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THE DISCRETE PLATEAU PROBLEM:
CONVERGENCE RESULTS

GERHARD DZIUK AND JOHN E. HUTCHINSON

ABSTRACT. We solve the problem of finding and justifying an optimal fully
discrete finite element procedure for approximating minimal, including unsta-
ble, surfaces. In a previous paper we introduced the general framework and
some preliminary estimates, developed the algorithm and give the numerical
results. In this paper we prove the convergence estimate.

1. INTRODUCTION

We recall from [DH4] that a minimal surface or solution of the Plateau Problem
can be characterised in a number of different ways. For our purposes it is convenient
to begin with the following formulation, which we restate more precisely later,
c.f. (3).

Let D be the unit disc in IR? and I' a smooth Jordan curve in IR". Let F be
the class of harmonic maps u: D — IR™ such that u|op:0D — T is monotone and
satisfies a certain integral “three-point condition”, c.f. (1). The function v € F
is said to be a minimal surface if u is stationary in F for the Dirichlet energy
D(u) = 1 [, |Vul?. Such maps u provide an harmonic conformal parametrisation
of the corresponding minimal surface.

Let Dy, be a quasi-uniform triangulation of D with grid size controlled by h. Let
Fn be the class of discrete harmonic maps uy, : D, — IR™ for which uy(¢;) € T
whenever ¢; is a boundary node of Dy, and which satisfy an analogue of the previous
integral “three-point condition”. Note that we do not require “monotonicity” of
uplop, .- The function u, € Fj is said to be a discrete minimal surface if wuyp, is
stationary within Fj, for the Dirichlet energy D(up) = %th |Vup|?, c.f. (27) for
the precise formulation.

The main result (Theorem 5.5) is that if v is a nondegenerate minimal surface
spanning I' then there exist discrete minimal surfaces uy, unique in a ball of “al-
most” constant radius €g| log h| ™!, such that ||u—wup||g1(p,) < ch, where ¢ depends
on I' and the nondegeneracy constant A\ for v but is independent of h. Recall that
nondegeneracy corresponds to the absence of zero eigenvalues for the second vari-
ation of the Dirichlet Energy at u, and generically corresponds to the absence of
branch points. The constant ¢ blows up as A — 0, and this is consistent with the
numerical results in [DH4]. We give an outline of the proof of the main result in
Section 2.3.
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2. FORMULATION OF THE PROBLEM

2.1. The energy functional. We first recall some notation from [DH4] Section 3,
to which we refer for further discussion. See Section 3 of the present paper for the
properties of H/2,

Let D be the open unit disc in IR?, with boundary dD. It will be convenient to
let S' denote another, distinct, copy of the unit circle. Let I' be a Jordan curve in
IR™ with regular C"-parametrisation v:S' — I" where r > 3.

For f:0D — IR™ we denote by ®(f): D — IR™ its unique harmonic extension to
D specified by

AD(f)=0 in D, O(f)=f ondD.

Then ® : H'/?(0D, IR") — H'(D,IR"™) is a bounded linear map with bounded
inverse.

Harmonic maps are uniquely determined by the associated boundary maps. We
will use the Hilbert space H of functions defined by

H = {£:0D — R | |{|g/2 < oo and (1) is satisfied} ,
where
2m 2m 2m
(1) &(g)do =0, &(p)cospdgp =0, E(@)singpdgp = 0.
0 0 0
The norm on H is the usual norm || - ||g1/2. The corresponding affine space of

maps s : 9D — S! such that s(¢) = ¢ + o(¢) for some o € H is denoted by
H. We also need the Banach space T defined by T = H N C°(dD, IR) with norm
€l = €l g2z + |I€]lco. The corresponding affine space 7 is defined by 7 =
HNC°(OD,S'). With some abuse of standard notation, we write ||s|| = 1 + ||o]|
for various norms on o.

The energy functional E is defined on H by

) B(s) = 3 [ V0009 = D@y 05)).

Finiteness of E follows from (8). We say the harmonic function u = ®(yos) is a
minimal surface spanning T, or a solution of the Plateau Problem for T', if and only
if s is monotone and stationary for E, i.e.

3) (E'(s),6) =0  VE€eT.

As discussed in [DH4], this is equivalent to other formulations of the notion of a
minimal surface.

For the proof of asymptotic convergence of the numerical method we need the
following regularity result, which follows from standard regularity results (c.f. [DH4]
Theorem 3.2) and the Implicit Function Theorem used to write ' locally as the
graph of a C*® function.

Proposition 2.1. Ify € C* where k > 1 and 0 < o < 1, and s € T is monotone
and stationary for E, then

Isllore < e= c(llyllora | 1VI7H ze)-

We next recall some properties of the energy functional from [DH4] Section 3.3.
Using the notation

(4) u=d(yos), v=0(yos8), w=0( os¢)
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formal computation gives
(5) E(s) = / Vul?,
(6) (E'(s),8) =

dt E(s+1t&) = /D VuVu,

2

dt?

t=0

(7) E"(s)(8,€) =

E(s+t€) :/ Vqu+/ |Vv|?,
=0 D D
with an analogous expression for E”(s)(£,n) obtained by bilinearity in the case of
distinct variations.

