lemma 3.1 between the scaled
energy on concentric balls of different radii. For technical reasons we do this in
terms of the associated scaled energy defined on Br(x) ⊂ U by

I(r, x) =
1

rn−1

∫

Br(x)

ε|∇u|2
2

+
W̃ (u)

ε
,

where W̃ (u) ≡ W (u) − λεu. (Note that u is stationary for the non-constrained

problem obtained from (1.1) with W replaced by W̃ , and I(r, x) is the scaled
energy for this new functional.)

The next step is to control from above the first integrand on the right of (3.1).
This is done in Proposition 3.3, where an upper bound is established for the dis-
crepancy function

ξ =
ε|∇u|2

2
− W (u)

ε
.

A preliminary result is the sup bound for |u| in Proposition 3.2. Both these propo-
sitions are motivated by the results of Modica [30] (see also Chen [15]), where it is
shown if λ = 0 that |u| ≤ 1 and ξ ≤ 0 for bounded entire solutions of (1.2) on all
of R

n. However, the proofs of the local results here are technically somewhat more
involved.

Lemma 3.1. If Br(x) ⊂⊂ U and r > s > 0, then

(3.1)

I(r, x) − I(s, x) =

∫ r

s

(
1

τn

∫

Bτ (x)

W̃ (u)

ε
− ε|∇u|2

2

)
dτ

+ ε

∫

Br(x)\Bs(x)

((y − x) · ∇u)2
|y − x|n+1

dy.

Proof. Multiply both sides of (1.2) by ∇u · g, where g = (g1, · · · , gn) ∈ C1
c (U ; Rn).

Then, after two integrations by parts, we obtain

(3.2)

∫

U

((ε|∇u|2
2

+
W̃ (u)

ε

)
divg − ε

∑

i,j

uyiuyjg
j
yi

)
= 0.

We let x = 0 by a suitable translation and let gj(y) = yjρ(|y|), where ρ(|y|) is a
smooth approximation to the characteristic function χBr(0). Writing r = |y|, (3.2)
becomes

∫

U

((
ε|∇u|2

2
+
W̃ (u)

ε

)
(rρ′ + nρ) − ε

ρ′

r
(y · ∇u)2 − ε|∇u|2ρ

)
= 0.
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By letting ρ→ χBr(0) and rearranging terms, we obtain

− (n− 1)

∫

Br

(
ε|∇u|2

2
+
W̃ (u)

ε

)
+ r

∫

∂Br

(
ε|∇u|2

2
+
W̃ (u)

ε

)

=

∫

Br

(
W̃ (u)

ε
− ε|∇u|2

2

)
+
ε

r

∫

∂Br

(y · ∇u)2.

By dividing the above expression by rn and by integrating over the interval [s, r],
we obtain (3.1). 2

Proposition 3.2. There exist constants c1 and ε1 which depend only on λ0, c0,
dist(Ũ , ∂U) and W such that

(3.3) sup
Ũ

|u| ≤ 1 + c1ε

whenever ε < ε1.

Proof. Suppose that B3d ⊂ U and consider a smooth function ζ ∈ C∞(B3d) such
that 1+c1ε/2 ≤ ζ ≤ 1+c0 on B3d, ζ ≡ 1+c1ε/2 on Bd, ζ ≡ c0+1 onB3d−B2d, where
c1 will be fixed shortly. Assume that supBd

u ≥ 1 + c1ε to derive a contradiction.
Let g be a function defined by g = u− ζ. Then, the function g satisfies g ≤ −1 on
∂B3d and supB3d

g ≥ c1ε/2. Thus g has an interior maximum point at x0, say, and
g(x0) ≥ c1ε/2. Also at x0,

0 ≥ ε∆g = ε(∆u− ∆ζ) =
W ′(u)

ε
− λ− ε∆ζ

=
W ′(tu+ (1 − t)ζ)

ε

∣∣∣∣
1

t=0

+
W ′(ζ)

ε
− λ− ε∆ζ

≥ g

ε

∫ 1

0

W ′′(tu+ (1 − t)ζ) dt − λ− εmax |∆ζ|.

¿From assumption A and g(x0) ≥ c1ε/2, it follows that κc1/2 ≤ λ + εmax |∆ζ|.
Thus, if c1 is sufficiently large, this would be a contradiction.

The result as stated is an easy consequence. The bound on inf u is obtained
similarly. 2

Remark. We may obtain better estimates than Proposition 3.2, but this is suffi-
cient for our purpose.

In particular, if λ = 0 and k > 0, by iterating the above argument one obtains
supŨ |u| ≤ 1 + c′1ε

k, where c′1 depends on k and the same quantities as c1.
More generally, if aε and bε are chosen near −1 and +1 respectively so that

W ′(aε) = W ′(bε) = ελ, then by replacing W by W − ελu in the argument, one can
show aε − c′′1ε

k < u < bε + c′′1ε
k, where c′′1 depends on k and the same quantities

as c1.

Proposition 3.3. There exist constants c2 and ε2 which depend only on λ0, c0,
dist(Ũ , ∂U) and W such that

(3.4) sup
Ũ

(
ε|∇u|2

2
− W (u)

ε

)
≤ c2.

for all ε < ε2.

Combining this proposition with Lemma 3.1 we obtain, with the notation

E(r, x) = r1−n

∫

Br(x)

ε|∇u|2
2

+
W (u)

ε
,
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the following monotonicity type formula.

Proposition 3.4. Suppose Br(x) ⊂ Ũ , r > s > 0 and ε ≤ ε2. Then

(3.5)

E(r, x) −E(s, x) ≥
∫ r

s

{
1

τn

∫

Bτ (x)

(
W (u)

ε
− ε

2
|∇u|2

)+
}
dτ

− c3r + ε

∫

Br(x)\Bs(x)

((y − x) · ∇u)2
|y − x|n+1

dy,

where c3 = (4λ0 + c2)ωn.

It remains to establish Proposition 3.3. For this, suppose B3d(0) ⊂ Ũ , and by
scaling x 7→ x/ε consider the rescaled problem

−∆u+W ′(u) = ελ on B3d/ε(0).

For the remainder of this section let u denote the rescaled function (which solves
the rescaled problem). Without loss of generality for our purposes choose units so
d = 1. Also for the remainder of this section we denote the rescaled discrepancy
function by

ξ =
1

2
|∇u|2 −W (u).

Proposition 3.3 then follows by rescaling back from Lemma 3.6.
It is convenient to work with the function

ξG(x) =
1

2
|∇u|2 −W (u) −G(u),

where G : R → R will be fixed shortly. We first obtain a differential inequality for
ξG, cf. [15, 30].

Lemma 3.5. On |∇u| > 0,

(3.6)
∆ξG − 2(W ′ +G′)∇u

|∇u|2 · ∇ξG + 2G′′ξG

≥ (G′)2 +G′W ′ − 2G′′(W +G) + ελ(W ′ +G′).

Proof. Compute

∆ξG =
∑

(uxixj )
2 +

∑
uxi(∆u)xi −W ′′|∇u|2 −W ′∆u−G′′|∇u|2 −G′∆u

=
∑

(uxixj )
2 − (W ′ +G′)∆u−G′′|∇u|2 (by ∆u = W ′ − ελ)

=
∑

(uxixj )
2 − (W ′ +G′)(W ′ − ελ) − 2G′′(G+W + ξG),

where the last line is by substituting |∇u|2 = 2(G+W + ξG). On the other hand,

|∇u|2
∑

(uxixj )
2 ≥

∑

j

(∑

i

uxiuxixj

)2

=
∑

j

(
(ξG)xj + (W ′ +G′)uxj

)2

≥ 2(W ′ +G′)∇u · ∇ξG + (W ′ +G′)2|∇u|2.

