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THE DISCRETE PLATEAU PROBLEM:

CONVERGENCE RESULTS

GERHARD DZIUK AND JOHN E. HUTCHINSON

Abstract. We solve the problem of finding and justifying an optimal fully
discrete finite element procedure for approximating minimal, including unsta-
ble, surfaces. In a previous paper we introduced the general framework and
some preliminary estimates, developed the algorithm and give the numerical
results. In this paper we prove the convergence estimate.

1. Introduction

We recall from [DH4] that a minimal surface or solution of the Plateau Problem

can be characterised in a number of different ways. For our purposes it is convenient
to begin with the following formulation, which we restate more precisely later,
c.f. (3).

Let D be the unit disc in IR2 and Γ a smooth Jordan curve in IRn. Let F be
the class of harmonic maps u :D → IRn such that u|∂D :∂D → Γ is monotone and
satisfies a certain integral “three-point condition”, c.f. (1). The function u ∈ F
is said to be a minimal surface if u is stationary in F for the Dirichlet energy
D(u) = 1

2

∫

D
|∇u|2. Such maps u provide an harmonic conformal parametrisation

of the corresponding minimal surface.
Let Dh be a quasi-uniform triangulation of D with grid size controlled by h. Let

Fh be the class of discrete harmonic maps uh :Dh → IRn for which uh(φj) ∈ Γ
whenever φj is a boundary node ofDh, and which satisfy an analogue of the previous
integral “three-point condition”. Note that we do not require “monotonicity” of
uh|∂Dh

. The function uh ∈ Fh is said to be a discrete minimal surface if uh is
stationary within Fh for the Dirichlet energy D(uh) = 1

2

∫

Dh
|∇uh|

2, c.f. (27) for

the precise formulation.
The main result (Theorem 5.5) is that if u is a nondegenerate minimal surface

spanning Γ then there exist discrete minimal surfaces uh, unique in a ball of “al-
most” constant radius ε0| logh|−1, such that ‖u−uh‖H1(Dh) ≤ ch, where c depends
on Γ and the nondegeneracy constant λ for u but is independent of h. Recall that
nondegeneracy corresponds to the absence of zero eigenvalues for the second vari-
ation of the Dirichlet Energy at u, and generically corresponds to the absence of
branch points. The constant c blows up as λ → 0, and this is consistent with the
numerical results in [DH4]. We give an outline of the proof of the main result in
Section 2.3.
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2. Formulation of the problem

2.1. The energy functional. We first recall some notation from [DH4] Section 3,
to which we refer for further discussion. See Section 3 of the present paper for the
properties of H1/2.

Let D be the open unit disc in IR2, with boundary ∂D. It will be convenient to
let S1 denote another, distinct, copy of the unit circle. Let Γ be a Jordan curve in
IRn with regular Cr-parametrisation γ :S1 → Γ where r ≥ 3.

For f :∂D → IRn we denote by Φ(f) :D → IRn its unique harmonic extension to
D specified by

∆Φ(f) = 0 in D, Φ(f) = f on ∂D.

Then Φ : H1/2(∂D, IRn) → H1(D, IRn) is a bounded linear map with bounded
inverse.

Harmonic maps are uniquely determined by the associated boundary maps. We
will use the Hilbert space H of functions defined by

H = {ξ :∂D → IR | |ξ|H1/2 <∞ and (1) is satisfied} ,

where
∫ 2π

0

ξ(φ) dφ = 0,

∫ 2π

0

ξ(φ) cosφ dφ = 0,

∫ 2π

0

ξ(φ) sin φ dφ = 0.(1)

The norm on H is the usual norm ‖ · ‖H1/2 . The corresponding affine space of
maps s : ∂D → S1 such that s(φ) = φ + σ(φ) for some σ ∈ H is denoted by
H. We also need the Banach space T defined by T = H ∩ C0(∂D, IR) with norm
‖ξ‖T = ‖ξ‖H1/2 + ‖ξ‖C0 . The corresponding affine space T is defined by T =
H

⋂

C0(∂D, S1). With some abuse of standard notation, we write ‖s‖ = 1 + ‖σ‖
for various norms on σ.

The energy functional E is defined on H by

E(s) =
1

2

∫

D

|∇Φ(γ ◦ s)|2 = D(Φ(γ ◦ s)).(2)

Finiteness of E follows from (8). We say the harmonic function u = Φ(γ ◦ s) is a

minimal surface spanning Γ, or a solution of the Plateau Problem for Γ, if and only
if s is monotone and stationary for E, i.e.

〈E′(s), ξ〉 = 0 ∀ξ ∈ T.(3)

As discussed in [DH4], this is equivalent to other formulations of the notion of a
minimal surface.

For the proof of asymptotic convergence of the numerical method we need the
following regularity result, which follows from standard regularity results (c.f. [DH4]
Theorem 3.2) and the Implicit Function Theorem used to write Γ locally as the
graph of a Ck,α function.

Proposition 2.1. If γ ∈ Ck,α where k ≥ 1 and 0 < α < 1, and s ∈ T is monotone

and stationary for E, then

‖s‖Ck,α ≤ c = c(‖γ‖Ck,α , ‖ |γ′|−1 ‖L∞).

We next recall some properties of the energy functional from [DH4] Section 3.3.
Using the notation

u = Φ(γ ◦ s), v = Φ(γ ′ ◦ s ξ), w = Φ(γ′′ ◦ s ξ2)(4)
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formal computation gives

E(s) =
1

2

∫

D

|∇u|2,(5)

〈E′(s), ξ〉 =
d

dt

∣

∣

∣

∣

t=0

E(s+ tξ) =

∫

D

∇u∇v,(6)

E′′(s)(ξ, ξ) =
d2

dt2

∣

∣

∣

∣

t=0

E(s+ tξ) =

∫

D

∇u∇w +

∫

D

|∇v|2,(7)

with an analogous expression for E ′′(s)(ξ, η) obtained by bilinearity in the case of
distinct variations.

If γ ∈ C3 then E ∈ C2(T , IR) and the Fréchet derivatives are given by (6)
and (7). The functional E is not differentiable on H, but if γ and s are as smooth
as is necessary for the following estimates, then one has

E(s) ≤ c‖γ‖2
C1‖s‖2

H1/2 ,(8)

|〈E′(s), ξ〉| ≤ c‖γ‖2
C2‖s‖2

C1‖ξ‖H1/2 ,(9)

|E′′(s)(ξ, η)| ≤ c‖γ‖2
C2‖s‖2

C1‖ξ‖H1/2‖η‖H1/2 .(10)

In particular, these will be used in case s is stationary for E.
It will be important to consider the behaviour of the second derivatives of E near

a stationary point s ∈ T . The second derivative E ′′(s) can then be interpreted as
a self-adjoint bounded map ∇2E(s) :H → H . Let

H = H− ⊕H0 ⊕H+, ξ = ξ− + ξ0 + ξ+ if ξ ∈ H,(11)

be the orthogonal decomposition generated by the eigenfunctions of ∇2E(s) having
negative, zero and positive eigenvalues respectively.

Proposition 2.2. Suppose γ ∈ C3,α. Suppose s is monotone and stationary for

E. Then H− and H0 are finite dimensional. If ξ ∈ H− ⊕H0 then ξ ∈ H3/2(∂D)
and

‖ξ‖H3/2 ≤ ν‖ξ‖H1/2(12)

with ν = ν(‖γ‖C3,α , ‖ |γ′|−1 ‖L∞).

Proof. The finite dimensionality of H− and H0 follow from elliptic theory, see the
proof of [St, Proposition II.5.6]. It is also shown there, with a different notation,
that

‖Φ(γ′ ◦ s ξ)‖H2(D) ≤ c
(

‖γ‖C3 , ‖ |γ′|−1 ‖L∞ , ‖s‖C3 , ‖ξ‖H1/2

)

≤ c
(

‖γ‖C3,α , ‖ |γ′|−1 ‖L∞ , ‖ξ‖H1/2

)

by Proposition 2.1. But

‖ξ‖H3/2 ≤

∥

∥

∥

∥

γ′ ◦ s

|γ′ ◦ s|2

∥

∥

∥

∥

C2

‖γ′ ◦ s ξ‖H3/2 by (52)

≤ c
(

‖γ‖C3 , ‖ |γ′|−1 ‖L∞

)

‖Φ(γ′ ◦ s ξ)‖H2(D) from (52) and (40).

Hence

‖ξ‖H3/2 ≤ c
(

‖γ‖C3,α , ‖ |γ′|−1 ‖L∞ , ‖ξ‖H1/2

)

,

and so the required result follows by scaling.

Higher regularity on γ implies higher regularity on ξ. In particular, γ ∈ C4,α

implies ξ ∈ H5/2(∂D), see the proof of [St, Proposition II.5.6].
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If s is monotone and stationary for E, we say s is nondegenerate if H0 = {0}.
The corresponding minimal surface u = Φ(γ ◦ s) is also said to be nondegenerate.
If s is nondegenerate it follows that there exists a λ > 0 such that for ξ ∈ H ,

E′′(s)(ξ, ξ+ − ξ−) = E′′(s)(ξ+, ξ+) −E′′(s)(ξ−, ξ−) ≥ λ||ξ‖2
H1/2 .(13)

We call λ the nondegeneracy constant for s.

2.2. The discrete energy functional. We recall the necessary notation from [DH4]
Section 4 and prove some preliminary estimates.

Let Gh be a quasi-uniform triangulation of D with grid size comparable to h.
Let

Dh =
⋃

{G | G ∈ Gh},

∂Dh =
⋃

{Ej | 1 ≤ j ≤M} where the Ej are the boundary edges,

Bh = {φ1, . . . , φM} be the set of boundary nodes.

The projection π :∂D → ∂Dh is defined by

π
(

ei((1−t)φj+tφj+1)
)

= (1 − t)eiφj + teiφj+1(14)

for 0 ≤ t ≤ 1, 1 ≤ j ≤M .
In order to have a discrete analogueEh of the functional E we define the following

discrete analogues of H1(D; IRn), H1/2(∂D; IRn), H , T , H and T .