If vy € C? then E € C?(7T,IR) and the Fréchet derivatives are given by (6)
and (7). The functional E is not differentiable on H, but if v and s are as smooth
as is necessary for the following estimates, then one has

(8) E(s) < clvlEa sz,
9) (E' (), < ellE=lsIElEl e,
(10) [E"(s)E&ml < cllvIEallslie €l mzlnllw -

In particular, these will be used in case s is stationary for E.

It will be important to consider the behaviour of the second derivatives of E near
a stationary point s € 7. The second derivative E”(s) can then be interpreted as
a self-adjoint bounded map V2?E(s): H — H. Let

(11) H=H eH'@H', ¢(=¢ +&+¢" ifeH,

be the orthogonal decomposition generated by the eigenfunctions of V2E(s) having
negative, zero and positive eigenvalues respectively.

Proposition 2.2. Suppose v € C3®. Suppose s is monotone and stationary for
E. Then H- and H° are finite dimensional. If ¢ € H- @ H° then € € H3/?(0D)
and

(12) 1€l zrsr2 < V€l g1/
with v =v(||yllcz.e, | 177" [|ze)-

Proof. The finite dimensionality of H~ and H? follow from elliptic theory, see the
proof of [St, Proposition I1.5.6]. It is also shown there, with a different notation,
that

IN

10y 05 oy < c(Illes, |11 e Islica, €]z )

e(Mlloses I W17 s el o2

IN

by Proposition 2.1. But

el < || 2] 107 os el v 62)
< c(Inlles 17 Ml )19( 05 )y from (52) and (40),
Hence
€lzrsrs < e(Illomes 1717 ues €l e,
and so the required result follows by scaling. |

Higher regularity on « implies higher regularity on £. In particular, v € C4®
implies ¢ € H%/2(9D), see the proof of [St, Proposition I1.5.6].
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If s is monotone and stationary for E, we say s is nondegenerate if H® = {0}.
The corresponding minimal surface u = ®(y o s) is also said to be nondegenerate.
If s is nondegenerate it follows that there exists a A > 0 such that for £ € H,

(13) E"(s)(&, €7 — €)= E"(s)(€F,€7) = E"(s)(€7,€7) 2 M€l e

We call A the nondegeneracy constant for s.

2.2. The discrete energy functional. We recall the necessary notation from [DH4|
Section 4 and prove some preliminary estimates.

Let Gp be a quasi-uniform triangulation of D with grid size comparable to h.
Let

Dh = U{G|G€gh}a

oD, = U{E] |1 <j<M} wherethe E; are the boundary edges,
By, = {é1,...,0m} De the set of boundary nodes.
The projection w:0D — JDy, is defined by
(14) T (ei<<1—t)¢j+t¢j+1>) — (1 —)ei% 4 teidin

for0<t<1,1<j< M.
In order to have a discrete analogue Ey, of the functional E we define the following
discrete analogues of H'(D; IR™), HY/?(dD; IR™), H, T, H and T.

(15) X7 = {un € C°(Dp; IR™) | up, € P1(G) for G € Gr},

(16) aj = {fn € C°(0Dp; IR") | fn € P1(E;) for 1 < j < M},

(17) Hy ={&, € C°(OD;IR) | &, € Pi(n~ 1 (E))) if 1 < j < M, &, satisfies (1)},
(18) Hyp = {sn, € C°(OD;S") | sn(¢) = ¢ + on(9) for some oy, € Hy}.

Thus H, C T C H, H, C T C H, and the space of variations at any s, € Hj, is
naturally identified with Hj,. Setting n = 1 we similarly define X} and x,.

We will make frequent use of the following inverse-type estimates:

Proposition 2.3. If &, € Hy then

(19) l&nllms < ch™ 2 )Enllm /e,
(20) lénllco < ellog h"2[lgn] /-
Proof. The first estimate is standard. The second is shown in [DH1] Proposition
5.3. |
Suppose f € C°(dD; IR"™). One defines the “linear interpolants”
Inf ey, If (=0 ) = (1 =) (') + tf(e+),
PP eCO@OD R, Inf (1= 0)e' + e ) = (1= ) f(') + Lf(e"+),

where 0 <t < 1,1 < j < M. Here and elsewhere, ¢pr11 = ¢1. Note the different
domains of I, f and I?P f. Note also that the image of Ij,(y o s) is a polygonal
approximation to I', and I5(y o s)(¢;) = vo s(¢;) € T for ¢; € By. Finally,

(21) I?PPf=1I,for.

Another type of approximation operator we require is a map pp : T (7) —
Hp, (Hp). The usual interpolation operator does not preserve the normalisation
conditions (1). However, if we first interpolate and then project onto Hj, the
resulting operator still satisfies all the usual estimates. The proof of the following
is essentially given in [DH1] Proposition 5.2.
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Proposition 2.4. There is a bounded linear operator py : T — Hp such that, in
particular,

(22) 1€ = préllms < b€l g

fors=0,1 > Land k=1, 2,2 Moreover,

(23) 1€ — pr€llcon < chliéllce, [préllcon < cll€lcon,
(24) 1€ = préllco < ch?(|€]l o2, 1€ = pr€llco < chll€]lcn

Ifs €T and s(6) = ¢+ o(6), then pus is defined by pas(d) = ¢ + puo(9),
§ — prs:= 0 — ppo, and hence pps satisfies similar estimates to those for pp€.