We may then conclude (3.6). 2

For the rescaled discrepancy function ξ one has the following estimate.
9



Lemma 3.6. There exist constants c4 and ε4 which depend only on λ0, c0 and W
such that

(3.7) sup
Bε−1 (0)

ξ ≤ c4ε

for all ε < ε4.

Proof. By supŨ |u| ≤ c0 and standard elliptic estimates, there exists a constant c5
such that supB3ε−1−1

|ξ| ≤ c5. Let

G(u) = ε1/2(1 − (u− γ)2/8).

We will use the properties G > 0 on [−1.1, 1.1], G′′ = −ε1/2/4 < 0 and G′W ′ ≥ 0
on [−1, 1]. We restrict ε so that |u| ≤ 1.1 on B3ε−1 . Later in the proof we further
restrict ε.

First we show
Claim 1. supB2ε−1

ξG < ε1/2.

Proof of Claim 1. Assume, for a contradiction, that supB2ε−1
ξG ≥ ε1/2. Let

ζ ∈ C∞
c (B3ε−1−1) be such that ζ ≡ 1 on B2ε−1 , |∇ζ| ≤ 2ε, |∆ζ| ≤ 2ε2, 0 ≤ ζ ≤ 1

on B3ε−1−1. Consider ξ̃ = ξG +c5ζ. Then, on ∂B3ε−1−1, ξ̃ ≤ c5, while supB2ε−1
ξ̃ ≥

c5 + ε1/2. Thus, there exists an interior maximum point x0 of ξ̃ and we have the
following properties:

(a.1) |∇u(x0)|2 > 2ε1/2.
(a.2) |∇ξG(x0)| = c5|∇ζ(x0)| ≤ 2c5ε, ∆ξG(x0) ≤ −c5∆ζ(x0) ≤ 2c5ε

2.
We consider three possibilities, and show that each of them is not possible for

sufficiently small ε. We denote the right-hand side of (3.6) evaluated at x0 as (RHS)
and the left-hand side as (LHS).

Case 1. When |u(x0)| ∈
[
0, 1+|γ|

2

]
.

The term ελ(W ′ + G′), which is O(ε), may be negative, but the rest of the terms
in (RHS) are all non-negative. Since

−G′′W ≥ ε1/2 min
|u|∈
[
0, 1+|γ|

2

]W (u)/4,

for sufficiently small ε we may bound (RHS) from below by some positive constant
times ε1/2.
Using (a.1) and (a.2) above, and since G′′ < 0 and ξG(x0) > 0, we see that (LHS)
is bounded from above by some constant times ε3/4.
Hence for sufficiently small ε, we obtain a contradiction.

Case 2. When |u(x0)| ∈
[

1+|γ|
2 , 1

]
.

We have

(G′)2 ≥ (1 − |γ|)2
64

ε, −2G′′(W +G) > 0,

G′W ′ ≥ (1 − |γ|)
8

ε1/2|W ′(u(x0))|.

The last term is |ελ(W ′ + G′)| = O
(
ε|W ′(u(x0))| + ε3/2

)
, thus (RHS) may be

bounded from below by c(ε + ε1/2|W ′(u(x0))|) for some positive constant c for
sufficiently small ε.
We have

(LHS) ≤ 2c5ε
2 +

|W ′| + |G′|
ε1/4

4c5ε ≤ 2c5ε
2 + 4c5

(
ε3/4|W ′| + ε5/4

)
.

Thus for sufficiently small ε, this is a contradiction.
10



Case 3. When |u(x0)| ∈ [1, 1 + c1ε].
Using |W ′(u(x0))| = O(ε), (RHS) is bounded from below by cε for some positive c
for sufficiently small ε, and (LHS) is bounded from above by cε7/4. Thus again a
contradiction for sufficiently small ε. This ends the proof of Claim 1.

Note that ξG = ξ −G ≤ ε1/2 implies

(3.8) sup
B2ε−1 (0)

ξ ≤ 2ε1/2

Next we let

G(u) = Lε(1− (u− γ)2/8),

where L will be fixed shortly. We show
Claim 2. supBε−1

ξG ≤ Lε for L sufficiently large.

Proof of Claim 2. Again assume otherwise for a contradiction. Take ζ ∈
C∞

c (B2ε−1) with ζ ≡ 1 on Bε−1 , |∇ζ| ≤ 2ε, |∆ζ| ≤ 2ε2 and 0 ≤ ζ ≤ 1 on B2ε−1 .

Consider ξ̃ = ξG + 2ε1/2ζ. On ∂B2ε−1 , ξ̃ ≤ 2ε1/2 by (3.8), while sup ξ̃ ≥ 2ε1/2 +Lε

on Bε−1 . Thus ξ̃ achieves an interior maximum at, say, x0 ∈ B2ε−1 . At x0, a similar
argument as before shows

|∇u|2 > 2Lε, |∇ξG| ≤ 4ε3/2, ∆ξG ≤ 4ε5/2.

Case 1. When |u(x0)| ∈
[
0, 1+|γ|

2

]
.

Here (RHS) is seen to be bounded from below by c6Lε for sufficiently large L
depending only on λ and W , in a similar manner as in Claim 1. On the other hand,
we have

(LHS) ≤ 4ε5/2 + 2
c7 + Lε√

2Lε
· 4ε3/2.

Choose L so that 8c7√
2L

< c6L/2 and we may choose ε small to obtain a contradiction.

Case 2. When |u(x0)| ∈
[

1+|γ|
2 , 1

]
.

By choosing L large depending on λ and W , we may bound (RHS) from below by
c(L2ε2 + Lε|W ′(u(x0))|) for some positive constant c. On the other hand,

(LHS) ≤ 4ε5/2 + 8εL−1/2|W ′| + 8L1/2ε2.

Thus with large enough L, this is not possible.
Case 3. When |u(x0)| ∈ [1, 1 + c1ε].

Using |W ′| = O(ε), one sees that (RHS) is bounded from below by cL2ε2 for
some positive constant c if L is sufficiently large. Since (LHS) may be bounded by
c(ε5/2 + L1/2ε2), we may exclude this case by choosing large L.

This ends the proof of Claim 2, and since G(u) ≤ Lε we conclude the proof of
(3.7) by setting c4 = 2L. 2

Remark. For the Allen-Cahn equation

ut = ∆u− W ′(u)

ε2

on U × [0, T ], with supU×[0,T ] |u| ≤ c0, the reader may check that the preceding

argument can be modified easily to prove a uniform maximum bound for ε|∇u|2
2 −

W (u)
ε on Ũ × [t, T ], if Ũ ⊂⊂ U and t > 0. This is a local version of the result in

[40]; note that |u| ≤ 1 is not needed in the proof.
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4. Rectifiability of the limit varifold

In addition to assumptions A and B we assume Ũ is open and Ũ ⊂⊂ U .

Let µ be the measure on U defined (for a suitable subsequence) by

µ(φ) = lim
i→∞

∫ (
εi|∇ui|2

2
+
W (ui)

εi

)
φ

for nonnegative φ ∈ Cc(U).
In Proposition 4.4 we show that the limit varifold V defined in Section 2 is

rectifiable and that ‖V ‖ is the measure theoretic limit µ of the energy distribution
on U (normalized by the factor 1

2 ). In Section 5 we will see that σ−1V is an integral

varifold, and so the density function θ for V equals Nσ, Hn−1 a.e. for some integer
valued function N .

In Proposition 4.2 we note that either ui → +1 or ui → −1 uniformly on each
connected compact subset of U \ supp‖V ‖. In particular, supp‖∂{u∞ = 1}‖ ⊂
supp‖V ‖. In Section 6.3 we give an example where equality does not hold.