Xn
h =

{

uh ∈ C0(Dh; IRn) | uh ∈ P1(G) for G ∈ Gh

}

,(15)

xn
h =

{

fh ∈ C0(∂Dh; IRn) | fh ∈ P1(Ej) for 1 ≤ j ≤M
}

,(16)

Hh = {ξh ∈ C0(∂D; IR) | ξh ∈ P1(π
−1(Ej)) if 1 ≤ j ≤M, ξh satisfies (1)},(17)

Hh = {sh ∈ C0(∂D;S1) | sh(φ) = φ+ σh(φ) for some σh ∈ Hh}.(18)

Thus Hh ⊂ T ⊂ H , Hh ⊂ T ⊂ H, and the space of variations at any sh ∈ Hh is
naturally identified with Hh. Setting n = 1 we similarly define Xh and xh.

We will make frequent use of the following inverse-type estimates:

Proposition 2.3. If ξh ∈ Hh then

‖ξh‖H1 ≤ ch−1/2‖ξh‖H1/2 ,(19)

‖ξh‖C0 ≤ c|logh|1/2‖ξh‖H1/2 .(20)

Proof. The first estimate is standard. The second is shown in [DH1] Proposition
5.3.

Suppose f ∈ C0(∂D; IRn). One defines the “linear interpolants”

Ihf ∈ xn
h , Ihf

(

(1 − t)eiφj + teiφj+1
)

= (1 − t)f(eiφj ) + tf(eiφj+1),

I∂D
h f ∈ C0(∂D; IRn), Ihf

(

(1 − t)eiφj + teiφj+1
)

= (1 − t)f(eiφj ) + tf(eiφj+1),

where 0 ≤ t ≤ 1, 1 ≤ j ≤ M . Here and elsewhere, φM+1 = φ1. Note the different
domains of Ihf and I∂D

h f . Note also that the image of Ih(γ ◦ s) is a polygonal
approximation to Γ, and Ih(γ ◦ s)(φj) = γ ◦ s(φj) ∈ Γ for φj ∈ Bh. Finally,

I∂D
h f = Ihf ◦ π.(21)

Another type of approximation operator we require is a map ph : T (T ) →
Hh (Hh). The usual interpolation operator does not preserve the normalisation
conditions (1). However, if we first interpolate and then project onto Hh, the
resulting operator still satisfies all the usual estimates. The proof of the following
is essentially given in [DH1] Proposition 5.2.
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Proposition 2.4. There is a bounded linear operator ph : T → Hh such that, in

particular,

‖ξ − phξ‖Hs ≤ chk−s‖ξ‖Hk(22)

for s = 0, 1
2 , 1 and k = 1, 3

2 , 2. Moreover,

‖ξ − phξ‖C0,1 ≤ ch‖ξ‖C2 , ‖phξ‖C0,1 ≤ c‖ξ‖C0,1 ,(23)

‖ξ − phξ‖C0 ≤ ch2‖ξ‖C2 , ‖ξ − phξ‖C0 ≤ ch‖ξ‖C1 .(24)

If s ∈ T and s(φ) = φ + σ(φ), then phs is defined by phs(φ) = φ + phσ(φ),
s− phs := σ − phσ, and hence phs satisfies similar estimates to those for phξ.

For fh ∈ xh the discrete harmonic extension Φhfh ∈ Xh is defined by

4hΦhfh = 0 in Dh, Φhfh = fh on ∂Dh,(25)

where 4h is the discrete Laplacian and the first equation in (25) is interpreted as
∫

Dh
∇(Φhfh)∇ψh = 0 for all ψh ∈ Xh such that ψh = 0 on ∂Dh. If fh ∈ xn

h the

discrete harmonic extension Φhfh is defined componentwise.
For sh ∈ Hh, the discrete energy functional Eh is defined by

Eh(sh) =
1

2

∫

Dh

|∇ΦhIh(γ ◦ sh)|
2

= Dh(ΦhIh(γ ◦ sh)).(26)

Note that Eh is of course not the restriction of E to Hh. The discrete harmonic
function uh = ΦhIh(γ ◦ sh) is said to be a discrete minimal surface spanning Γ, or
a solution of the discrete Plateau Problem for Γ, if and only if

〈E′
h(sh), ξh〉 = 0 ∀ξh ∈ Hh.(27)

Note that we do not require monotonicity of sh, as is the case for s in (3).
The derivatives of Eh, c.f. (5)–(7), are given by

Eh(sh) =
1

2

∫

Dh

|∇uh|
2,(28)

〈E′
h(sh), ξh〉 =

∫

Dh

∇uh∇vh,(29)

E′′
h(sh)(ξh, ξh) =

∫

Dh

∇uh∇wh +

∫

Dh

|∇vh|
2,(30)

where

uh = ΦhIh(γ ◦ sh), vh = ΦhIh(γ′ ◦ sh ξh), wh = ΦhIh(γ′′ ◦ sh ξ
2
h),(31)

For ξh ∈ Hh and s stationary for E, we define the projection of the decomposi-
tion (11):

ξ
(−)
h = phξ

−
h , ξ

(0)
h = phξ

0
h, ξ

(+)
h = phξ

+
h .(32)

Note that ξ−h , ξ0h and ξ+h do not normally belong to Hh, in particular the first two

are smooth functions. However, if H− = H0 = {0} then ξh = ξ+h = ξ
(+)
h .

Proposition 2.5. If ξh ∈ Hh then

ξh = ξ
(−)
h + ξ

(0)
h + ξ

(+)
h(33)

and ξ
(−)
h , ξ

(0)
h , ξ

(+)
h ∈ Hh. Moreover, with ν as in (12),

‖ξ−h − ξ
(−)
h ‖H1/2 ≤ chν‖ξh‖H1/2 , ‖ξ−h − ξ

(−)
h ‖H1 ≤ ch1/2ν‖ξh‖H1/2 ,(34)

‖ξ0h − ξ
(0)
h ‖H1/2 ≤ chν‖ξh‖H1/2 , ‖ξ0h − ξ

(0)
h ‖H1 ≤ ch1/2ν‖ξh‖H1/2 ,(35)

‖ξ+h − ξ
(+)
h ‖H1/2 ≤ chν‖ξh‖H1/2 , ‖ξ+h − ξ

(+)
h ‖H1 ≤ ch1/2ν‖ξh‖H1/2 .(36)
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Proof. Since phξh = ξh, (33) follows from (11). Next, from (22) and (12),

‖ξ−h − ξ
(−)
h ‖H1/2 = ‖ξ−h − phξ

−
h ‖H1/2 ≤ ch‖ξ−h ‖H3/2 ≤ chν‖ξ−h ‖H1/2 .

The proof of the other inequality in (34), and of (35), is similar.
For (36) just note that, from (33) and (11),

ξ+h − ξ
(+)
h = − (ξ−h − ξ

(−)
h ) − (ξ0h − ξ

(0)
h ),

and use the previous estimates.

We remark that the decomposition (33), unlike (11), is not an orthogonal decom-
position. We also note that the powers of h in (34)–(36) can be increased by 1/2
if we assume ‖ξ‖H2 ≤ ν‖ξ‖H1/2 ; this latter holds if γ ∈ C4,α, c.f. the remarks after
Proposition 2.2.

2.3. Structure of the proof. The main error estimates, Theorems 5.4 and 5.5,
are proved in Section 5. To motivate our approach and the need for the various
preliminary estimates in Sections 4 and 5, we outline in an informal manner the
structure of the proof of Theorem 5.4.

h

Hh
'

s

phssh

graph 
of Eh'

slope ≥ λ/4  (B)

≤ c1h  (A)     

   ≤ 4c1h/λ  
from (A) & (B)

≤ ch3/2

Figure 1

Assume s is a nondegenerate stationary point for E with nondegeneracy constant
λ. One applies the Inverse Function Theorem to the derivative E ′

h :Hh → H ′
h (the

dual space of Hh) in a neighbourhood of the point phs; remember that Hh is the
tangent space for Hh, i.e. the space of variations at any th ∈ Hh. Identify E′′

h with
the derivative (E′

h)′ of E′
h; thus (E′

h)′(th) :Hh → H ′
h for th ∈ Hh.

There are three estimates to be proved. A: ‖E ′
h(phs)‖ ≤ c1h for h sufficiently

small. This follows immediately from the consistency estimate (Proposition 4.2)
for the first derivative. See (109). B1: ‖〈(E′

h)′(phs), ξh〉‖ ≥ λ
2 ‖ξh‖ for h sufficiently

small; i.e. “the slope of E ′
h at phs is bounded away from 0 by λ/2”. This is a

nondegeneracy estimate on E ′′
h(phs) and is established in Proposition 5.3, using the

one-sided consistency estimate (Proposition 4.3) for the second derivative, and the
regularity of members of the negative eigenspaces to compensate for the one-sided
nature of that estimate. See (114). B2: ‖(E

′
h)′(phs)− (E′

h)′(phs+ ηh)‖ ≤ λ/4 for h
sufficiently small and ηh sufficiently close to phs, more precisely for ηh ≤ ε0/| logh|;
i.e. “the slope of E′

h near phs differs from that at phs by at most λ/4”. This is a
consequence of Proposition 5.2. See (115). As indicated in the diagram, it follows
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there exists a unique stationary point sh for Eh such that ‖phs−sh‖H1/2 ≤ 4c1h/λ,
and hence such that ‖s− sh‖H1/2 ≤ ch/λ.

3. Preliminary estimates

One can define the Hs(∂D) and Hs(D) norms for any real s; but apart from
non-negative integers s we will only need the following cases.

For f :∂D → IR the H1/2(∂D) seminorm is defined by

|f |2H1/2(∂D) =

∫

∂D

∫

∂D

|f(φ) − f(φ)|2

|φ− φ|2
dφ dφ,(37)

and for u :D → IR the H1/2(D) seminorm is defined by

|u|2H1/2(D) =

∫

D

∫

D

|u(x) − u(x)|2

|x− x|3
dx dx.(38)

In both cases the corresponding norm is given by

‖ · ‖2
H1/2 = ‖ · ‖2

L2 + | · |2H1/2 .(39)

Also,

|f |H3/2(∂D) = |f ′|H1/2(∂D), |u|H3/2(D) = |∇u|H1/2(D),

‖ · ‖2
H3/2 = ‖ · ‖2

L2 + | · |2H3/2 .