For f, € xj the discrete harmonic extension ®p fn, € X, is defined by
(25) Ap®pfn=0 in Dy, @ frn=fn on 0Dy,

where Ay, is the discrete Laplacian and the first equation in (25) is interpreted as
fD q)hfh Vi, = 0 for all ¢, € Xj such that ¢, = 0 on 9Dy. If fj, € :L'h the
d1screte harmonic extension ®y, f;, is defined componentwise.

For s, € Hp, the discrete energy functional Ej, is defined by

(26) En(sp) = % /D VO, I (o Sh)|2 = Dp(PpIp(y o sp)).

Note that E}, is of course not the restriction of E to Hj. The discrete harmonic
function up = ®p Iy (v 0 sp) is said to be a discrete minimal surface spanning T, or
a solution of the discrete Plateau Problem for T', if and only if

(27) (EL(sn):&n) =0 V& € Hy.

Note that we do not require monotonicity of sy, as is the case for s in (3).
The derivatives of Ey,, c.f. (5)—(7), are given by

(28) En(sn) = %/ IVun]2,
Dy,
(29) Exs) &) = [ Tunvon
Dy,
" _ 2
(30) Eh(sh)(§h7§h> = /Dh Vuthh+/L)h |V’Uh| ,
where

(BL)up = @pln(yosn), vn=pln(y osn &), wn=Puln(y" 05y &),

For &5, € Hy, and s stationary for F, we define the projection of the decomposi-
tion (11):

- - 0
(32) &7 =& & =méh &7 =gl
Note that &, , 52 and §,J{ do not normally belong to Hy, in particular the first two
are smooth functions. However, if H~ = H? = {0} then &, = & = }(f)

Proposition 2.5. If &, € H, then

(33) =6 +6"+¢"

and Eh ,fh , h ) ¢ Hy,. Moreover, with v as in (12),

(34) 167 — &7 e < chv|lEnll e, & — &7 < chv)énll g2,
(35) €5 — <0>||Hm < chvl|&n]| g2, ll€g - <0>|\Hl < ch v||&n]| 12,

(36) ll& — & llzrns2 < chwli&nll e, & = &5 1 < eh2vlignl| -
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Proof. Since ppép = &n, (33) follows from (11). Next, from (22) and (12),

1€ = €7 N = 167 — P e < chll&; g < chvll€ || gse.

The proof of the other inequality in (34), and of (35), is similar.
For (36) just note that, from (33) and (11),

- - 0
G-6" = - -ah-@-a"),
and use the previous estimates. |

We remark that the decomposition (33), unlike (11), is not an orthogonal decom-
position. We also note that the powers of h in (34)—(36) can be increased by 1/2
if we assume [|€]| gz < v||€]|g1/2; this latter holds if v € C*?, c.f. the remarks after
Proposition 2.2.

2.3. Structure of the proof. The main error estimates, Theorems 5.4 and 5.5,
are proved in Section 5. To motivate our approach and the need for the various
preliminary estimates in Sections 4 and 5, we outline in an informal manner the
structure of the proof of Theorem 5.4.

Hy,
slope > A4 (B) graph
of Eh'
<cqh (A)
oy / [on PhS N H,
]
< 4cqh/A \T < ch3/2

from (A) & (B) ‘s

FIGURE 1

Assume s is a nondegenerate stationary point for E with nondegeneracy constant
A. One applies the Inverse Function Theorem to the derivative E} : H;, — Hj, (the
dual space of Hj) in a neighbourhood of the point pjs; remember that Hj, is the
tangent space for Hp, i.e. the space of variations at any ¢, € Hy,. Identify Ej with
the derivative (E})" of E}; thus (E})(tn): H, — Hj, for t, € H,.

There are three estimates to be proved. A: || Ej (pns)|| < ei1h for h sufficiently
small. This follows immediately from the consistency estimate (Proposition 4.2)
for the first derivative. See (109). B1: [[((E}) (prs),&n)|| > 3 &nl| for h sufficiently
small; i.e. “the slope of Ej at pps is bounded away from 0 by A/2”. This is a
nondegeneracy estimate on Ej/ (pys) and is established in Proposition 5.3, using the
one-sided consistency estimate (Proposition 4.3) for the second derivative, and the
regularity of members of the negative eigenspaces to compensate for the one-sided
nature of that estimate. See (114). Ba: |[(E},) (pns) — (E}L) (prs+nn)|| < A/4 for h
sufficiently small and 7, sufficiently close to pps, more precisely for n, < eg/|loghl;
i.e. “the slope of Ej near pps differs from that at pns by at most A/4”. This is a
consequence of Proposition 5.2. See (115). As indicated in the diagram, it follows
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there exists a unique stationary point s, for Ej, such that ||pns— sp|| g2 < derh/A,
and hence such that ||s — sp||g1/2 < ch/A.