Also as noted in Proposition 4.2, the terms εi

2 |∇ui|2 and ε−1
i W (ui) in the en-

ergy distribution converge uniformly to zero on compact subsets of U \ supp‖V ‖.
Although their sum converges measure theoretically to µ, it follows from Propo-
sition 4.3 that one has equipartition of energy in the limit in the sense that their
difference (the discrepancy function) converges to zero in L1

loc(U).
In Proposition 4.4 we also see that the generalized mean curvature vector H

for V is zero on supp‖V ‖ \ M∞ and equals λ∞

θ(x)ν
∞(x) on M∞, where M∞ ⊂

supp‖∂{u∞ = 1}‖ is the reduced boundary of {u∞ = 1}. Since supp‖V ‖ is a
smooth manifold on an open dense subset by [1], and at such points H is just the
classical mean curvature of the manifold, it is interesting to note the dependence
of H on θ and hence on the multiplicity function N .

Proposition 4.1. There exist constants 0 < D1 ≤ D2 < ∞ and r0 > 0 which
depend only on λ0, c0, E0, dist(Ũ , ∂U) and W , such that

D1r
n−1 ≤ µ(Br(x)) ≤ D2r

n−1

for all 0 < r < r0, x ∈ suppµ ∩ Ũ and Br(x) ⊂ Ũ .

Proof. The existence of D2 is immediate from (3.5).

To establish the lower bound, let x ∈ suppµ ∩ Ũ .
Claim. On passing to a subsequence there exist xi ∈ Ũ such that ui(xi) ∈ [−α, α]

and xi → x as i→ ∞.
Proof of Claim. Suppose the converse. Then there exists some s > 0 such that

Bs(x) ⊂ Ũ and Bs(x) ∩ {|ui| ≤ α} = ∅ for all sufficiently large i. For each such i
either ui > α on Bs(x) or ui < −α on Bs(x). If ui > α, by using the argument in
Proposition 3.2 one shows (for i ≥ N say) that ui ∈ [1 − cεi, 1 + cεi] on Bs/2(x)

where c is independent of i. Similarly, if ui < −α, then ui ∈ [−1− cεi,−1+ cεi] on

Bs/2(x). This implies W (ui) = O(ε2i ) and thus W (ui)
εi

→ 0 uniformly on Bs/2(x) as
i→ ∞.

Also we have

∆
(εi

2
|∇ui|2

)
=
W ′′(ui)

εi
|∇ui|2 + εi|∇2ui|2 ≥ κ

εi
|∇ui|2,

which implies that
∫
φ εi|∇ui|2 ≤ ε2i

2κ

∫
φ∆(εi|∇ui|2) =

ε2i
2κ

∫
(∆φ) εi|∇ui|2 → 0

12



as i → ∞ for any nonnegative φ ∈ C2
c (Bs(x)). Hence we may conclude that

µ(Bs/2(x)) = 0, which is a contradiction to x ∈ suppµ. This ends the proof of the
claim.

For any x ∈ Ũ ∩ suppµ and Br(x) ⊂ Ũ , (3.5) shows that

1

rn−1
µ(Br(x)) ≥ lim

i→∞

1

rn−1

∫

Br/2(xi)

εi|∇ui|2
2

+
W (ui)

εi

≥ − c3r

2n−1
+ lim

i→∞

1

(2εi)n−1

∫

Bεi
(xi)

εi|∇ui|2
2

+
W (ui)

εi
.

If we let ũi(y) = ui(εiy + xi) for y ∈ B1(0), we have ũi(0) ∈ [−α, α] and ∆ũi =
W ′(ũi) − λiεi. Since |ũi|C1(B1/2) ≤ c(W,λ0), we see by considering the W term in
the energy functional that there exists a constant c8 > 0 depending only on W and
λ0 such that the scaled energy on Bεi(xi) is ≥ c8. Restrict r so that c3r < c8/2,
and we obtain µ(Br(x)) ≥ rn−1c8/2

n. This shows the existence of D1 = c8/2
n.
2

Proposition 4.2. Either ui → +1 or ui → −1 uniformly on each connected com-
pact subset of U \ supp‖V ‖. In particular, supp‖∂{u∞ = 1}‖ ⊂ supp‖V ‖. The
terms εi

2 |∇ui|2 and ε−1
i W (ui) converge uniformly to zero on compact subsets of

U \ supp‖V ‖.
Proof. This follows immediately from the argument for the previous proposition.

2

Let

ξi =
εi|∇ui|2

2
− W (ui)

εi
,

and define (passing to a subsequence if necessary) the measure |ξ| on U by

|ξ|(φ) = lim
i→∞

∫
|ξi|φ

for nonnegative φ ∈ CC(U). Thus |ξ| is the measure theoretic limit of the absolute
values of the discrepancy functions.

Proposition 4.3. |ξ| is the zero measure and so ξi → 0 in L1
loc

(U). Moreover,
both εi

2 |∇ui|2 − |∇wi| and 1
εi
W (ui) − |∇wi| also converge to zero in L1

loc
(U).

Proof. First we claim that

(4.1) lim inf
r→0

1

rn−1
|ξ|(Br(x)) = 0

for all x ∈ supp|ξ| ∩ Ũ . Otherwise, there would exist x ∈ supp|ξ| ∩ Ũ , R > 0
and b > 0 such that R ≤ r0 and |ξ|(Br(x)) ≥ brn−1 for all 0 < r ≤ R. Define
r1 = min{b/(4c2ωn), R} and r2 = r1 min{exp[−4(4D2 + c3r1)/b], 1/2} and using
Proposition 4.1 and the definition of |ξ| choose a large enough i such that

1

rn−1
1

∫

Br1 (x)

εi|∇ui|2
2

+
W (ui)

εi
≤ 2D2,

1

τn−1

∫

Bτ (x)

|ξi| ≥ b

2

for all r2 ≤ τ ≤ r1. By (3.4) and the definition of r1,

1

τn−1

∫

Bτ (x)

(
W (ui)

εi
− εi|∇ui|2

2

)+

≥ 1

τn−1

∫

Bτ (x)

|ξi| − c2ωnτ

≥ b

2
− c2ωnr1 ≥ b

4
13



for all r2 ≤ τ ≤ r1. By (3.5) it follows that

2D2 ≥ 1

rn−1
1

∫

Br1 (x)

εi|∇ui|2
2

+
W (ui)

εi

≥ b

4

∫ r1

r2

dτ

τ
− c3r1 =

b

4
ln

(
r1
r2

)
− c3r1 ≥ 4D2,

which is a contradiction, and so we have proved (4.1).
Combined with Proposition 4.1 and supp|ξ| ⊂ suppµ, we have

lim inf
r→0

|ξ|(Br(x))

µ(Br(x))
= 0

for all x ∈ supp|ξ|. A standard result in measure theory (see [19, Lemma 1 page 37])
then shows that |ξ| = 0.

It follows that ξi → 0 in L1
loc(U).

By completing the square and using 2|∇wi| =
√

2W (ui) |∇ui|, we see that

∣∣∣∣
εi

2
|∇ui|2 +

W (ui)

εi
− 2|∇wi|

∣∣∣∣ =



√
εi

2
|∇ui| −

√
W (ui)

εi




2

≤
∣∣∣∣
εi|∇ui|2

2
− W (ui)

εi

∣∣∣∣ = |ξi|.

This implies the remaining claims in the proposition. 2

Proposition 4.4. The limit varifold V satisfies ‖V ‖ = 1
2µ and is rectifiable.