If u ∈ Hs+1/2(D) for s = 1/2, 1, 3/2 (in fact for s > 0) then u has a well-defined
trace f on ∂D and

‖f‖Hs(∂D) ≤ c‖u‖Hs+1/2(D).(40)

More precisely, the previous estimate is true for u ∈ C∞(D) and the definition of
trace is extended by continuity and density to the general case. Such an estimate is
not true for smooth u if s = 0, but in this case if 4u ∈ L2(D) the following estimate
holds and then the trace operator is again defined by continuity and density to
satisfy

‖f‖L2(∂D) ≤ c
(

‖u‖H1/2(D) + ‖4u‖L2(D)

)

.(41)

See [LM] Chapter 1 Section 9.2, page 193 (remarks before Theorem 8.1) and
page 187 Theorem 7.3. Note that by considering kernels it is clear that in the
case s = 1/2 one can replace norms in (40) by the corresponding seminorms. We
will frequently use this fact without further remark.

Conversely, if f ∈ Hs(∂D) for s = 0, 1/2, 1, 3/2 (with similar results for any real
s) then there is a unique harmonic function Φ(f) defined on D with trace f as
before, and in particular

‖Φ(f)‖Hs+1/2(D) ≤ c‖f‖Hs(∂D).(42)

See [LM] Theorem 7.4 page 188. Note that for s = 1/2, 1, 3/2 the norms can be
replaced by seminorms as follows again by considering kernels; we will use this fact
without further comment.

In the case of L2 boundary data one also has, with u = Φ(f),

lim
r→1−

u(rθ) = f(θ) for a.e. θ ∈ ∂D,(43)
∥

∥

∥

∥

sup
0≤r<1

|u(r·)|

∥

∥

∥

∥

L2(∂D)

≤ c‖f‖L2(∂D).(44)

See [JK] Theorem (1.16) page 11. In particular, u(r·) → f in L2(∂D) as r → 1−.
(The formulae (43) and (44) are established using the Poisson integral represen-
tation of u from f . The function u agrees with Φ(f) in (42) since it agrees for f
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in the dense subset C∞(∂D) ⊂ L2(∂D) by the maximum principle, and since the
Poisson integral map and Φ are both bounded as maps from L2(∂D) into L2(D),
for example.)

If f :∂D → IR has the Fourier series expansion

f(φ) = a0 +

∞
∑

n=1

(an cosnφ+ bn sinnφ)

then one can define

‖f‖2
L2(∂D) = a2

0 +

∞
∑

n=1

(a2
n + b2n),(45)

|f |2Hs(∂D) =
∞
∑

n=1

n2s(a2
n + b2n) s > 0,(46)

‖f‖2
Hs(∂D) = ‖f‖2

L2(∂D) + |f |2Hs(∂D).(47)

These norms and seminorms are equivalent to the usual definitions in case s ∈ IN ,
and the previous definitions in case s = 1/2 or 3/2. The harmonic extension of f
is given by

(Φf)(r, φ) = a0 +

∞
∑

n=1

rn(an cosnφ+ bn sinnφ).

Proposition 3.1. Suppose f, g :∂D → IR. Then

|fg|H1/2 ≤ ‖f‖C0 |g|H1/2 + |f |H1/2‖g‖C0(48)

‖fg‖H1/2 ≤ c‖f‖C0,1‖g‖H1/2(49)

|fg|H1 ≤ ‖f‖C0 |g|H1 + |f |H1‖g‖C0(50)

‖fg‖H1 ≤ c‖f‖C0,1‖g‖H1(51)

‖fg‖H3/2 ≤ c‖f‖C2‖g‖H3/2 .(52)

Proof. The first two inequalities follow from (37). The next two inequalities are
standard. The last inequality follows from (49).

The next Proposition will be applied in case g is (a component of) γ, γ ′ or γ′′,
and s is either smooth or piecewise linear and continuous. In particular, g will be
at least C1 but s may be only C0,1 in some cases.

Proposition 3.2. Suppose s = id+ σ :∂D → S1, g :S1 → IR. Then

‖g ◦ s‖C0 ≤ ‖g‖C0 ≤ ‖g‖C0‖s‖C0(53)

‖g ◦ s‖C0,1 ≤ c‖g‖C1‖s‖C0,1(54)

‖g ◦ s‖C1 ≤ c‖g‖C1‖s‖C1(55)

‖g ◦ s‖C2 ≤ c‖g‖C2‖s‖2
C2(56)

‖g ◦ s‖L2 ≤ c‖g‖C0 ≤ c‖g‖C0‖s‖L2(57)

‖g ◦ s‖H1/2 ≤ c‖g‖C1‖s‖H1/2(58)

‖g ◦ s‖H1 ≤ c‖g‖C1‖s‖H1(59)

Proof. Recall that ‖s‖C0 = 1 + ‖σ‖C0 ≥ 1. Then (53) is immediate and similarly
for (57). Also (54) is immediate. For (55), (56) and (59) note that

(g ◦ s)′ = g′ ◦ s s′, (g ◦ s)′′ = g′′ ◦ s (s′)2 + g′ ◦ s s′′.

Inequality (58) follows from (37).
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The following Proposition will typically be applied in case g is γ, γ ′ or γ′′ and in
particular is C1; and either s1 = s0 and s2 = phs0, or s1 = phs0 and s2 = phs0 +ηh

for an arbitrary ηh ∈ Hh. Note that in (61) only the C0 norm of s1−s2 is required,
and in case s1 − s2 ∈ Hh this will be estimated by the inverse estimate (20).

Proposition 3.3. Suppose si = id + σi : ∂D → S1 for i = 1, 2 and g : S1 → IR.

Then

‖g ◦ s1 − g ◦ s2‖L2 ≤ c|g|C1‖s1 − s2‖L2(60)

|g ◦ s1 − g ◦ s2|H1/2 ≤ c‖g‖C2(‖s1‖C0,1 + ‖s1 − s2‖C0)‖s1 − s2‖H1/2(61)

|g ◦ s1 − g ◦ s2|H1 ≤ c‖g‖C2‖s1‖C0,1‖s1 − s2‖H1(62)

|g ◦ s1 − g ◦ s2|C0,1 ≤ c‖g‖C2‖s1‖C0,1‖s1 − s2‖C0,1(63)

Proof. The proof of (60) is immediate.
For (61) write

η(φ) = s2(φ) − s1(φ).

Then
∣

∣

∣

(

g(s1(φ)) − g(s1(φ) + η(φ))
)

−
(

g(s1(φ)) − g(s1(φ) + η(φ))
)
∣

∣

∣

=

∣

∣

∣

∣

−

∫ 1

0

g′(s1(φ) + tη(φ))dt η(φ) +

∫ 1

0

g′(s1(φ) + tη(φ))dt η(φ)

∣

∣

∣

∣

≤

∫ 1

0

|g′(s1(φ) + tη(φ))|dt |η(φ) − η(φ)|

+

∫ 1

0

∣

∣g′(s1(φ) + tη(φ)) − g′(s1(φ) + tη(φ))
∣

∣ dt |η(φ)|

≤ ‖g‖C1 |η(φ) − η(φ)| + ‖g‖C2

(

|s1(φ) − s1(φ)| + |η(φ) − η(φ)|
)

|η(φ)|.

It now follows from (37) that

|g ◦ s1 − g ◦ (s1 + η)|H1/2

≤ ‖g‖C1 |η|H1/2 + ‖g‖C2(c‖s1‖C0,1‖η‖L2 + |η|H1/2‖η‖C0)

≤ c‖g‖C2(‖s1‖C0,1 + ‖η‖C0)‖η‖H1/2 ,

recalling that ‖s1‖C0,1 ≥ 1. This establishes (61).
For (62) we compute

‖(g ◦ s1 − g ◦ s2)
′‖L2

= ‖g′ ◦ s1 s
′
1 − g′ ◦ s2 s

′
2‖L2

≤ ‖g′ ◦ s1 − g′ ◦ s2‖L2‖s′1‖L∞ + ‖g′ ◦ s2‖C0‖s′1 − s′2‖L2

≤ c|g|C2‖s1 − s2‖L2 |s1|C0,1 + |g|C1 |s1 − s2|H1 from (60)

≤ c‖g‖C2‖s1‖C0,1‖s1 − s2‖H1 .

For (63) we similarly estimate ‖(g ◦ s1 − g ◦ s2)
′‖L∞ .

The next Proposition will be used repeatedly in the consistency and non-degen-
eracy estimates of Sections 4 and 5, particularly in case s = 1. In Corollary 3.5
we see that the H1(Dh) seminorm of the discrete harmonic extension of a discrete

function f can be estimated by the H1(D) seminorm of the smooth harmonic
extension of the function. This is not true for general smooth f . The Corollary is
due to Bramble, Pasciak & Schatz [BPS].
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Proposition 3.4. If f ∈ Hs(∂D, IRn) where s = 1, 3/2 then

|Φ(f) − ΦhIh(f)|H1(Dh) ≤ chs−1/2|f |Hs(∂D),(64)

|ΦhIh(f)|H1(Dh) ≤ |f |H1/2(∂D) + chs−1/2|f |Hs(∂D).(65)

Proof. It is sufficient to take n = 1. Let

u = Φ(f), uh = ΦhIh(f).

Note that Ihf is well-defined as f ∈ C0(∂Dh). Since uh = Ihu on ∂Dh, it follows
in the usual way from the weak form of Laplace’s equation and (25) that

0 =

∫

Dh

(∇uh −∇u)(∇uh −∇Ihu),(66)

and so
∫

Dh

|∇u−∇uh|
2 =

∫

Dh

(∇u−∇uh)(∇u−∇Ihu).(67)

Hence

|u− uh|H1(Dh) ≤ |u− Ihu|H1(Dh)

≤ chs−1/2|u|Hs+1/2(Dh) ≤ chs−1/2|u|Hs+1/2(D)

≤ chs−1/2|u|Hs(∂D),

from a standard interpolation result and (42). This gives (64), and (65) then follows
from (42).