3. PRELIMINARY ESTIMATES

One can define the H*(9D) and H*(D) norms for any real s; but apart from
non-negative integers s we will only need the following cases.
For f:0D — IR the H'/?(0D) seminorm is defined by

(37) 1 Bsson) /6D/8D—|¢_¢|2 b5,
and for u: D — IR the HY/?(D) seminorm is defined by

Ju(z) — ()
(39) R R

In both cases the corresponding norm is given by

(39) I e =11 172 + 1 [Fs
Also,
|flusr2op) = 1 1200y [ul 32 (py = |VU|H1/2(D)a
I Wose = -2+ [igs/e-

If u € Ht1/2(D) for s = 1/2,1,3/2 (in fact for s > 0) then u has a well-defined
trace f on 0D and

(40) HfHHS(@D) < C||U||Hs+1/2(D).

More precisely, the previous estimate is true for « € C°>(D) and the definition of
trace is extended by continuity and density to the general case. Such an estimate is
not true for smooth wu if s = 0, but in this case if Au € L?(D) the following estimate
holds and then the trace operator is again defined by continuity and density to
satisfy

(41) 1200y < ¢ (lull grracpy + AUl L2(py) -

See [LM] Chapter 1 Section 9.2, page 193 (remarks before Theorem 8.1) and
page 187 Theorem 7.3. Note that by considering kernels it is clear that in the
case s = 1/2 one can replace norms in (40) by the corresponding seminorms. We
will frequently use this fact without further remark.

Conversely, if f € H*(0D) for s =0,1/2,1,3/2 (with similar results for any real
s) then there is a unique harmonic function ®(f) defined on D with trace f as
before, and in particular

(42) @) zrav1r2(py < el fllms(op)-

See [LM] Theorem 7.4 page 188. Note that for s = 1/2,1,3/2 the norms can be
replaced by seminorms as follows again by considering kernels; we will use this fact
without further comment.

In the case of L? boundary data one also has, with u = ®(f),

(43) lir{L u(rd) = f(6) fora.e. €D,
(44) sup |u(r-) < dlflle2@op)-
Osr<i L2(8D)

See [JK] Theorem (1.16) page 11. In particular, u(r-) — f in L?(0D) as r — 1~
(The formulae (43) and (44) are established using the Poisson integral represen-
tation of u from f. The function u agrees with ®(f) in (42) since it agrees for f
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in the dense subset C*°(9D) C L?(0D) by the maximum principle, and since the
Poisson integral map and ® are both bounded as maps from L2(9D) into L?(D),
for example.)

If f:0D — IR has the Fourier series expansion

£(6) = a0+ 3 (an cosng + b, sin ne)

n=1
then one can define
(45) 112200y = ad+ > (al+b2),
n=1
(46) |f|§{5(6D) = Z”QS(G?@ +b7) s>0,
n=1
(47) Hf”?qs(ap) = ||f||2L2(aD) + |f|§{S(BD)'

These norms and seminorms are equivalent to the usual definitions in case s € IV,
and the previous definitions in case s = 1/2 or 3/2. The harmonic extension of f
is given by

(@f)(r,¢) = ao + Z " (an cosng + by, sinng).
n=1

Proposition 3.1. Suppose f,g:0D — IR. Then

(48) lfglme < N flleolglmz + 1 lmizllglice
(49) 1f gl < cllfllcorliglleme

(50) [f9lar < W fllcolglar + [ Flallgllco
(51) 1fgllar < cllfllconllglla

(52) 1f9llsrs < cllfllellgllmare.

Proof. The first two inequalities follow from (37). The next two inequalities are
standard. The last inequality follows from (49). 1

The next Proposition will be applied in case g is (a component of) v, v or 7",
and s is either smooth or piecewise linear and continuous. In particular, g will be
at least C! but s may be only C%! in some cases.

Proposition 3.2. Suppose s = id + c:0D — S, g:S* — IR. Then

(53) lgosllco < lgllco < llgllcolislico
(54) lgoslcor < clgllerllsllco

(55) lgosler < cllgllerlsller

(56) lgosloz < cligllezllsl2-

(57) lgosllz: < clglice < cllglicollsllz
(58) lgosllgez < clgllerlisl e

(59) lgosllm < clgllerllsllm

Proof. Recall that ||s||co = 1+ ||o||co > 1. Then (53) is immediate and similarly
for (57). Also (54) is immediate. For (55), (56) and (59) note that

(gos) =g'oss’, (gos)' =g "os () +g oss".
Inequality (58) follows from (37). 1
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The following Proposition will typically be applied in case g is 7y, v" or v and in
particular is C''; and either s; = so and s3 = py s, Or 51 = Ppso and So = ppSo+nn
for an arbitrary n, € Hj. Note that in (61) only the CY norm of s; — s5 is required,
and in case s; — $2 € Hy, this will be estimated by the inverse estimate (20).