The first variation of V is given by

δV (g) =
λ∞
2

∫

U

u∞divg = −λ∞
∫

M∞

g · ν∞ dHn−1

for any g ∈ C1
c (U ; Rn), where M∞ ⊂ supp‖V ‖ is the reduced boundary of {u∞ = 1}.

The generalized mean curvature vector H is given by

H(x) =

{
λ∞

θ(x)ν
∞(x) Hn−1 a.e. x ∈M∞

0 Hn−1 a.e. x ∈ supp‖V ‖ \M∞,

where θ is the density function for ‖V ‖.
Proof. Since ‖V ‖ = lim ‖V i‖ and ‖V i‖ = |∇wi| dLn from Section 2.1, it follows
from Proposition 4.3 and the definition of µ that 1

2µ = ‖V ‖.
Next, rearranging terms in (3.2) and using

ui
xj

|∇ui| =
wi

xj

|∇wi| , we have

∫ (
divg −

∑

j,k

wi
xj

|∇wi|
wi

xk

|∇wi|g
j
xk

)
εi|∇ui|2 =

∫ (
εi|∇ui|2

2
− W (ui)

εi
+ λiu

i

)
divg,

for any g ∈ C1
c (U). ¿From (2.2) and the previous results

∣∣∣∣δV
i(g) − λi

∫
ui divg

∣∣∣∣ ≤ c sup|∇g|
∫

Ũ

|ξi|,

if supp g ⊂ Ũ (where c is an absolute constant; c = 2(n + n2) + n will do). With
this, Proposition 4.3 and the remarks in Section 2.1, and since V i → V in the weak
sense of varifolds, we have

δV (g) =
λ∞
2

∫
u∞ divg.
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As discussed in Section 2.1, one may integrate by parts and so obtain the second
expression for δV (g).

Since Hn−1(M∞) ≤ ‖∂{u∞ − 1}‖(U) ≤ E0/2σ from Section 2.1, one has
|δV (g)| ≤ |λ∞| sup |g|E0/2σ for all g ∈ C1

c (U), and so ‖δV ‖ is a Radon measure
on U . Combined with the lower density estimate in Proposition 4.1 and Allard’s
rectifiability theorem [1, 5.5.(1)], we conclude that V is rectifiable.

¿From Proposition 4.1, the (n−1)-dimensional density of ‖V ‖ is bounded below

by D1

2ωn−1
on supp‖V ‖ and so Hn−1bsupp‖V ‖ ≤ 2ωn−1

D1
‖V ‖. Since δV is absolutely

continuous with respect to Hn−1bM∞ ≤ Hn−1bsupp‖V ‖, it is hence also absolutely
continuous with respect to ‖V ‖. From Section 2.2, it follows that

δV (g) = −
∫
g ·H d‖V ‖ = −

∫

supp‖V ‖
g ·H θdHn−1.

(The underlying rectifiable set for ‖V ‖ can be taken as supp‖V ‖ because of the
lower density bound in Proposition 4.1). The expression for H now follows from
the second expression for δV (g) in the statement of the proposition. 2

Remark. The density function θ is everywhere well-defined, either by the standard
theory for varifolds with bounded mean curvature [39, Section 17], or directly using
the monotonicity formula for ‖V ‖ which follows from (3.5) since ‖V ‖ = 1

2µ. ¿From

Proposition 4.1, D1

2ωn−1
≤ θ ≤ D2

2ωn−1
everywhere on supp‖V ‖. In Section 5 we see

that σ−1V is an integral varifold, and so θ = Nσ for some positive integer N , Hn−1

a.e. on supp‖V ‖.

5. Integrality of the limit varifold

In this section we show that the limit varifold V defined in Section 2 is integral,
modulo division by σ, and we finish the proof of Theorem 1.

The first proposition gives a uniform smallness estimate on the energy, indepen-
dent of ε, for u in the region {u ≈ ±1}. It is convenient to work in a fixed ball of
radius 3.

Proposition 5.1. Assume B is true with ui, εi and U there replaced by u, ε and
B3(0) respectively, and suppose s > 0. Then there exist positive constants b and ε5

depending only on λ0, c0, E0, W and s, such that
∫

B1(0)∩{|u|≥1−b}

W (u)

ε
≤ s

whenever ε ≤ ε5.

The following two lemmas will be used in the proof. We continue to make the
same assumptions on u as in Proposition 5.1.

Define

Zα = {x ∈ B3(0) | u(x) ∈ [−α, α] }.
Also define

eε =
ε|∇u|2

2
+
W (u)

ε
, ξε =

ε|∇u|2
2

− W (u)

ε
.

Lemma 5.2. There exist positive constants c10 and ε6 depending only on λ0 and
W , such that if x0 ∈ B1(0) and

u(x0) < 1− εβ or u(x0) > −1 + εβ, where
1

c10 |ln ε|
< β < min

{
2

3
,

1

c10 ε|ln ε|

}
,

then

dist(x0, Zα) ≤ c10β ε|ln ε|,
15



provided 0 < ε < ε6.

Proof. Rescale B1(x0) by ε and write ũ(x) = u(x0 + εx). One may prove there
exists an entire radial solution ψ(x) ≥ 1 for the problem

∆ψ =
κ

4
ψ on R

n

ψ(0) = 1,

and there exists a constant c10 = c10(κ, n) such that ψ(x) > exp(|x|/c10) if |x| ≥ 1.
Let r ≡ c10β |ln ε|. Note that 1− εβ exp(r/c10) = 0 < α and 1 ≤ r ≤ ε−1.
Suppose ũ(0) < 1 − εβ and infBr(0) ũ > α to obtain a contradiction. Define

φ(x) = 1 − εβψ(x). Then φ satisfies ∆φ = κ
4 (φ − 1), and on |x| = r, φ(x) <

1 − εβ exp(r/c10) < α < infBr(0) ũ. Hence ũ − φ > 0 on |x| = r. Since ũ(0) <

1− εβ = φ(0), ũ− φ achieves a negative minimum value at an interior point y, say,
and we have ∆(ũ− φ)(y) ≥ 0 and (ũ− φ)(y) < 0. We then have at y,

∆(ũ− φ) = W ′(ũ) − ελ− κ

4
(φ− 1)

≤ ελ0 +W ′(φ) − κ

4
(φ − 1)

≤ ελ0 −
κ

2
εβψ +

κ

4
εβψ,

since φ(y) > ũ(y) > α, W ′′ ≥ κ on [α, 1], W ′(1) = 0 and 1 − φ(y) = εβψ(y). Since
ψ ≥ 1 and 0 < β ≤ 2/3, and assuming ε ≤ 1, we obtain

0 ≤ ∆(ũ− φ) ≤ ελ0 − κεβ/4 ≤ ε2/3(ε1/3λ0 − κ/4).

If we further restrict ε by ε ≤ κ/((5λ0))
3, we obtain a contradiction.

This shows the statement of the lemma after rescaling back. The sup estimate
is similar. 2

Lemma 5.3. There exist positive constants c11 and ε7 depending only on λ0, c0,
E0 and W , such that if ε ≤ r ≤ 1 then

Hn({x ∈ B2(0) | dist(x, Zα) < r}) ≤ c11r,

provided 0 < ε < ε7.

Proof. By arguing as in the last paragraph in the proof of Proposition 4.1, there
exist positive constants r0, ε7 and c12 depending only on λ0 and W , such that
E(r, x) ≥ c12 if ε ≤ r ≤ r0 and x ∈ Zα ∩ B2(0).