Corollary 3.5. Suppose fh ∈ Hh. Then

|ΦhIh(fh)|H1(Dh) ≤ c|Φ(fh)|H1(D)(68)

Proof. This follows from (65) with s = 1, the inverse estimate (19), and (40).

Proposition 3.7 will allow us to estimate various quantities involving an harmonic
function and the discrete disc Dh, in terms of the trace of the harmonic function
on D. But first we need an elementary lemma.

Lemma 3.6. Suppose u ∈ H1(D) and π :∂D → ∂Dh is as in (14). Then

‖u− u ◦ π‖L2(∂D) ≤ ch|u|H1(D\Dh)(69)

Proof. Let Lθ be the straight line segment joining θ ∈ ∂D to π(θ) ∈ ∂Dh. Then

|u(θ) − u ◦ π(θ)|2 ≤

(
∫

Lθ

|∇u|

)2

≤ ch2

∫

Lθ

|∇u|2.

Each z ∈ D \Dh can be written uniquely as (θ, y) ∈ ∂D× IR+, where z ∈ Lθ and y
is the distance of z from θ ∈ ∂D. The corresponding map (θ, y) 7→ z has Jacobian
J satisfying 1− ch2 ≤ J ≤ 1. Hence

∫

∂D

|u− u ◦ π|2 ≤ ch2

∫

∂D

dθ

∫

Lθ

|∇u|2 ≤ ch2

∫

D\Dh

|∇u|2.

In the following Proposition and elsewhere, ∂u
∂ν and ∂u

∂τ denote normal and tan-
gential derivatives on the relevant curve.
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Proposition 3.7. Suppose u is harmonic in D with trace u|∂D ∈ L2(∂D) or

H1(∂D) as appropriate. Then

‖u‖L2(D\Dh) ≤ ch‖u‖L2(∂D),(70)

‖∇u‖L2(D\Dh) ≤ ch|u|H1(∂D),(71)

‖u− u ◦ π‖L2(∂D) ≤ ch2|u|H1(∂D),(72)
∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

L2(∂Dh)

≤ c|u|H1(∂D).(73)

Proof. Let D(ρ) be the disc of radius ρ. From (44)

‖u‖L2(∂D(ρ)) ≤ c‖u‖L2(∂D).

Integrating the square of this inequality with respect to ρ from 1 − ch2 to 1 now
establishes (70).

Since ∇u is also harmonic, it follows

‖∇u‖L2(D\Dh) ≤ ch‖∇u‖L2(∂D).

But
∫

∂D

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

2

=

∫

∂D

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

,(74)

from a Fourier series expansion, and so (71) follows.
Inequality (72) follows from (71) and the previous Lemma.
For (73) we have that if 4u = 0 and u|∂D ∈ H1(∂D) then 4∇u = 0 and ∇u ∈

H1/2(D) by (42). Hence ∇u|∂D is well-defined and ∇u|∂D ∈ L2(∂D) from (41).
From (44) applied to ∇u,

‖∇u‖L2(∂Dh) ≤ c‖∇u‖L2(∂D)

and in particular, using (74),
∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

L2(∂Dh)

≤ c|u|H1(∂D).

This establishes (73).

4. Consistency estimates for the energy

In this Section we compare E and its derivatives at s, with Eh and its derivatives
at phs. Apart from their intrinsic significance, these estimates will be needed in
the next Section to establish the main convergence results.

Remarks on the Proofs In the proof of each of the three Propositions in this
section, Proposition 3.4 is used to estimate the difference between an harmonic
function and the corresponding discrete harmonic function, and also to estimate
various discrete harmonic “error” terms.

Interpolation results in terms of the H2 piecewise seminorm, together with in-
verse estimates, are used to estimate the L2 norm of the quantities γ ◦phs−I

∂D
h (γ ◦

phs), γ
′ ◦phs ξh − I

∂D
h (γ′ ◦phs ξh) and γ′′ ◦phs ξ

2
h − I

∂D
h (γ′′ ◦phs ξh)2. Since piece-

wise second derivatives of phs and ξh vanish, this enables us to gain an extra power
of h than one might at first expect.

In each of the three proofs the term I2 is estimated with an integration by parts.
In Proposition 4.1 this improves the order of convergence from O(h) toO(h2). In the
other two Propositions, one could not otherwise expect any order of convergence;
see also the remark preceding Proposition 4.3 concerning ‖∇(v − vh)‖L2(Dh).
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Proposition 4.1. Let s ∈ H ∩ C2, γ ∈ C2. Then

|Eh(phs) −E(s)| ≤ ch2‖γ‖2
C2‖s‖4

C2 .

Proof. Let

u = Φ(γ ◦ s), uh = ΦhIh(γ ◦ phs).(75)

Then

Eh(phs) −E(s) =
1

2

∫

Dh

|∇uh|
2 −

1

2

∫

D

|∇u|2

=
1

2

∫

Dh

|∇(u− uh)|2 −

∫

Dh

∇u∇(u− uh) −
1

2

∫

D\Dh

|∇u|2

= I1 + I2 + I3.(76)

We will estimate these terms separately.
For I1,

(2I1)
1/2 = |Φ(γ ◦ s) − ΦhIh(γ ◦ phs)|H1(Dh)

≤ |Φ(γ ◦ s) − ΦhIh(γ ◦ s)|H1(Dh) + |ΦhIh(γ ◦ s− γ ◦ phs)|H1(Dh)

≤ ch|γ ◦ s|H3/2 + |γ ◦ s− γ ◦ phs|H1/2 + ch1/2|γ ◦ s− γ ◦ phs|H1

from (64) with s = 3/2 and (65) with s = 1.

But

h|γ ◦ s|H3/2 ≤ ch|γ ◦ s|C2 ≤ ch‖γ‖C2‖s‖2
C2 from (56),

also

|γ ◦ s− γ ◦ phs|H1/2 ≤ c‖γ‖C2(‖s‖C0,1 + ‖phs‖C0,1)‖s− phs‖H1/2 by (61)

≤ ch3/2‖γ‖C2‖s‖C1‖s‖H2 by (23) and (22)

≤ ch3/2‖γ‖C2‖s‖2
C2 ,

and

h1/2|γ ◦ s− γ ◦ phs|H1 ≤ ch1/2‖γ‖C2‖s‖C1‖s− phs‖H1 from (62)

≤ ch3/2‖γ‖C2‖s‖2
C2 from (22).

Hence

I1 ≤ ch2‖γ‖2
C2‖s‖4

C2 .(77)

For I2 one has

|I2| =

∣

∣

∣

∣

∫

∂Dh

∂u

∂ν
(u− uh)

∣

∣

∣

∣

≤

∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

L2(∂Dh)

‖u− uh‖L2(∂Dh)

≤ c|u|H1(∂D)‖u− uh‖L2(∂Dh) by (73)

≤ c‖γ‖C1‖s‖C1‖u ◦ π − uh ◦ π‖L2(∂D) by (59) and (14)

≤ c‖γ‖C1‖s‖C1

(

‖u ◦ π − u‖L2(∂D) + ‖u− uh ◦ π‖L2(∂D)

)

.

But

‖u ◦ π − u‖L2(∂D) ≤ ch2|u|H1(∂D) = ch2|γ ◦ s|H1 ≤ ch2‖γ‖C1‖s‖C1
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by (72) and (59). Also

‖u− uh ◦ π‖L2(∂D) = ‖γ ◦ s− I∂D
h (γ ◦ phs)‖L2 by (75) and (21)

≤ ‖γ ◦ s− γ ◦ phs‖L2 + ‖γ ◦ phs− I∂D
h (γ ◦ phs)‖L2

≤ ‖γ‖C1‖s− phs‖L2 + ch2|γ ◦ phs|H2 ,

by (60) and a standard interpolation estimate, where the H2 semi-norm is to be
understood in a piecewise sense. On each arc segment, (γ◦phs)

′′ = γ′′◦phs ((phs)
′)2

since (phs)
′′ = 0, so we can continue the estimate by

≤ c‖γ‖C1h2‖s‖C2 + ch2‖γ‖C2‖s‖2
C1 ≤ ch2‖γ‖C2‖s‖2

C2 ,

using (24) and (23). Hence

|I2| ≤ ch2‖γ‖2
C2‖s‖3

C2 .(78)

Finally,

|I3| =
1

2
‖∇u‖2

L2(D\Dh) ≤ ch2|u|2H1(∂D) by (71)

= ch2|γ ◦ s|2H1 ≤ ch2‖γ‖2
C1‖s‖2

C1 .(79)

The Proposition now follows from (76), (77), (78) and (79).

The next Proposition shows that E ′
h(phs) is a O(h) approximation to E ′(s)|Hh

in the H ′
h norm for γ and s sufficiently smooth. The actual power of h is important

in the proof of Theorem 5.4.

Proposition 4.2. Let s ∈ H ∩ C2, γ ∈ C3. Then for any ξh ∈ Hh

|〈E′(s), ξh〉 − 〈E′
h(phs), ξh〉| ≤ ch‖γ‖2

C3‖s‖3
C2‖ξh‖H1/2 .

Proof. Define u and uh as in (75), and for ξh ∈ Hh define

v = Φ(γ′ ◦ s ξh), vh = ΦhIh(γ′ ◦ phs ξh).(80)

Then from (29),

〈E′(s), ξh〉 − 〈E′
h(phs), ξh〉

=

∫

D

∇u∇v −

∫

Dh

∇uh∇vh

=

∫

Dh

(∇u∇v −∇uh∇vh) +

∫

D\Dh

∇u∇v

=

∫

Dh

∇(u− uh)∇vh +

∫

Dh

∇u∇(v − vh) +

∫

D\Dh

∇u∇v

= I1 + I2 + I3.(81)

Now

|I1| ≤ ‖∇(u− uh)‖L2(Dh)‖∇vh‖L2(Dh)

≤ ch‖γ‖C2‖s‖2
C2‖∇vh‖L2(Dh) from (77).