Proposition 3.3. Suppose s; = id + 0;:0D — St fori = 1,2 and g: S' — IR.
Then

(60) l[gosi —gosallrz < clgler|st — s2llre

(61)go st —gosalge < cllglle2(llsillcor +[[s1 = s2llco)lls1 — sall sz

(62) |[gosi—gosalm < dllglczlsillcorllsy — sl
(63)lgos1—gosalcor < dllglezlsillcorllsy — s2fcon

Proof. The proof of (60) is immediate.
For (61) write

Then
[(9(51(9) = 9(s1(6) +n(@))) = (951

B '/ ¢/ (51(6) + tn(6))dt (@) + / ¢ (51(3) + (@)t 77(5)'

8) - 9(s1(®) +1(3)) |

< / 10/ (51(8) + tn(@)\dt [n(@) — n(3)]
0
4 / 16/ (51(6) + (@) — ¢'(51(B) + (@) dt [n(®)]
< lglleln(@) = n(@)| + ligllez (1s1(6) = s1 @) + In(9) = (@) In(B).

It now follows from (37) that

lgosi —go(si+n)|gie
< Algllernlare + llgllez(ellsillcoxlnllzz + 1l (nllco)
< cgllez(lsillcon + lInllco)lnll gz,

recalling that ||s1||co.r > 1. This establishes (61).
For (62) we compute

[(gos1—gos2)| e

||gI081 8/1 —g/OSQ SIQHL2

< g’ ot —g o sallrzllsillze + 19" 0 s2llcollst — 52l
< cglezlls = sallp2lsilcor + lglorfsy — s2|mr from (60)
< cllgllezllsillcorllsy — sollmr-
For (63) we similarly estimate |[(g o s1 — g 0 s2)’||1o=- 1

The next Proposition will be used repeatedly in the consistency and non-degen-
eracy estimates of Sections 4 and 5, particularly in case s = 1. In Corollary 3.5
we see that the H!(Dj,) seminorm of the discrete harmonic extension of a discrete
function f can be estimated by the H!(D) seminorm of the smooth harmonic
extension of the function. This is not true for general smooth f. The Corollary is
due to Bramble, Pasciak & Schatz [BPS].
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Proposition 3.4. If f € H*(0D, IR™) where s = 1,3/2 then

(64) |(f) = Puln(f)lar (D) < Chs_1/2|f|H5(6D)v

(65) @nn(Flarny < |flazon) + b 2| flaop)-
Proof. Tt is sufficient to take n = 1. Let

u = (I)(f), Up = (I)hlh(f).

Note that I, f is well-defined as f € C°(0Dy,). Since up, = Inu on dDy, it follows
in the usual way from the weak form of Laplace’s equation and (25) that

(66) 0= / (Vuh - Vu)(Vuh - thu),
Dy,
and so
(67) / |Vu — Vu|* = / (Vu — Vup)(Vu — VIu).
Dy, Dy,
Hence
lu —unlgi(p,y < |u—Ihulgi(p,)
S chs_1/2|u|Hs+1/2(Dh) S chs_1/2|u|Hs+1/2(D)
< Chs*1/2|u|H5(6D);

from a standard interpolation result and (42). This gives (64), and (65) then follows
from (42). |

Corollary 3.5. Suppose fr € Hy,. Then
(68) |PrIn(fr)lmr (Dy) < c|®(fr)l (D)

Proof. This follows from (65) with s = 1, the inverse estimate (19), and (40). 1

Proposition 3.7 will allow us to estimate various quantities involving an harmonic
function and the discrete disc Dy, in terms of the trace of the harmonic function
on D. But first we need an elementary lemma.

Lemma 3.6. Suppose u € H'(D) and 7:0D — 0Dy, is as in (14). Then
(69) lu —wom|r20p) < chlulmi(p\Dy)

Proof. Let Ly be the straight line segment joining 6 € 9D to w(0) € dDj,. Then

u(0) — o () < </L |vu|>2 < ch? /L Va2,

Each z € D\ Dy, can be written uniquely as (0,y) € 0D x IR, where z € Lg and y
is the distance of z from 6 € 9D. The corresponding map (6,y) — z has Jacobian
J satisfying 1 — ch? < J < 1. Hence

/ lu —uom|* < ch2/ do |Vul|? < ch2/ |Vul?.
oD oD Lo D\Dp,
1

In the following Proposition and elsewhere, 2% and g—ﬁ denote normal and tan-

ov
gential derivatives on the relevant curve.
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Proposition 3.7. Suppose u is harmonic in D with trace ulsp € L*(0D) or
HY(OD) as appropriate. Then

(70) lull2(p\p,)y < chllull 2oy,

(71) IVulle2(p\p,y < chlulmiopy,

(72) lu—won|r2p) < ch’lulmapy,
ou

(73) '— < dulmn).
| r2(apy) o

Proof. Let D(p) be the disc of radius p. From (44)

llull L2(ap(p)) < cllullz2(ap)-
Integrating the square of this inequality with respect to p from 1 — ch? to 1 now

establishes (70).
Since Vu is also harmonic, it follows

||vu||L2(D\Dh) < Ch||vu||L2(aD).
But

(74) /BD - /BD

from a Fourier series expansion, and so (71) follows.

Inequality (72) follows from (71) and the previous Lemma.