Given r with ε ≤ r ≤ r0, let B be the collection of all balls with center in Zα and
radius r. Using Vitali’s covering lemma, choose a pair-wise disjoint subcollection
of balls B′ ⊂ B so that

⋃
B Br(x) ⊂

⋃
B′ B5r(x). Since

{x ∈ B2(0) | dist(x, Zα) < r } ⊂
⋃

B′

B5r(x),

we need only estimate ωn(5r)n n(B′), where n(B′) is the number of balls in B′.
Since

n(B′)c12r
n−1 ≤

∑

B′

∫

Br(x)

eε ≤
∫

B3(0)

eε ≤ 3n−1E0,

we have ωn(5r)n n(B′) ≤ rωnE05
n3n−1/c12.

Setting c11 = max{ωnE05
n3n−1/c12 , 2nωn/r0} gives the required result. 2
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Proof of Proposition 5.1. First suppose b > 0 satisfies c10 |ln b| ≥ 1 and 1 − b > α,

and choose an integer J = J(ε, b) ≥ 1 such that ε1/2J+1 ∈ (b,
√
b]. Restrict ε so

that ε ≤ min{ε6, ε7} and ε−1 ≥ c10
2
3 |ln ε|.

For j = 1, · · · , J , define

Aj =
{
x ∈ B1(0)

∣∣∣ 1 − ε1/2j+1 ≤ |u(x)| ≤ 1 − ε1/2j
}
.

By applying Lemma 5.2 with β = 1/2j for x ∈ Aj (note that 1 ≤ c10β |ln ε| ≤
ε−1 is satisfied with these choices) we conclude that Aj is within c102

−j ε|ln ε| of
Zα ∩ B2(0). Lemma 5.3 then shows that

Hn(Aj) ≤ c11c102
−j ε|ln ε|

for j = 1, · · · , J .

On Aj , using |u| ≥ 1 − ε1/2j+1

,

W (u)

ε
≤ max

t∈[α,1]
W ′′(t) · ε−1(ε1/2j+1

)2/2 ≤ c13(W )ε2
−j−1.

Let Y = B1(0) ∩ {1 − b ≤ |u| ≤ 1 −√
ε} ⊂ ⋃J

j=1 Aj . Since ε1/2J+1

<
√
b it now

follows with c14 = c10c11c12 (depending only on λ0, E0 and W ) that

∫

Y

W (u)

ε
≤

J∑

j=1

∫

Aj

W (u)

ε
≤ c14 |ln ε|

J∑

j=1

2−jε2
−j

≤ c14 |ln ε|
∫ J+1

0

2−tε2
−t

= c14

(
ε2

−(J+1) − ε
)
/ ln 2 ≤ c14

√
b/ ln 2.

We restrict b so that the last term is less than s
2 .

To estimate the integral on {1−√
ε ≤ |u|} let

A0 =
{
x ∈ B1(0)

∣∣∣ 1 −√
ε ≤ |u(x)| ≤ 1 − ε2/3

}

and similarly estimate
∫

A0

W (u)

ε
≤ c13c11c10

2

3
ε|ln ε|.

Finally for {|u| ≥ 1 − ε2/3}, using Proposition 3.2,
∫

B1(0)∩{1−ε2/3≤|u|}

W (u)

ε
≤ c15(λ0, c0,W ) ε.

Restricting ε again, we obtain the stated inequality. 2

Proposition 5.5 is analogous to [1, Theorem 6.2] in the proof of the compactness
theorem for integral varifolds. We point out that we do not have a uniform control
on the first variations ‖δV i‖ and thus are faced with an analogous but different
situation.

Define T : R
n → R

n−1 by T (x) = (x1, . . . , xn−1), and T⊥ : R
n → R by T⊥(x) =

xn, where x = (x1, . . . , xn). Also define ν = (ν1, . . . , νn) = ∇u
|∇u| whenever |∇u| 6= 0

and ν = 0 when |∇u| = 0.
First we show

Lemma 5.4. Suppose

(1) N ≥ 1 is an integer, Y is a subset of R
n, 0 < R < ∞, 1 < M < ∞,

0 < a <∞, 0 < ε < 1, 0 < η < 1, 0 < E0 <∞ and −∞ ≤ t1 < t2 ≤ ∞.
(2) Y has no more than N+1 elements, T (y) = 0 for all y ∈ Y , Y ⊂ {x | t1+a <

xn < t2 − a} and |y − z| > 3a for any distinct y, z ∈ Y .

(3) (M + 1) diameterY < R, and denote R̃ ≡M diameterY .
17



(4) On {x ∈ R
n | dist(x, Y ) < R}, u satisfies (1.2) with |λ| ≤ η, |u| ≤ 2 and

ξε ≤ η.
(5) For each x = (x1, · · · , xn) ∈ Y ,

∫ R

0

dτ

τn

∫

Bτ (x)∩{yn=tj}
|eε(yn − xn) − εuxn(y − x) · ∇u| dHn−1y ≤ η

for j = 1, 2.
(6) For each x ∈ Y and a ≤ r ≤ R,
∫

Br(x)

|ξε| + (1 − (νn)2)ε|∇u|2 ≤ ηrn−1 and

∫

Br(x)

ε|∇u|2 ≤ E0r
n−1.

Then the following hold:

A: There exists t3 ∈ (t1, t2) such that |xn − t3| ≥ a and
∫ R̃

0

dτ

τn

∫

Bτ (x)∩{yn=t3}
|eε(yn − xn) − εuxn(y − x) · ∇u| dHn−1y

≤ 3(N + 1)NM(η +E
1/2
0 η1/2)

for each x ∈ Y .
B: Denote

Y1 = Y ∩ {x | t1 < xn < t3}, Y2 = Y ∩ {x | t3 < xn < t2},
S0 = {x | t1 < xn < t2 and dist(Y, x) < R},
S1 = {x | t1 < xn < t3 and dist(Y1, x) < R̃},
S2 = {x | t3 < xn < t2 and dist(Y2, x) < R̃}.

Y1 and Y2 are non-empty and

1

R̃n−1

{∫

S1

eε +

∫

S2

eε

}
≤
(

1 +
1

M

)n−1
1

Rn−1

∫

S0

eε + c(n)η(R + 1)

holds.

Proof. Let ρ2(y) : R
n → R be a smooth approximation of the characteristic function

of the set S ≡ {y ∈ R
n | t1 < yn < t2} which depends only on yn. Let x ∈ Y (and

change the coordinates so that x = 0) and let ρ1(y) be a smooth approximation
of the characteristic function χBr(0), where 0 < r < R. In (3.2), we let gj(y) =
yjρ1(y)ρ2(y), and after letting ρ1 → χBr(0) and similarly proceeding as in Lemma
3.1, we obtain (with W replaced by Wε in eε and ξε only in the next two lines)

d

dr

{
1

rn−1

∫

Br

eερ2

}
+

1

rn

∫

Br

ξερ2

− ε

rn+1

∫

∂Br

(y · ∇u)2ρ2 −
1

rn

∫

Br

{eεyn − εuxn(y · ∇u)} ρ′2 = 0.

After integrating over [r, R] and letting ρ2 → χS , and then using (4) and (5), we
obtain

(5.1)
1

Rn−1

∫

BR∩S
eε ≥ 1

rn−1

∫

Br∩S
eε − c(n)η(R + 1)

where c(n) depends only on the dimension n. Next, choose ỹ, z̃ ∈ Y such that
z̃n − ỹn ≥ diameterY/N and that there is no element of Y in {x ∈ R

n | ỹn < xn <

z̃n}. Let t̃1 = ỹn + z̃n−ỹn

3 and t̃2 = z̃n− z̃n−ỹn

3 . To choose an appropriate t ∈ [t̃1, t̃2]
which satisfies A, we first observe, for x ∈ Y and y ∈ Br(x),

I ≡ |eε(yn − xn) − εuxn(y − x) · ∇u|
=
∣∣(−ξε)(yn − xn) + ε|∇u|2((yn − xn) − νn(y − x) · ν)

∣∣
18



≤ |ξε|r + ε|∇u|2r
(
1 − (νn)2 +

√
1 − (νn)2

)
.