Also

‖∇vh‖L2(Dh) = |ΦhIh(γ′ ◦ phs ξh)|H1(Dh)

≤ |γ′ ◦ phs ξh|H1/2 + ch1/2|γ′ ◦ phs ξh|H1 by (65).

The first term is estimated by

|γ′ ◦ phs ξh|H1/2 ≤ c‖γ′ ◦ phs‖C0,1‖ξh‖H1/2 from (49)

≤ c‖γ‖C2‖s‖C1‖ξh‖H1/2 using (23);
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the second by

|γ′ ◦ phs ξh|H1 ≤ c‖γ′ ◦ phs‖C0,1‖ξh‖H1 by (51)

≤ c‖γ‖C2‖phs‖C0,1‖ξh‖H1 by (54)

≤ ch−1/2‖γ‖C2‖s‖C1‖ξh‖H1/2 by (23) and (19).(82)

So altogether,

|I1| ≤ ch‖γ‖2
C2‖s‖3

C1‖ξh‖H1/2 .(83)

For I2, as for I2 in the proof of the previous Proposition,

|I2| =

∣

∣

∣

∣

∫

∂Dh

∂u

∂ν
(v − vh)

∣

∣

∣

∣

≤ c‖γ‖C1‖s‖C1

(

‖v ◦ π − v‖L2(∂D) + ‖v − vh ◦ π‖L2(∂D)

)

.

¿From (72) and the argument for (82),

‖v ◦ π − v‖L2(∂D) ≤ ch2|v|H1(∂D) = ch2|γ′ ◦ s ξh|H1

≤ ch3/2‖γ‖C2‖s‖C1‖ξh‖H1/2 .

Also,

‖v − vh ◦ π‖L2(∂D)

= ‖γ′ ◦ s ξh − I∂D
h (γ′ ◦ phs ξh)‖L2

≤ ‖(γ′ ◦ s− γ′ ◦ phs) ξh‖L2 + ‖γ′ ◦ phs ξh − I∂D
h (γ′ ◦ phs ξh)‖L2

≤ ‖γ‖C2‖s− phs‖C0‖ξh‖L2 + ch2|γ′ ◦ phs ξh|H2

where the H2 semi-norm is understood in the piecewise sense

≤ ch2‖γ‖C2‖s‖C2‖ξh‖L2 from (24)

+ ch2
(

‖γ‖C3‖s‖2
C1‖ξh‖L2 + ‖γ‖C2‖s‖C1 |ξh|H1

)

since on each arc

segment, (γ′ ◦ phs ξh)′′ = γ′′′ ◦ phs((phs)
′)2 ξh + 2γ′′ ◦ phs(phs)

′ ξ′h

≤ ch2‖γ‖C3‖s‖2
C2‖ξh‖H1

≤ ch3/2‖γ‖C3‖s‖2
C2‖ξh‖H1/2 by (19).

Altogether,

|I2| ≤ ch3/2‖γ‖2
C3‖s‖3

C2‖ξh‖H1/2 .(84)

Finally,

|I3| ≤ ‖∇u‖L2(D\Dh)‖∇v‖L2(D\Dh)

≤ ch‖γ‖C1‖s‖C1‖∇v‖L2(D\Dh) by (79)

≤ ch2‖γ‖C1‖s‖C1 |v|H1(∂D) by (71)

≤ ch2‖γ‖C1‖s‖C1 |γ′ ◦ s ξh|H1

≤ ch2‖γ‖C1‖s‖C1‖γ‖C2‖s‖C1‖ξh‖H1 by (51) and (55)

≤ ch3/2‖γ‖2
C2‖s‖2

C1‖ξh‖H1/2 by (19).(85)

The Proposition follows from (81), (83), (84) and (85).

Remark The following Proposition, and the related Proposition 5.3, are essential
for the proof of the main Theorem. Assuming γ and s are sufficiently smooth, we
see from (87) that if E ′′(s) is positive definite (for example, if s is a strictly stable
local minimum for E) then so is E ′′

h(phs) for h sufficiently small, with the same

“ellipticity” constant up to O(h1/2| logh|1/2).
One might hope to estimate the positive term

‖∇(v − vh)‖2
L2(Dh) = ‖Φ(γ′ ◦ s ξh) − ΦhIh(γ′ ◦ phs ξh)‖2

H1(Dh)(86)
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in (87) by chα‖ξh‖
2
H1/2 for some α > 0. But we cannot expect this as we see by

considering the “model” estimates:

‖Φ(ξh) − ΦhIh(ξh)‖H1(Dh) ≤ ch1/2‖ξh‖H1 ≤ c‖ξh‖H1/2

from (64) and (19) — these estimates cannot be improved.
None-the-less, in Proposition 5.3 we do estimate (86) in case ξh = phξ where

ξ is in the negative eigenspace of E ′′(s). The point is that ξ is then smooth by
elliptic regularity theory (although ξh is of course not smooth), and in fact we show
in (106) that in this case

‖∇(v − vh)‖2
L2(Dh) ≤ ch‖ξh‖

2
H1/2 .

As a consequence we deduce in Proposition 5.3 that if E ′′(s) is non-degenerate then
so is E′′

h(phs) for h sufficiently small, with the same nondegeneracy constant up to

O(h1/2| logh|1/2).

Proposition 4.3. Let s ∈ C2 ∩ H and γ ∈ C3. Then for any ξh ∈ Hh

E′′
h(phs)(ξh, ξh) −E′′(s)(ξh, ξh) = ‖∇(v − vh)‖2

L2(Dh) +R(87)

where

v = Φ(γ′ ◦ s ξh), vh = ΦhIh(γ′ ◦ phs ξh),

and

|R| ≤ ch1/2| logh|1/2‖γ‖2
C3‖s‖3

C2‖ξh‖
2
H1/2 .

Proof. Let u and uh be as in (75). Let

w = Φ(γ′′ ◦ s ξ2h), wh = ΦhIh(γ′′ ◦ phs ξ
2
h).(88)

¿From (30),
(

E′′(s) −E′′
h(phs)

)

(ξh, ξh)

=

∫

D

|∇v|2 +

∫

D

∇u∇w −

∫

Dh

|∇vh|
2 −

∫

Dh

∇uh∇wh

= −

∫

Dh

|∇(v − vh)|2 + 2

∫

Dh

∇v∇(v − vh) +

∫

Dh

∇(u− uh)∇wh

+

∫

Dh

∇(w − wh)∇u+

∫

D\Dh

|∇v|2 +

∫

D\Dh

∇u∇w

= I1 + I2 + I3 + I4 + I5 + I6.

We estimate the terms other than I1.
For I2 we have

|I2| = 2

∣

∣

∣

∣

∫

Dh

∇v∇(v − vh)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫

∂Dh

∂v

∂ν
(v − vh)

∣

∣

∣

∣

≤ 2

∥

∥

∥

∥

∂v

∂ν

∥

∥

∥

∥

L2(∂Dh)

‖v − vh‖L2(∂Dh).

The first factor is estimated with the use of (73) and arguing as for (82);
∥

∥

∥

∥

∂v

∂ν

∥

∥

∥

∥

L2(∂Dh)

≤ c|v|H1(∂D) = c|γ′ ◦ s ξh|H1 ≤ ch−1/2‖γ‖C2‖s‖C1‖ξh‖H1/2 .

The second factor was estimated in the estimate for I2 in the proof of Proposition
4.2:

‖v − vh‖L2(∂Dh) ≤ ch3/2‖γ‖C3‖s‖2
C2‖ξh‖H1/2 .

Altogether for I2,

|I2| ≤ ch‖γ‖2
C3‖s‖3

C2‖ξh‖
2
H1/2 .(89)
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For I3,

|I3| =

∣

∣

∣

∣

∫

Dh

∇(u− uh)∇wh

∣

∣

∣

∣

≤ ‖∇(u− uh)‖L2(Dh)‖∇wh‖L2(Dh)

≤ ch‖γ‖C2‖s‖2
C2‖∇wh‖L2(Dh) from (77).

¿From (65) we get

‖∇wh‖L2(Dh) = |ΦhIh(γ′′ ◦ phs ξ
2
h)|H1(Dh)

≤ |γ′′ ◦ phs ξ
2
h|H1/2 + ch1/2|γ′′ ◦ phs ξ

2
h|H1 .

But

|γ′′ ◦ phs ξ
2
h|H1/2 ≤ c‖γ‖C3‖s‖C1‖ξ2h‖H1/2 from (49) and (54)

≤ c‖γ‖C3‖s‖C1‖ξh‖C0‖ξh‖H1/2 from (48)

≤ c| logh|1/2‖γ‖C3‖s‖C1‖ξh‖
2
H1/2 from (20).

Similarly

|γ′′ ◦ phs ξ
2
h|H1 ≤ c‖γ‖C3‖s‖C1‖ξ2h‖H1 using (51)

≤ c‖γ‖C3‖s‖C1‖ξh‖C0‖ξh‖H1 from (50)

≤ ch−1/2| logh|1/2‖γ‖C3‖s‖C1‖ξh‖
2
H1/2(90)

from (20) and (19). Hence

‖∇wh‖L2(Dh) ≤ c| logh|1/2‖γ‖C3‖s‖C1‖ξh‖
2
H1/2 ,

and so

|I3| ≤ ch| logh|1/2‖γ‖2
C3‖s‖3

C2‖ξh‖
2
H1/2 .(91)

For I4 we have

I4 =

∫

Dh

∇(w − wh)∇u =

∫

Dh

(w − wh)
∂u

∂ν
,

and so as for I2 in the proof of Proposition 4.1,

|I4| ≤ c‖γ‖C1‖s‖C1

(

‖w ◦ π − w‖L2(∂D) + ‖w − wh ◦ π‖L2(∂D)

)

.(92)

But

‖w ◦ π − w‖L2(∂D) ≤ ch2|w|H1(∂D) by (72)

≤ ch2|γ′′ ◦ s ξ2h|H1

≤ ch3/2| logh|1/2‖γ‖C3‖s‖C1‖ξh‖
2
H1/2 as for (90).