For (73) we have that if Au =0 and ulsp € H'(OD) then A Vu =0 and Vu €
H'?(D) by (42). Hence Vu|gpp is well-defined and Vu|pp € L?(0D) from (41).
From (44) applied to Vu,

2 2

@
ov

%
or

IVull2ap,) < el VullL2ap)

ou

and in particular, using (74),
Y < clu|g1(ap)-

‘ L2(dD},)

This establishes (73). 1

4. CONSISTENCY ESTIMATES FOR THE ENERGY

In this Section we compare E and its derivatives at s, with Ej, and its derivatives
at pps. Apart from their intrinsic significance, these estimates will be needed in
the next Section to establish the main convergence results.

Remarks on the Proofs In the proof of each of the three Propositions in this
section, Proposition 3.4 is used to estimate the difference between an harmonic
function and the corresponding discrete harmonic function, and also to estimate
various discrete harmonic “error” terms.

Interpolation results in terms of the H? piecewise seminorm, together with in-
verse estimates, are used to estimate the L? norm of the quantities yopp,s—I?P (yo
Ph8), ¥ opns En — IPP (v opns €,) and v opps €2 — IPP (v o pys &,)2. Since piece-
wise second derivatives of pps and &, vanish, this enables us to gain an extra power
of h than one might at first expect.

In each of the three proofs the term Is is estimated with an integration by parts.
In Proposition 4.1 this improves the order of convergence from O(h) to O(h?). In the
other two Propositions, one could not otherwise expect any order of convergence;
see also the remark preceding Proposition 4.3 concerning [|V(v —vp)| £2(D,)-
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Proposition 4.1. Let s ¢ HNC?, v € C?. Then

| En(pns) = E(s)] < ch?|[7]22]1sllg--
Proof. Let
(75) u=®(yos), up=Plp(yopns).
Then

1 1
Bu(ps) = B = 5 [ VP =3 [ (vup

1 1

= —/ |V(u—uh)|2—/ VuV(u—uh)f—/ |Vu|?
2 Jp, D, 2 Jp\p,

(76) = L+ L+

We will estimate these terms separately.

For I,
2N)'? = |®(yos) — ®uln(y o pus) m (py)
< ®(vos) = Ppln(y o 8)|ur(py) + 1 Prdn(y 05 — v 0 Prs) (D)
< chlyos|gsz +|yos —yoprs|gie +cht?yos —yoprs|m
from (64) with s = 3/2 and (65) with s = 1.
But
hly o 8| ys/2 < chlyo sl < chlly|cz||s]|Z:  from (56),
also

lvos—vopnslge < clyllca(llslcor + [[prslcor)lls — prs| g2 by (61)
< chPlyllczllslicrllsl gz by (23) and (22)
< P |llezlsl|Ee,
and
WPyos—~yopuslm < ch'?|ly|calsllcrlls = pasllm  from (62)
< ch|ycslls)Ze from (22).
Hence
(77) I < ch?|y[I2ls] G-
For I> one has
ou
Bl = | Shw-w)
8Dy, (91/
% e = wnl
b u—u 2
< o o) rllL2(0Dy)

c|u|H1(6D)||u — uh||L2(6Dh) by (73)
cVllerlsllerlluom —up o 7| L2opy by (59) and (14)

VANRVAN VAN

cllvllerlislier (lwo m —ullL2op) + llu = un o 7l L2(op)) -

But

luom—ulr2p) < ch2|u|H1(aD) = ch®|yos|m < ch?||v|cr|lsle
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by (72) and (59). Also
|lu—upon|20p)y = |lvos— I?P(yopus)|lzz by (75) and (21)

< lves—yopnslez + v opns — 1P (v o pus)| 12

< |llerlls = pasllzz + ch?ly o prs| a2,
by (60) and a standard interpolation estimate, where the H? semi-norm is to be
understood in a piecewise sense. On each arc segment, (yopps)” =" opps ((pns)’)?
since (pps)” = 0, so we can continue the estimate by

< cllyllenh?(Isllcz + ch?[IyllezllslEs < ch?(yllezllslEe,

using (24) and (23). Hence

(78) o] < ch®|[y]|GellslEe-
Finally,
1
3| = §||VU||%2(D\D;L) < ch?|ultnopy by (T1)
(79) = ch?lyoslin < h?|lyllgalslZ
The Proposition now follows from (76), (77), (78) and (79). 1

The next Proposition shows that £} (pns) is a O(h) approximation to E'(s)|y,
in the H; norm for v and s sufficiently smooth. The actual power of A is important
in the proof of Theorem 5.4.

Proposition 4.2. Let s € HNC?, v € C3. Then for any &, € Hy,
(E" (), &n) — (En(pns), &n)| < chlVl1EallsEellénll mve-
Proof. Define u and wy, as in (75), and for &, € Hj, define

(80) v=®( 0s5¢&,), wvh=Pln(y oprs &n).
Then from (29),

(E'(5),&n) — (B (pns); n)
= / VuVv — Vuthh
D Dy,

/ (VuVv — Vup Vo) + / VuVv
Dy,

D\Dj,

/ V(u—up)Vop + / VuV (v —vp) + / VuVu
Dy, Dy,

D\Dy,
(81) = L +1+ 5.
Now
L] < [IV(u—un)ll2pp)IVorllL2(py)
< chlvllezllslE=VonllL2(p,)  from (77).