Using (6), we compute
∫ t̃2

t̃1

dt

∫ R̃

0

dτ

τn

∫

Bτ (x)∩{yn=t}
I dHn−1y =

∫ R̃

0

dτ

τn

∫

Bτ (x)∩{t̃1<yn<t̃2}
I dy

≤ R̃(η +E
1/2
0 η1/2).

Thus, we may choose t3 ∈ [t̃1, t̃2] such that
∫ R̃

0

dτ

τn

∫

Bτ (x)∩{yn=t3}
I dHn−1y ≤ (N + 1)R̃(η +E

1/2
0 η1/2)

t̃2 − t̃2

for all x ∈ Y . Since t̃2 − t̃1 ≥ diameterY/3N , we have R̃/(t̃2 − t̃1) ≤ 3MN , and
we obtain A. Define S1 and S2 as in B. For any x ∈ Y , we have S1 ∪ S2 ⊂
B(R̃+diam Y )(x) ∩ S, thus

1

R̃n−1

{∫

S1

eε +

∫

S2

eε

}
≤ 1

R̃n−1

∫

B(R̃+diam Y )(x)∩S
eε

≤
(

1 +
1

M

)n−1
{

1

Rn−1

∫

BR(x)∩S
eε + c(n)s(R+ 1)

}
.

We used (5.1) in the last inequality. Finally, noting that BR(x)∩S ⊂ S0, we obtain
B. 2

Starting with t1 = −∞ and t2 = ∞, we inductively use Lemma 5.4 to separate R
n

into stacked horizontal domains until we separate each element of Y . By choosing
M large and then choosing η suitably small, we obtain

Proposition 5.5. Corresponding to each R, E0, s and N such that 0 < R < ∞,
0 < E0 < ∞, 0 < s < 1 and N is a positive integer, there exists η > 0 with the
following property:

Assume the following:

(1) Y ⊂ R
n has no more than N + 1 elements, T (y) = 0 for all y ∈ Y , a > 0,

|y − z| > 3a for all y, z ∈ Y and diameterY ≤ ηR.
(2) On {x ∈ R

n | dist(x, Y ) < R}, u satisfies (1.2) with |λ| ≤ η, |u| ≤ 2 and
ξε ≤ η.

(3) For each y ∈ Y and a ≤ r ≤ R,
∫

Br(y)

|ξε| + (1 − (νn)2)ε|∇u|2 dy ≤ ηrn−1,

∫

Br(y)

ε|∇u|2 ≤ E0r
n−1.

Then we have
∑

y∈Y

1

an−1

∫

Ba(y)

eε ≤ s+
1 + s

Rn−1

∫

{x |dist(Y,x)<R}
eε.

The next proposition deals with the “ε-scale”, and shows that the smallness
of the discrepancy measure and tilt excess imply that the solution is close to the
homogeneous traveling wave solution in 1-D.

Proposition 5.6. Given 0 < s < 1 and 0 < b < 1, there exist 0 < η < 1 and
1 < L <∞ (which also depend on W ) with the following property:
Assume 0 < ε < 1 and u satisfies (1.2) and ξε ≤ η on B4εL(0) with |λ| ≤ η,
|u(0)| ≤ 1 − b, and

(5.2)

∫

B4εL(0)

(
|ξε| + (1 − (νn)2)ε|∇u|2

)
≤ η(4εL)n−1.
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Then, we have T−1(0) ∩ {x ∈ B3Lε(0) |u(x) = u(0)} = {0} and

(5.3)

∣∣∣∣∣
1

ωn−1(Lε)n−1

∫

BLε(0)

eε − 2σ

∣∣∣∣∣ ≤ s.

Proof. We rescale the domain by ε for convenience. Let q : R → (−1, 1) be the
unique solution of the ODE

{
q′(t) =

√
2W (q(t)) for t ∈ R,

q(0) = u(0).

We note that
∫ ∞

−∞

1

2
|q′(t)|2 dt =

∫ ∞

−∞

√
W (q(t))

2
q′(t) dt =

∫ 1

−1

√
W (s)

2
ds = σ.

We also identify q on R
n by q(x1, · · · , xn) = q(xn). For given b and s, we fix a large

enough L > 1 so that

(5.4)

∣∣∣∣∣
1

ωn−1Ln−1

∫

BL(0)

(
1

2
|∇q|2 +W (q)

)
− 2σ

∣∣∣∣∣ ≤
s

2

whenever |q(0)| ≤ 1− b. Next, using the point-wise assumption 1
2 |∇u|2−W (u) ≤ η

on B4L(0) and |u(0)| ≤ 1 − b, we restrict η so that |u| ≤ 1 − b̃ on B4L(0) for some

b̃ = b̃(W, b, s) > 0. Now define a function z(x) : B4L(0) → R by setting

z(x) = q−1(u(x)),

where q−1 : (−1, 1) → R is the inverse function of q. Since |u| ≤ 1 − b̃, z is well-

defined and q′(z(x)) ≥ min|t|≤1−b̃

√
2W (t) for x ∈ B4L(0). Moreover, since we

may use the equation (1.2) to estimate ‖u‖C2(B3L(0)), ‖z‖C2(B3L(0)) is uniformly
bounded depending only on W , b and s. Thus, with

1

2
|∇u|2 −W (u) =

1

2
(q′(z))2(|∇z|2 − 1),

|∇u|2(1 − (νn)2) = (q′(z))2(|∇z|2 − (zxn)2)

and the inequality (5.2), we may obtain (with either + or −)

‖z(x) ± xn‖C1(B3L(0)) ≤ c(b, δ,W )η1/(n+1).

This shows that u(x) is C1 close to q(xn) on B3L(0). Combined with (5.4), by
choosing η sufficiently small, we obtain (5.3). Also uxn = q′(z)zxn 6= 0 on B3L(0)
implies the first assertion. 2

Proof of Theorem 1. Recall that parts 1–3, 5 of Theorem 1 have already been es-
tablished, and that the limit varifold V has density uniformly bounded from above
and below.

Since V is rectifiable, V has a weak tangent plane Hn−1 a.e. on supp‖V ‖. Fix
such a point and choose coordinates so that the point is the origin and the weak
tangent plane is T = {x ∈ R

n |xn = 0}. With the notation Φr(x) = x/r this means
there exists a sequence ri → 0 such that (Φri)#V → θ v(T ) in the varifold sense,
where θ is the density of V at the origin and (Φr)# is the usual push-forward. By
passing to a further subsequence we may assume limi→∞(Φri)#V

i = θ v(T ) and

εi/ri → 0. Let ũi(x) = ui(rix) and observe that ε̃i∆ũ
i = ε̃−1

i W ′(ũi) − λ̃i with

ε̃i = εi/ri → 0 and λ̃i = riλi → 0. In the following we omit ∼, and also write V i

for the varifold associated to ũi.
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For all sufficiently large i, Proposition 3.3 shows that

(5.5) sup
B3(0)

(
εi|∇ui|2

2
− W (ui)

εi

)
≤ O(ri) → 0.

By Proposition 4.3 and the first claim in Proposition 4.4 we also know that

(5.6) lim
i→∞

∫

BR(0)

∣∣∣∣
εi|∇ui|2

2
− W (ui)

εi

∣∣∣∣ = 0,

and the three Radon measures, εi

2 |∇ui|2 dLn, ε−1
i W (ui) dLn and |∇wi| dLn con-

verge to the same limit θ ‖v(T )‖. Since V i → θ v(T ) in the varifold sense, we also
have

(5.7) lim
i→∞

∫

B3(0)

(
1 − ν2

n

) εi

2
|∇ui|2 = lim

i→∞

∫

B3(0)

(
1 − ν2

n

)
|∇wi| = 0.