Also

‖w − wh ◦ π‖L2(∂D)

= ‖γ′′ ◦ s ξ2h − I∂D
h (γ′′ ◦ phs ξ

2
h)‖L2 from (88) and (21)

≤ ‖γ′′ ◦ s ξ2h − γ′′ ◦ phs ξ
2
h‖L2 + ‖γ′′ ◦ phs ξ

2
h − I∂D

h (γ′′ ◦ phs ξ
2
h)‖L2

≤ ‖γ′′ ◦ s− γ′′ ◦ phs‖C0‖ξh‖
2
L4 + ch|γ′′ ◦ phs ξ

2
h|H1

≤ c‖γ‖C3‖s− phs‖C0‖ξh‖
2
H1/2 + ch1/2| logh|1/2‖γ‖C3‖s‖C1‖ξh‖

2
H1/2

using a Sobolev embedding theorem and (90)

≤ ch1/2| logh|1/2‖γ‖C3‖s‖C1‖ξh‖
2
H1/2 from (24).

Hence

|I4| ≤ ch1/2| logh|1/2‖γ‖2
C3‖s‖2

C1‖ξh‖
2
H1/2 .(93)



THE DISCRETE PLATEAU PROBLEM: CONVERGENCE RESULTS 17

¿From the final part of the argument for I3 in the proof of the previous Propo-
sition,

I5 = ‖∇v‖2
L2(D\Dh) ≤ ch‖γ‖2

C2‖s‖2
C1‖ξh‖

2
H1/2 .(94)

Finally,

|I6| ≤ ‖∇u‖L2(D\Dh)‖∇w‖L2(D\Dh)

≤ ch2|u|H1(∂D)|w|H1(∂D) by (71)

= ch2|γ ◦ s|H1 |γ′′ ◦ s ξ2h|H1

≤ ch2‖γ‖C1‖s‖C1 |γ′′ ◦ s ξ2h|H1 by (59)

≤ ch3/2| logh|1/2‖γ‖2
C3‖s‖2

C1‖ξh‖
2
H1/2 as for (90).(95)

Now collect the estimates (89), (91), (93), (94) and (95), and this proves the
Proposition.

5. The main error estimates

We will apply the following quantitative version of the Inverse Function Theorem
with X = Hh and Y = Hh in the proof of Theorem 5.4.

Lemma 5.1. Let X be an affine Banach space with Banach space X as tangent

space, and let Y be a Banach space. Suppose x0 ∈ X and f ∈ C1(X , Y ). Assume

there are positive constants α, β, δ and ε such that

‖f(x0)‖Y ≤ δ,(96)

‖f ′(x0)
−1‖L(Y,X) ≤ α−1,(97)

‖f ′(x) − f ′(x0)‖L(X,Y ) ≤ β for all x ∈ Bε(x0),(98)

where

β < α, δ ≤ (α − β)ε.(99)

Then there exists a unique x∗ ∈ Bε(x0) such that f(x∗) = 0.

Proof. This follows from the proof of the Inverse Function Theorem in [Be; pp
113–114]. The modifications necessary since X is an affine space are trivial.

The next Proposition establishes that for any β > 0,

‖E′′
h(phs) −E′′

h(phs+ ηh)‖(Hh×Hh)′ ≤ β

provided | logh| ‖ηh‖H1/2 is sufficiently small (depending on β but independent of
h). This will be used to establish the appropriate version of (98) in the proof of
Proposition 5.4.

Remark on the Proof The precise form of estimate (61), and the inverse esti-
mate (20), are used to control |g ◦ sh − g ◦ (sh + ηh)|H1/2 for g = γ, γ′ and γ′′.

Proposition 5.2. Let s ∈ H ∩ C1 and γ ∈ C4. Then for any ηh, ξh ∈ Hh
∣

∣

∣

(

E′′
h(phs) −E′′

h(phs+ ηh)
)

(ξh, ξh)
∣

∣

∣

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)2

| logh| ‖ηh‖H1/2‖γ‖2
C4‖s‖2

C1‖ξh‖
2
H1/2 .

Proof. For simplicity we write sh for phs.
¿From (30),

(

E′′
h(sh) −E′′

h(sh + ηh)
)

(ξh, ξh)

=

∫

Dh

|∇vh|
2 +

∫

Dh

∇uh∇wh −

∫

Dh

|∇vh|
2 −

∫

Dh

∇uh∇wh,
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with

uh = ΦhIh(γ ◦ sh), uh = ΦhIh(γ ◦ (sh + ηh)),
vh = ΦhIh(γ′ ◦ sh ξh), vh = ΦhIh(γ′ ◦ (sh + ηh) ξh),
wh = ΦhIh(γ′′ ◦ sh ξ

2
h), wh = ΦhIh(γ′′ ◦ (sh + ηh) ξ2h).

So
∣

∣

∣

(

E′′
h(sh) −E′′

h(sh + ηh)
)

(ξh, ξh)
∣

∣

∣

≤

∫

Dh

|∇(vh − vh)| (|∇vh| + |∇vh|) +

∫

Dh

|∇(uh − uh)| |∇wh|

+

∫

Dh

|∇uh| |∇(wh − wh)|

≤ ‖∇(uh − uh)‖L2(Dh)‖∇wh‖L2(Dh)

+ ‖∇(vh − vh)‖L2(Dh)

(

‖∇vh‖L2(Dh) + ‖∇vh‖L2(Dh)

)

+ ‖∇(wh − wh)‖L2(Dh)‖∇uh‖L2(Dh)

= A1B1 +A2(B21 +B22) +A3B3.(100)

Now estimate these terms separately.
By (65)

A1 =
∣

∣

∣
ΦhIh

(

γ ◦ sh − γ ◦ (sh + ηh)
)∣

∣

∣

H1(Dh)

≤ |γ ◦ sh − γ ◦ (sh + ηh)|H1/2 + ch1/2|γ ◦ sh − γ ◦ (sh + ηh)|H1

≤ c‖γ‖C2 (‖sh‖C0,1 + ‖ηh‖C0) ‖ηh‖H1/2 + ch1/2‖γ‖C2‖sh‖C0,1‖ηh‖H1

by (61) and (62)

≤ c‖γ‖C2‖s‖C1‖ηh‖H1/2

(

1 + | logh|1/2‖ηh‖H1/2

)

+ c‖γ‖C2‖s‖C1‖ηh‖H1/2 by (20), (19) and (23)

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

‖ηh‖H1/2‖γ‖C2‖s‖C1 .

Again from (65)

A2 =
∣

∣

∣
ΦhIh

(

γ′ ◦ sh ξh − γ′ ◦ (sh + ηh) ξh

)
∣

∣

∣

H1(Dh)

≤ |(γ′ ◦ sh − γ′ ◦ (sh + ηh)) ξh|H1/2

+ ch1/2|(γ′ ◦ sh − γ′ ◦ (sh + ηh)) ξh|H1

≤ |γ′ ◦ sh − γ′ ◦ (sh + ηh)|H1/2‖ξh‖C0

+ ‖γ′ ◦ sh − γ′ ◦ (sh + ηh)‖C0 |ξh|H1/2 by (48)

+ ch1/2‖γ′ ◦ sh − γ′ ◦ (sh + ηh)‖C0 |ξh|H1

+ ch1/2|γ′ ◦ sh − γ′ ◦ (sh + ηh)|H1‖ξh‖C0 by (50)

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

‖ηh‖H1/2‖γ‖C3‖s‖C1‖ξh‖C0

+ c‖γ‖C2‖ηh‖C0 |ξh|H1/2 + ch1/2‖γ‖C2‖ηh‖C0 |ξh|H1 using the argu-

ment for A1 on the first and last terms in the preceding inequality

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

| logh|1/2‖ηh‖H1/2‖γ‖C3‖s‖C1‖ξh‖H1/2 ,

again using the inverse estimates (20) and (19) on ηh and ξh.
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In the same way we proceed for A3 to first obtain the analogue of the second
last inequality above:

A3 =
∣

∣ΦhIh(γ′′ ◦ sh ξ
2
h − γ′′ ◦ (sh + ηh)ξ2h)

∣

∣

H1(Dh)

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

‖ηh‖
1/2‖γ‖C4‖s‖C1‖ξ2h‖C0

+ c‖γ‖C3‖ηh‖C0 |ξ2h|H1/2 + ch1/2‖γ‖C3‖ηh‖C0 |ξ2h|H1

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

| logh| ‖ηh‖H1/2‖γ‖C4‖s‖C1‖ξh‖
2
H1/2 ,

from the inverse estimates (19) and (20) applied to ηh and ξh, and since

‖ξ2h‖H1/2 ≤ 2‖ξh‖C0‖ξh‖H1/2 , ‖ξ2h‖H1 ≤ 2‖ξh‖C0‖ξh‖H1 .

For B3,

B3 = |ΦhIh(γ ◦ (sh + ηh))|H1(Dh)

≤ |γ ◦ (sh + ηh)|H1/2 + ch1/2|γ ◦ (sh + ηh)|H1 by (65)

≤ ‖γ‖C1(‖sh‖H1/2 + ‖ηh‖H1/2) + ch1/2‖γ‖C1(‖sh‖H1 + ‖ηh‖H1)

≤ c‖γ‖C1(‖sh‖H1/2 + ‖ηh‖H1/2) by (19)

≤ c(1 + ‖ηh‖H1/2)‖γ‖C1‖s‖C1 .