Also

|PrIn (Y ©prs &)l m1(Dy)
< |’y/ O PhpS £h|H1/2 + Ch1/2|’y/ O pPhpS £h|H1 by (65)

vahHLz(Dh)

A

The first term is estimated by

cllv" o pusllcor||€nll gz from (49)
clvllez2llsller|énll gz using (23);

Y opns &nlgre <
<
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the second by

Y opns &nlm < ey opnsllcon||énllm by (51)
< clllezlprsliconllénllz by (54)
(82) < ch VPl lsllerll€nll e by (23) and (19).
So altogether,
(83) 1| < chllVlEellslE gl e

For I5, as for I in the proof of the previous Proposition,

ou
—\V — v
/6Dh 81/( h)

cllvlcrlislier (v o m = vllz2apy + v = vn 0 7l L2(op)) -
(From (72) and the argument for (82),

2| =

IN

[vor —vl2p) < ch®lvlmop)y = ch®|y os &nlm
< bl czllsllorlIénll e
Also,
||’U*UhO7T||L2(6D)

7 05 & — IPP (v o pas &)l 12

< (¥ o5 =" 0opns) &nllr2 + 1V 0 prs &n = IT° (Y 0 prs &) 12
< |Wllezlls = prslicoliénlice + ch?y" o pus &nlne
where the H? semi-norm is understood in the piecewise sense
< |leelsllezllénllze  from (24)
+ch? ([vllosllsllE l€nll 2 + [Ivllezllsllor[énlmr)  since on each arc
segment, (7' o prs &n)" =" © pas((pns))? & + 27" 0 prs(pns)’ &,
< ch?|lyllessllEelénll
< h*Pllylloslis|Ezllénll e by (19).
Altogether,
(84) | I2| < ch®2(|y 18511 G2 €nll 12
Finally,

13| IVullL2(p\p,) VOl 2D\ Dy
chllvllcrllsller Vol L2(ovp,) by (79)
ch?|Vllerllslierlvlmapy by (71)
ch?|Vllcrllslierly o s €l
ch?|yllcrllsllerllvllezlIsllorllénllm by (51) and (55)
(85) ch® 222 llsl2 [€nllzrre Dy (19).

The Proposition follows from (81), (83), (84) and (85).

(AN VAN VAR VANRR VAR VAN

Remark The following Proposition, and the related Proposition 5.3, are essential
for the proof of the main Theorem. Assuming v and s are sufficiently smooth, we
see from (87) that if E”(s) is positive definite (for example, if s is a strictly stable
local minimum for E) then so is Ej (pps) for h sufficiently small, with the same

“ellipticity” constant up to O(h'/?|logh|'/?).
One might hope to estimate the positive term

86) V(v —wn)lli2(p,) = 12(v 05 &) — ®rln(y 0 prs &)l (p,)
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in (87) by cho‘HthHl/2 for some o > 0. But we cannot expect this as we see by
considering the “model” estimates:

19(€R) = ®nln(E)ll i (o) < b2l < cllénllame
from (64) and (19) — these estimates cannot be improved.

None-the-less, in Proposition 5.3 we do estimate (86) in case &, = pp{ where
¢ is in the negative eigenspace of E”(s). The point is that £ is then smooth by
elliptic regularity theory (although &}, is of course not smooth), and in fact we show
n (106) that in this case

19~ o320, < chllenly o

As a consequence we deduce in Proposition 5.3 that if E”(s) is non-degenerate then
so is E}/ (prs) for h sufficiently small, with the same nondegeneracy constant up to
O(h'/?|log h|}/?).
Proposition 4.3. Let s € C2NH and v € C3. Then for any &, € Hy,
(87) B} (pns)(&n,€n) — E"(5)(Ens €n) = IV (v = vn)ll72(p,) + R
where

=@y 05 &), v =PpIn(y °pns &n),

and
|R| < ch/2[log b2 ||yl|ZslslE2 111 31 2

Proof. Let u and uy, be as in (75). Let
(38) W=D 05 &), wn = Dulu(y" o pus E2).
(From (30),

(E”(s) - E;’{(phs)) (&n,&n)

= /|Vv|2+/Vqu7/ |Vvh|27/ VupVwy
D D Dy, Dy,

- / IV (v —wp)|* + 2/ VoV(v —wvp) + V(u — up)Vwy
Dy,

Dy, Dy,

+ V(w — wp)Vu + / |Vol? + / VuVw
D\D, D\Dy,

Dy,
= h+Dh+L+Ii+Is+Is.