Suppose N is the smallest positive integer greater than σ−1θ. Fix an arbitrary
small s > 0. Use Proposition 5.1 to choose b > 0, and then with (5.5) we have

(5.8)

∫

B3(0)∩{|ui|≥1−b}

(
εi|∇ui|2

2
+
W (ui)

εi

)
≤ s

for all sufficiently large i. With these choices of s, b and R = 1, we choose η and
L via Proposition 5.5 and 5.6 (the smaller η should be chosen). For all large i, we
define

Gi = B2(0) ∩
{
|ui| ≤ 1− b

}
∩

{
x
∣∣
∫

Br(x)

∣∣∣∣
εi|∇ui|2

2
− W (ui)

εi

∣∣∣∣+
(
1 − ν2

n

)
εi|∇ui|2 ≤ ηrn−1 if 4εiL ≤ r ≤ 1

}
.

By the Besicovitch covering theorem and Proposition 3.4, one shows that

(5.9) ‖V i‖
(
B2(0) ∩ {|u| ≤ 1 − b} \Gi

)
+ Ln−1

(
T
(
B2(0) ∩ {|u| ≤ 1 − b} \Gi

))

c(s,W, n)η−1

∫

B3(0)

∣∣∣∣
εi|∇ui|2

2
− W (ui)

εi

∣∣∣∣+
(
1 − ν2

n

)
εi|∇ui|2,

which goes to 0 as i→ ∞ by (5.6) and (5.7). Also dist(T,Gi) → 0 as i→ ∞, again
using Proposition 3.4.

For any x ∈ Bn−1
1 (0) := (Rn−1×{0})∩B1(0) and |t| ≤ 1−b, we let Y = T−1(x)∩

Gi ∩ {ui = t} and apply Proposition 5.5, where we set a = Lεi. By Proposition
5.6, each element of Y is separated by at least 3Lεi, and all the assumptions are
satisfied for sufficiently large i. We prove that Y does not contain more than N −1
elements for any x ∈ Bn−1

1 (0) as follows. Since

sup
x∈Bn−1

1 (0)

1

ωn−1

∫

B1(x)

(
εi

2
|∇ui|2 +

W (ui)

εi

)
≤ 2θ + s

for large i, Y having more than N − 1 elements would imply, by Proposition 5.5,
that

2σN ≤ (N + 1)s+ (1 + s)(2θ + s).

This would be a contradiction to θσ−1 < N for sufficiently small s depending only
on N .

Finally,

ωn−1θ = lim
i→∞

∫

B1(0)

|∇wi| ≤ lim
i→∞

∫

B1(0)∩{|ui|≤1−b}∩Gi

|∇ui|
√
W (ui)/2 + s
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by (5.8) and (5.9). By the co-area formula, limi→∞ ‖T#V
i‖ = ‖V ‖ and the above

discussion then implies

(5.9)

ωn−1θ ≤ lim
i→∞

∫ 1−b

−1+b

∥∥T#

(
v({ui = t} ∩Gi)

)∥∥(Bn−1
1 (0)

)√
W (t)/2 dt+ s

≤ ωn−1(N − 1)

∫ 1−b

−1+b

√
W (t)/2 dt+ s ≤ ωn−1(N − 1)σ + s.

Since s is arbitrary, we have θ = (N − 1)σ.
To conclude the proof, we note that ui converges locally uniformly to +1 on one

side of T and −1 on the other at Hn−1 a.e. x ∈ M∞, and to the same value on
Hn−1 a.e. x ∈ U \M∞. Note that we may choose xi ∈ Bn−1

1 (0) and |t| ≤ 1− b such
that xi 6∈ T ({|u| ≤ 1 − b} ∩ B2(0) \Gi) and T−1(xi) ∩ Gi ∩ {ui = t} has precisely
N − 1 elements, by (5.9) and (5.10). Thus T−1(xi) ∩ {ui = t} has precisely N − 1
elements. This immediately implies the oddness or evenness depending on the sign
of ui away from T , and thus on whether the origin is in M∞ or not. 2

Proof of Theorem 2. Assume that {ui} are locally energy minimizing in Ũ . We
show that the limiting varifold V has no density multiplicity, i.e. σ−1V is the unit
density varifold on Ũ in this case. This can be done by a “cut and paste” argument
and we only sketch the key points of the proof. The details could be filled easily,
while they are somewhat cumbersome to write down explicitly.

Let x ∈ supp‖V ‖ ∩ Ũ be a point with a weak tangent plane. As was done in the
proof of the integrality, consider suitable rescalings and translations so that x = 0,
V i → (Nσ)v(T ), where T = R

n−1 × {0} and Nσ = density of ‖V ‖ at x. By the
argument in Theorem 4.1, we may assume that ui converges locally uniformly to
either ±1 on {xn > 0} and {xn < 0}. If ui converges to +1 on both {xn > 0}
and {xn < 0}, then we can squash the function ui to +1 on B1(0) and reduce the
energy by a definite amount. When one imposes a volume constraint, one can drill
a small hole to correct the error produced by the squashing at a nearby point. Thus
this would contradict the local energy minimality. Hence ui converges to +1 on one
side and −1 on the other. If N ≥ 2, then replace ui on B1(0) by a 1-D traveling

wave solution q(xn/εi) and bridge it with ui restricted to Ũ \B1+ε(0) by a suitable
Lipschitz function. Since ui converges uniformly away from {xn = 0} on both sides,
the error of bridging may be made as small as we like. This again would reduce the
energy by a definite amount. Thus N = 1, and we have σ−1‖V ‖ = ‖∂{u∞ = 1}‖
on Ũ . 2

Proof of Theorem 3. First, by assumption A and a comparison argument (see [25]),
there exists c = c(W ) such that ||ui||L∞ ≤ c, and by the standard elliptic theory

[22], εi∆u
i = ε−1

i W ′(ui)−λi for some λi ∈ R, ui ∈ C3(Ū) and ∂ui

∂n = 0 on ∂U . One
may also prove (see [15, Lemma 3.4]) that there exists a constant c = c(m,W,U)
such that |λi| ≤ cE0 for all sufficiently large i. Thus assumption B is also satisfied.
By Theorem 1 and 2, supp||∂{u∞ = 1}|| is a constant mean curvature hypersurface
in the generalized sense.

For the local area minimality, we use a contradiction argument. Assume that
there exists a function ũ with ũ = ±1, Ln a.e. on U ,

∫
U |u∞ − ũ| < c,

∫
U ũ = m

and ||∂{ũ = 1}||(U) < ||∂{u∞ = 1}||(U). Let c̃ =
∫

U
|u∞ − ũ|, and we redefine ũ

so that

||∂{ũ = 1}||(U) = inf
u∈A

||∂{u = 1}||(U),

where A = {u | u = ±1, Ln a.e. on U ,
∫

U
|u− u∞| ≤ c̃,

∫
U
u = m}. This is pos-

sible by the lower semicontinuity of the perimeter functional. In the following we
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construct comparison functions in precisely the same way as in [31], but one cru-
cial additional property we have here is the fact that {u∞ = 1} and {u∞ = −1}
both contain some open balls (in fact, {u∞ = 1} \ ∂{u∞ = 1} is an open set).
Note that, without Theorem 1, we may not exclude the possibility of having
supp||∂{u∞ = 1}|| = U in general.