For B22,

B22 = |ΦhIh(γ′ ◦ (sh + ηh) ξh)|H1(Dh)

≤ |γ′ ◦ (sh + ηh) ξh|H1/2 + ch1/2|γ′ ◦ (sh + ηh) ξh|H1 by (65)

≤ ‖γ′ ◦ (sh + ηh)‖C0 |ξh|H1/2 + |γ′ ◦ (sh + ηh)|H1/2‖ξh‖C0

+ ch1/2
(

‖γ′ ◦ (sh + ηh)‖C0 |ξh|H1 + |γ′ ◦ (sh + ηh)|H1‖ξh‖C0

)

by (48)

≤ c‖γ‖C1|ξh|H1/2 + c‖γ‖C2 |sh + ηh|H1/2‖ξh‖C0

+ ch1/2
(

‖γ‖C1 |ξh|H1 + ‖γ‖C2‖sh + ηh‖H1‖ξh‖C0

)

≤ c‖γ‖C2(‖sh + ηh‖H1/2)| log h|1/2‖ξh‖H1/2 by (19) and (20)

≤ c(1 + ‖ηh‖H1/2)| logh|1/2‖γ‖C2‖s‖C1‖ξh‖H1/2 .

For B21 we have the same estimate with ηh set equal to 0;

B21 ≤ c| logh|1/2‖γ‖C2‖s‖C1‖ξh‖H1/2 .

Finally,

B1 = |ΦhIh(γ′′ ◦ sh ξ
2
h)|H1(Dh)

≤ |γ′′ ◦ sh ξ
2
h|H1/2 + ch1/2|γ′′ ◦ sh ξ

2
h|H1 by (65)

≤ ‖γ′′ ◦ sh‖C0 |ξ2h|H1/2 + |γ′′ ◦ sh|H1/2‖ξ2h‖C0

+ ch1/2
(

‖γ′′ ◦ sh‖C0 |ξ2h|H1 + |γ′′ ◦ sh|H1‖ξ2h‖C0

)

≤ c‖γ‖C2‖ξh‖C0‖ξh‖H1/2 + c‖γ‖C3‖sh‖H1/2‖ξh‖
2
C0

+ ch1/2
(

‖γ‖C2‖ξh‖C0‖ξh‖H1 + ‖γ‖C3‖sh‖H1‖ξh‖
2
C0

)

≤ c| logh| ‖γ‖C3‖s‖C1‖ξh‖
2
H1/2 .
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Substituting the previous estimates in (100),

∣

∣

∣

(

E′′
h(sh) −E′′

h(sh + ηh)
)

(ξh, ξh)
∣

∣

∣

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)

‖ηh‖H1/2‖γ‖C2‖s‖C1

× | logh| ‖γ‖C3‖s‖C1‖ξh‖
2
H1/2

+ c
(

1 + | logh|1/2‖ηh‖H1/2

)

| logh|1/2‖ηh‖H1/2‖γ‖C3‖s‖C1‖ξh‖H1/2

×
(

1 + ‖ηh‖H1/2

)

| logh|1/2‖γ‖C2‖s‖C1‖ξh‖H1/2

+ c
(

1 + ‖ηh‖H1/2

)

‖γ‖C1‖s‖C1

×
(

1 + | logh|1/2‖ηh‖H1/2

)

| logh| ‖ηh‖H1/2‖γ‖C4‖s‖C1‖ξh‖
2
H1/2

≤ c
(

1 + | logh|1/2‖ηh‖H1/2

)2

| logh| ‖ηh‖H1/2‖γ‖2
C4‖s‖2

C1‖ξh‖
2
H1/2 .

It follows from the next result that E ′′
h(phs) is nondegenerate with nondegeneracy

constant arbitrarily close to λ, provided h is sufficiently small. This will be used to
establish the appropriate version of (97) in the proof of Theorem 5.4.

Remarks on the Proof See also the Remark preceding Proposition 4.3.
Nondegeneracy for “interpolants” of functions from the positive and negative

spaces for E′′(s) must be treated separately—see the separate treatment of I1 and
I2 below. In the first case, nondegeneracy follows more or less directly from Proposi-

tion 4.3. In the second case, the term ‖∇(v−vh)‖2
L2(Dh), where v = Φ

(

γ′ ◦ s ξ
(−)
h

)

and vh = ΦhIh

(

γ′ ◦ sh ξ
(−)
h

)

, must be estimated. The main points are to apply

the regularity results (34) and Proposition 2.2 to members of the negative space.

Proposition 5.3. Let s ∈ H ∩ C2 and γ ∈ C3. Suppose E′′(s) is nondegenerate

with nondegeneracy constant λ, as in (13). Let ν be as in (12). Then

E′′
h(phs)(ξh, ξ

(+)
h − ξ

(−)
h ) ≥

(

λ− ch1/2| logh|1/2‖γ‖2
C3ν2‖s‖4

C2

)

‖ξh‖
2
H1/2

for every ξh ∈ Hh.

Proof. We again denote phs by sh and split

E′′
h(sh)(ξh, ξ

(+)
h − ξ

(−)
h ) = E′′

h(sh)(ξ
(+)
h , ξ

(+)
h ) −E′′

h(sh)(ξ
(−)
h , ξ

(−)
h )

= I1 + I2.(101)

It follows from (87), after discarding a positive term, that

I1 ≥ E′′(s)(ξ
(+)
h , ξ

(+)
h ) − ch1/2| logh|1/2‖γ‖2

C3‖s‖3
C2‖ξ

(+)
h ‖2

H1/2

= E′′(s)(ξ+h , ξ
+
h ) +E′′(s)

(

(ξ
(+)
h , ξ

(+)
h ) − (ξ+h , ξ

+
h )

)

− ch1/2| logh|1/2‖γ‖2
C3‖s‖3

C2‖ξ
(+)
h ‖2

H1/2 .

Using the notation of (13) there exists λ+ > 0 such that

E′′(s)(ξ+h , ξ
+
h ) ≥ λ+‖ξ+h ‖2

H1/2 .
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Also
∣

∣

∣
E′′(s)

(

(ξ
(+)
h , ξ

(+)
h ) − (ξ+h , ξ

+
h )

)∣

∣

∣

= E′′(s)
(

ξ
(+)
h − ξ+h , ξ

(+)
h + ξ+h

)

≤ c‖γ‖2
C2‖s‖2

C1‖ξ
(+)
h − ξ+h ‖H1/2‖ξ

(+)
h + ξ+h ‖H1/2 by (10)

≤ ch‖γ‖2
C2ν2‖s‖2

C1‖ξh‖
2
H1/2 by (36).

Using (36) again, I1 can then be estimated from below by

I1 ≥ λ+‖ξ+h ‖2
H1/2 − ch1/2| logh|1/2‖γ‖2

C3ν2‖s‖3
C2‖ξh‖

2
H1/2 .(102)

With similar arguments, but now keeping all terms in (87) and using the notation
of (13),

I2 ≥ λ−‖ξ−h ‖2
H1/2 − ch1/2| logh|1/2‖γ‖2

C3ν2‖s‖3
C2‖ξh‖

2
H1/2

− ‖∇(v − vh)‖2
L2(Dh),(103)

where here

v = Φ
(

γ′ ◦ s ξ
(−)
h

)

, vh = ΦhIh

(

γ′ ◦ sh ξ
(−)
h

)

.(104)

¿From (101), (102), (103), and using (13),

E′′
h(sh)(ξh, ξ

(+)
h − ξ

(−)
h ) ≥

(

λ− ch1/2| logh|1/2‖γ‖2
C3ν2‖s‖3

C2

)

‖ξh‖
2
H1/2

− ‖∇(v − vh)‖2
L2(Dh).(105)

It remains to estimate the last term. For this it is important to notice that ξ−h
is a smooth function.

‖∇(v − vh)‖L2(Dh)

= |Φ(γ′ ◦ s ξ
(−)
h ) − ΦhIh(γ′ ◦ sh ξ

(−)
h )|H1(Dh)

≤ |Φ(γ′ ◦ s (ξ
(−)
h − ξ−h ))|H1(Dh) + |ΦhIh(γ′ ◦ sh (ξ

(−)
h − ξ−h ))|H1(Dh)

+ |Φ(γ′ ◦ s ξ−h ) − ΦhIh(γ′ ◦ s ξ−h )|H1(Dh)

+ |ΦhIh((γ′ ◦ s− γ′ ◦ sh) ξ−h )|H1(Dh)

= I3 + I4 + I5 + I6.

But

I3 ≤ |γ′ ◦ s (ξ
(−)
h − ξ−h )|H1/2

≤ ‖γ′ ◦ s‖C1‖ξ
(−)
h − ξ−h ‖H1/2

≤ ch‖γ‖C2‖s‖C1ν‖ξh‖H1/2 by (34).

And

I4 ≤ |γ′ ◦ sh (ξ−h − ξ
(−)
h )|H1/2 + ch1/2|γ′ ◦ sh (ξ−h − ξ

(−)
h )|H1 by (65)

≤ c‖γ′ ◦ sh‖C1

(

‖ξ−h − ξ
(−)
h ‖H1/2 + h1/2‖ξ−h − ξ

(−)
h ‖H1

)

≤ ch‖γ‖C2‖s‖C1ν‖ξh‖H1/2 from (34) and (34).

Also

I5 ≤ ch1/2|γ′ ◦ s ξ−h |H1 by (64)

≤ ch1/2‖γ′ ◦ s‖C1 |ξ−h |H1

≤ ch1/2‖γ‖C2‖s‖C1ν‖ξh‖H1/2 by (12).
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Finally,

I6 ≤ c|(γ′ ◦ s− γ′ ◦ sh) ξ−h |H1/2 + ch1/2|(γ′ ◦ s− γ′ ◦ sh) ξ−h |H1 by (65)

≤ c‖γ′ ◦ s− γ′ ◦ sh‖C0,1

(

‖ξ−h ‖H1/2 + h1/2‖ξ−h ‖H1

)

by (49) and (51)

≤ c‖γ‖C3‖s‖C1‖s− sh‖C0,1ν‖ξh‖H1/2 by (63) and (12)

≤ ch‖γ‖C3‖s‖2
C2ν‖ξh‖H1/2 from (23).

If we now put together the estimates for I3, I4, I5 and I6, we get

‖∇(v − vh)‖L2(Dh) ≤ ch1/2‖γ‖C3ν‖s‖2
C2‖ξh‖H1/2 .(106)

This together with (105) proves the Proposition.