Using the minimality of ũ, one may again choose open balls in {ũ = 1} and
{ũ = −1}, since ∂{ũ = 1} is a generalized constant mean curvature hypersurface
on open subdomains of {u∞ = 1} and {u∞ = −1}. By [31, Lemma 1], there
exists a sequence of functions {ũj}∞j=1 such that ũj = ±1, Ln a.e.,

∫
U ũ

j = m,∫
U |ũj − ũ| → 0 and ||∂{ũj = 1}||(U) → ||∂{ũ = 1}||(U) as j → ∞ and ∂{ũj = 1}

is a smooth hypersurface with smooth boundary in ∂U . Here, open balls are used
to “adjust” the volume constraint of ũj . We fix a large j so that

∫
|u∞ − ũj | < c

and

||∂{ũj = 1}||(U) < ||∂{u∞ = 1}||(U).

By [31, Proposition 2], there exists a family of Lipschitz functions {ũε}ε>0 such
that

∫
U |ũε − ũj | → 0 as ε→ 0,

∫
U ũε = m and

1

2σ
lim sup
ε→0+

Eε(ũε) ≤ ||∂{ũj = 1}||(U).

Since ui → u∞ in L1,
∫

U |ũεi − ui| < c for sufficiently large i. Finally, wi → w∞ in

L1 implies

||∂{u∞ = 1}||(U) =
1

σ

∫

U

|Dw∞| ≤ 1

σ
lim inf
i→∞

∫

U

|∇wi| ≤ 1

2σ
lim inf
i→∞

Eεi(u
i).

The three inequalities above for sufficiently large i give a contradiction to the local
minimality of ui. 2

6. Additional remarks

6.1. General critical points. In addition to assumption A, assume that there
exist constants 2 < k ≤ 2n

n−2 and c > 0 such that c|x|k ≤ W (x) ≤ c−1|x|k and

c|x|k−1 ≤ |W ′(x)| ≤ c−1|x|k−1 for all sufficiently large |x|. Assume that ∂U is
smooth here. We say that u ∈ H1(U) is a critical point of E with volume constraint∫

U
u = m (m ∈ (−|U |, |U |)) if

d

dt

∣∣∣∣
t=0

E(u+ tũ) = 0

for all ũ ∈ H1(U) with
∫

U
ũ = 0. For such u, there exists λ ∈ R such that

−ε
∫

∇u · ∇φ =

∫ (
W ′(u)

ε
− λ

)
φ

for any φ ∈ H1(U). UsingW ′(u)u > 0 for |u| > 1 and k > 2, one can prove that u ∈
Lp(U) for any p <∞, and thus by the standard elliptic theory, u ∈ C3(Ū), ∂u

∂n = 0
on ∂U . The previously cited [15, Lemma 3.4] shows that |λ| ≤ c(U,m,W )Eε(u)
for all sufficiently small ε. Assume from the outset that E0 is given and that
Eε(u) ≤ E0. The rescaling x → x

ε changes the equation to ∆u = W ′ − λε.

Multiplying |u|p−1u to the equation for various p > 1 and using k > 2 again, one
can prove that there exists c = c(m,W,U,E0) such that ||u||L∞ ≤ c for all small ε.
Thus, if {ui} ⊂ H1(U) is a sequence of critical points with fixed volume constraint,
εi → 0 and Eεi(u

i) ≤ E0, then Theorem 1 applies.
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As an interesting application, we recall the Cahn-Hilliard equation




ut = ∆f on U × (0,∞),

f = −ε∆u+ W ′(u)
ε ,

∂u
∂n = ∂f

∂n = 0 on ∂U × (0,∞),
u = u0 on U × {0}.

The equation is used to model various phase separation phenomena in a melted
alloy with two stable phases. The solution has the properties

d

dt

(∫

U

u

)
= 0 and

d

dt

∫

U

(
ε|∇u|2

2
+
W (u)

ε

)
= −

∫

U

|∇f |2 ≤ 0.

The time-independent solution satisfies ∆f = 0 on U and ∂f
∂n = 0 on ∂U , which

implies f ≡ λ ∈ R. Thus, our result gives the description of the asymptotic
behaviors of finite energy equilibriums for this problem.

6.2. Mountain-pass solutions. Given a bounded smooth domain U , we note that
there always exists a family of unstable critical points {uε} of Eε with Neumann
data, |u| ≤ 1 and Eε(uε) ≤ c(U) for all 0 < ε << 1. The proof is a simple
application of the well-known Mountain-pass Lemma [38] (consider all the paths
connecting u ≡ 1 and u ≡ −1 in H1(U)) and is left to the interested reader.
Obviously, Theorem 1 applies to such family of solutions.

6.3. Interface with multiplicities. Here we briefly discuss an example where the
limit of the measure corresponding to solutions for ε∆u = ε−1W ′(u)− λ, λ 6= 0, is
a flat multiplicity 2 hypersurface. This example shows that, even if λ∞ is not zero,
one can have a portion of supp||V || which is multiplicity 2 and H = 0.

Let U = R and λ = 1. We find a 1-dimensional solution (after a rescaling) for
u′′ = W ′(u) − ε, which has two interfaces separated by distance of order O(| ln ε|).
Let Wε(x) = W (x) − εx. Let aε be the critical point of Wε which is close to −1.
Since Wε(aε) > 0 and Wε(1) < 0, we have two solutions for Wε(aε) = Wε(x) near
1 for all small ε, and we let bε to be the one closer to the origin. When ε ≈ 0, we
have Wε(aε) ≈ ε and Wε(x) ≈ 1

2W
′′(1)(x− 1)2 − ε around x ≈ 1. Thus bε satisfies

ε ≈ 1
2W

′′(1)(bε − 1)2 − ε, and we may conclude that there exists some c = c(W )
such that

1 − bε ≥ c
√
ε

for all sufficiently small ε.
We then solve an ODE 




u′′ε = W ′
ε(uε) on x > 0,

u′ε(0) = 0,
uε(0) = bε.

Multiply u′ε to the equation and integrate over [0, x] to obtain

1

2
(u′ε(x))

2 = Wε(uε(x)) −Wε(bε).

This shows that u′ε(x) < 0 for all x > 0 and uε(x) → aε as x → ∞. By reflecting
uε at the origin x = 0, we obtain a solution of u′′ε = W ′

ε(uε) on R with uε(0) = bε
and uε(x) → aε as |x| → ∞. Since 1 − bε ≥ c

√
ε, the comparison argument in

Lemma 5.2 shows that the interface (which is characterized here by, say, uε = 0) is
away from the origin by a distance of order O(| ln ε|). As ε→ 0, the two interfaces
“escape” to the infinity at speed O(| ln ε|), and each of their profiles becomes closer
to that of the solution of u′′ = W ′(u) as ε → 0. After rescaling back, we have a

solution of εu′′ε = W ′(uε)
ε − 1, the distance of the two interfaces is O(ε| ln ε|) → 0,

and 1
2σEε(uε) → 2. On R

n, by homogeneously extending uε to R
n−1 direction, we
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have a sequence of solutions which converges to a density 2 flat interface. As an
oriented current, the limit has ∂{u∞ = 1} = ∅, which agrees with our result.

It would be interesting to know whether one may have a limiting situation of the
type indicated below. The dotted line indicates a multiplicity two portion of the
interface, which disappears in the limit.

u » +1

u » -1

u = +1

u = +1

u = -1

Phase separation for e » 0
Phase separation as e ® 0
 showing "virtual" interface

u » +1

The occurrence of higher odd multiplicity when λ∞ 6= 0 is rather unlikely, even
though we were not able to exclude the possibility. Such portion appears to be an
interface with a “wrong” bending direction and we think such a portion should be
of Hn−1 measure 0.

For related multiplicity results for the Allen-Cahn equation, we cite [11] for the
existence of higher multiplicity solutions.
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