The next result gives the main error estimates for discrete maps sh which are
stationary for Eh. As remarked at the beginning of this Section, the proof uses
Lemma 5.1. The necessary estimates were established in Propositions 4.2, 5.2
and 5.3.

Theorem 5.4. Assume γ ∈ C4. Let s be a monotone nondegenerate stationary

point for E, with nondegeneracy constant λ as in (13).
Then there exist positive constants h0 and c0 depending on ‖γ‖C4 and ‖ |γ′|−1 ‖L∞,

and λ in the case of h0, such that if 0 < h ≤ h0 then there exists sh ∈ Hh which is

stationary for Eh and satisfies

‖s− sh‖H1/2 ≤ c0λ
−1h.(107)

Moreover, there exists ε0 = ε0(‖γ‖C4 , ‖ |γ′|−1 ‖L∞, λ) > 0 such that sh is the unique

stationary point for Eh satisfying

‖s− sh‖H1/2 ≤ ε0|logh|−1.(108)

Proof. We will apply Lemma 5.1 with X = Hh, X = Hh, Y = H ′
h (the dual space

of Hh), f = E′
h and x0 = phs.

Note that
E′

h :Hh → H ′
h.

From Propositions 4.2 and 2.1, since E ′(s) = 0,

‖E′
h(phs)‖H′

h
≤ c1h(109)

where c1 = c1(‖γ‖C3 , ‖ |γ′|−1 ‖L∞).
The derivative (E′

h)′ of E′
h is a map

(E′
h)′ :Hh → L(Hh, H

′
h)

and is naturally identified in the usual way with E ′′
h via

〈

〈(E′
h)′(th), ξh〉, ηh

〉

= E′′
h(th)(ξh, ηh)(110)

for all th ∈ Hh and ξh, ηh ∈ Hh. ¿From Propositions 5.3, 2.1 and 2.2, since
h1/2| logh|1/2 → 0 as h→ 0,

E′′
h(phs)(ξh, ξ

(+)
h − ξ

(−)
h ) ≥

3λ

4
‖ξh‖

2
H1/2(111)

for all ξh ∈ Hh, provided 0 < h ≤ h0 = h0(‖γ‖C4 , ‖ |γ′|−1 ‖L∞ , λ). But

‖ξ
(+)
h − ξ

(−)
h ‖H1/2 ≤ ‖ξ+h − ξ−h ‖H1/2 + ‖ξ+h − ξ

(+)
h ‖H1/2 + ‖ξ−h − ξ

(−)
h ‖H1/2

≤ (1 + chν)‖ξh‖H1/2(112)

from (36) and (34), and since ‖ξ+h − ξ−h ‖H1/2 = ‖ξh‖H1/2 . Hence from (110), (111)
and (112),

〈(E′
h)′(phs), ξh〉(ξ

(+)
h − ξ

(−)
h ) ≥

λ

2
‖ξh‖H1/2‖ξ

(+)
h − ξ

(−)
h ‖H1/2(113)
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for all ξ ∈ Hh, provided 0 < h ≤ h0 for a new h0 with the same dependencies as
before. Thus for each ξh ∈ Hh with ‖ξh‖H1/2 = 1, the map 〈(E′

h)′(phs), ξh〉 (∈ H ′
h)

has norm ≥ λ/2. It follows, since Hh and H ′
h have equal finite dimension, that

(E′
h)′(phs) is invertible and

∥

∥

∥
((E′

h)′(phs))
−1

∥

∥

∥

L(H′

h
,Hh)

≤

(

λ

2

)−1

.(114)

Next note that from (110) and Proposition 5.2, by the symmetry of the second
derivative,

‖(E′
h)′(phs) − (E′

h)′(phs+ ηh)‖L(H′

h
,Hh)

≤ c2

(

1 + | logh|1/2‖ηh‖H1/2

)2

| logh| ‖ηh‖H1/2

for all ηh ∈ Hh, where c2 = c2(‖γ‖C4 , ‖ |γ′|−1 ‖L∞) from Proposition 2.1.
We can now choose ε0 = ε0(‖γ‖C4 , ‖ |γ′|−1 ‖L∞ , λ) so that | logh| ‖ηh‖H1/2 < ε0

implies

‖(E′
h)′(phs) − (E′

h)′(phs+ ηh)‖L(H′

h
,Hh) ≤

λ

4
.(115)

By further restricting h0, again with the same dependencies, we can ensure that,
see (109),

0 < h ≤ h0 implies c1h ≤
λ

4
ε0 |logh|−1.(116)

¿From (109), (114), (115), (116) and Lemma 5.1 with α = λ/2, β = λ/4, δ = c1h
and ε = ε0|logh|−1, it follows that for 0 < h ≤ h0 there is a unique sh ∈ Hh which
is stationary for Eh and such that

‖sh − phs‖H1/2 ≤ ε0|logh|−1.(117)

Next apply Lemma 5.1 with α = λ/2, β = λ/4, δ = c1h and ε = 4c1h/λ. Note
that δ = (α−β)ε (= c1h). Moreover, if 0 < h ≤ h0 then ε ≤ ε0|logh|−1 from (116).
It follows that the unique stationary sh as in (117) satisfies

‖sh − phs‖H1/2 ≤
c0
λ
h,(118)

where c0 = 4c1.
Since

‖s− phs‖H1/2 ≤ ch3/2‖s‖H2 ≤ ch3/2‖s‖C2 ≤ ch3/2‖γ‖C3 ,

we may replace phs by s in (117) and (118), after further restricting h0, ε0 and c0
if necessary.

Remark Suppose u = Φ(γ ◦ s) :D → IRn is harmonic. Then

‖u‖H1(D\Dh) ≤ ch‖u‖H1(∂D) from (70) and (71)

≤ ch‖γ‖C1‖s‖C1 from (57) and (59)

≤ ch,

where c = c(‖γ‖C2). Thus the contribution to ‖u‖H1(D) from the boundary strip
D \Dh is O(h). This is consistent with the order of approximation in the following
Theorem.

Theorem 5.5. Assume γ ∈ C4. Let u be a nondegenerate minimal surface span-

ning Γ with nondegeneracy constant λ as in (13).
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Then there exist positive constants h0 and c0 depending on ‖γ‖C4 and ‖ |γ′|−1 ‖L∞,

and λ in the case of h0, such that if 0 < h ≤ h0 then there is a discrete minimal

surface uh satisfying

‖u− uh‖H1(Dh) ≤ c0λ
−1h.(119)

Moreover, there exists ε0 = ε0(‖γ‖C4 , ‖ |γ′|−1 ‖L∞ , λ) > 0 such that if u = Φ(γ ◦ s)
and uh = ΦhIh(γ ◦ sh) then uh is the unique discrete minimal surface satisfying

‖s− sh‖H1/2 ≤ ε0|logh|−1.(120)

Proof. Let

u = Φ(γ ◦ s), uh = ΦhIh(γ ◦ sh),

where s and sh are as in Proposition 5.4. We begin with h0, ε0 and c0 as in
Proposition 5.4.

Now

|u− uh|H1(Dh)

= |Φ(γ ◦ s) − ΦhIh(γ ◦ sh)|H1(Dh)

≤ |Φ(γ ◦ s) − ΦhIh(γ ◦ phs)|H1(Dh) + |ΦhIh(γ ◦ phs− γ ◦ sh)|H1(Dh)

= A+ B.(121)

But

A ≤ ch‖γ‖C2‖s‖2
C2 ,(122)

by the estimate (77) for I1 in the proof of Proposition 4.1.
Also,

B ≤ c
(

1 + | logh|1/2‖sh − phs‖H1/2

)

‖sh − phs‖H1/2‖γ‖C2‖s‖C1

by the estimate for A1 in the proof of Proposition 5.2, with sh and ηh there replaced
by phs and sh − phs respectively. Hence

B ≤
c0
λ
h from (118)(123)

provided 0 < h ≤ h0, for a new h0 and c0 with the same dependencies.
It follows from (121), (122) and (123), possibly again with new c0 and h0 with

the same dependencies as before, that

|u− uh|H1(Dh) ≤
c0
λ
h(124)

if 0 < h ≤ h0.
Now

‖u− uh‖H1(Dh) ≤ c
(

|u− uh|H1(Dh) + ‖u− uh‖L2(∂Dh)

)

,(125)

as follows easily by integrating along rays (c depends only on n). It is routine to
estimate ‖u− uh‖L2(∂Dh). Let

ũh = ΦhIh(γ ◦ phs).

Then

‖u− uh‖L2(∂Dh) ≤ ‖u− ũh‖L2(∂Dh) + ‖ũh − uh‖L2(∂Dh)

≤ ch2‖γ‖C2‖s‖2
C2 + ‖ũh − uh‖L2(∂Dh)

= ch2‖γ‖C2‖s‖2
C2 +D(126)
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from the argument used to estimate I2 in the proof of Proposition 4.1, with uh

there replaced by ũh. Moreover,

D = ‖Ih(γ ◦ phs− γ ◦ sh)‖L2(∂Dh)

≤ ‖I∂D
h (γ ◦ phs− γ ◦ sh)‖L2(∂D) by (21) as |∇π| ≤ 1

≤ ‖γ ◦ phs− γ ◦ sh‖L2 + ch‖γ ◦ phs− γ ◦ sh‖H1

≤ c‖γ‖C1‖phs− sh‖L2 + ch‖γ‖C2‖s‖C1‖phs− sh‖H1

by (60), (62) and (23)

≤ c‖γ‖C2‖s‖C1‖phs− sh‖L2 by a standard inverse estimate

≤
c0
λ
h from (118)(127)

with a new c0 but with the same dependencies, for 0 < h ≤ h0. ¿From (124), (125),
(126) and (127) it follows that if 0 < h ≤ h0 then

‖u− uh‖H1(Dh) ≤
c0
λ
h,

where c0 = c0(‖γ‖C3 , ‖ |γ′|−1 ‖L∞) and h0 = h0(‖γ‖C3 , ‖ |γ′|−1 ‖L∞ , λ).
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