We estimate the terms other than I;.
For I we have

v
|I5] 2 = 2 — (v—p)
Dy, 81/

VUV(U —vp)

IN

[v = vnllL2@D4)-

H ov
The first factor is estimated with the use of (73) and arguing as for (82);

L2(0Dp)

< cplmop) = cv'os &ulm < ch™ P lcallslerl€nll e

L2(8Dy)

Hal/

The second factor was estimated in the estimate for I in the proof of Proposition
4.2:

lo = vnllz2op,) < B> 2llyllcallslEs €l e
Altogether for I,

(89) |Ia| < chllvl[Es sl €nl 2
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For 13,

3] =

/ V(u— un)Vun| < IV —un) 2o [ Veon 2o
Dy,

IN

chllyllcallsllE:Vwnllz2(p,)  from (77).
(From (65) we get

IVwnllr2p,) = |®adn(y" 0 ps &)1 (D)

IN

V" o prs x| gz + ch1/2|fy” opns il
But

clylleslIslcr gl e from (49) and (54)
cllvllesllslcrllénlloo€nll iz from (48)
Y2 yllesllsllcrlénllzp. - from (20).

Iy o prs & |1

ININ A

c|log h|
Similarly
cllylleslIsllorll€hllm  using (51)

cllvllesllsllerliénllcollénll s from (50)
ch™ | log h[Y2 |y les sl 1€nlla 2

1y o ps &

ININ N

(90)
from (20) and (19). Hence

IVwnll L2,y < cllogh*?[¥llcslislorénll e,
and so
(91) |Is] < chllog h|" 2|7 sls]E211€nl 7/
For I, we have
0
I = V(w — wp)Vu = / (w— wh)—u,
Dy, Dy, 81/

and so as for I in the proof of Proposition 4.1,

(92) L] <cllyllerlisler (Ihwom —wllz2ap) + lw — wh o Tl L2(ap)) -

But

ch®|wl o) by (72)

ch?|y" o5 €| m

ch®?(log h['2||yl|csllsllos 1€nll1/2 s for (90).

||’LU o — w||L2(6D)

VAN VAN VAN

Also

||w — Wh © 7r||L2(6D)

17" o5 & = IFP (v opps &)[r2 from (88) and (21)

Iy o5 & =" opns &illre + 1V o pns & — 1,7 (Y" o pus &)l 12

19" 0 5 =" o prsllcolI€nll7a + chly” o prs &l

cllleslls = prsllcollénllFp = + ch /[ log 2 |lvllcsllsll e I1€nll e
using a Sobolev embedding theorem and (90)

ch'?[log h|'||losllsllcr[|€nll 7 /2 from (24).

ININ A

IN

Hence

(93) |La| < ch'2[log h[Y2 |y |[Es | slIEn 1Enl 1 =-
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(From the final part of the argument for I3 in the proof of the previous Propo-
sition,

(94) Is = [Vl 22y p,y < chllvlE=llslEall€nlF o
Finally,
[ls| < IVullLz(p\py)lIVwl L2(p\Dy)
< ch®|ulpgropylwlmiopy by (71)

ch2|'y os|m|y’os 5}2L|H1
ch?[[Vllerlslleiy o s &l by (59)
(95) ch®|log b2 (|91 s 118 16n 1372 as for (90).

Now collect the estimates (89), (91), (93), (94) and (95), and this proves the
Proposition. |

IN N

5. THE MAIN ERROR ESTIMATES

We will apply the following quantitative version of the Inverse Function Theorem
with X = Hp and Y = Hj, in the proof of Theorem 5.4.

Lemma 5.1. Let X be an affine Banach space with Banach space X as tangent
space, and let Y be a Banach space. Suppose xo € X and f € CH(X,Y). Assume
there are positive constants «, 3, § and € such that

(96) [f(zo)lly < 9,

(97) 1 (@) Mowxy < o',

(98) £ (@) = f'(@o)lleixyy < B forallz € Be(w),
where

(99) b<a, §<(a—pPe

Then there exists a unique x. € Be(xo) such that f(x.) = 0.

Proof. This follows from the proof of the Inverse Function Theorem in [Be; pp
113-114]. The modifications necessary since X is an affine space are trivial.

The next Proposition establishes that for any 6 > 0,

||Ellvf(phs) - Ellv,l(phs + 77h)||(Hthh)/ < ﬁ

provided |log h|||np] g1/2 is sufficiently small (depending on 8 but independent of
h). This will be used to establish the appropriate version of (98) in the proof of
Proposition 5.4.

Remark on the Proof The precise form of estimate (61), and the inverse esti-
mate (20), are used to control |go s, — g o (sp + 1p)| /2 for g =7, 7' and 7”.

Proposition 5.2. Let s € HNCY and v € C*. Then for any nn, &, € Hy,
’ (E;{(Phs) — Ej/(pns + Uh)) (& fh)‘

2
< c(1+ log A2l ) Vog Al lmnl sl 5121 €

Proof. For simplicity we write sp, for pys.
(From (30),

(B(sn) = Bi(on +mn)) € €0)

= / |V1)h|2 +/ VupVwy, */ |V5h|2 7/ Vun,Vwy,
Dy, Dy, Dy, Dy,



18 GERHARD DZIUK AND JOHN E. HUTCHINSON

with
up, = Oplp(yosh), U, = Pplp(yo(sn+nm)),
v = Pplp(y o8k &n), Un = @nln(y o (sn+1n) &n),
wy = (I)hlh(’yll oSy f}%), wy = (I)hlh(’y” o (Sh + 77h) 5}%)
So
| (B0l (1) = Erl(sn + mm) ) (6. 0)|
< [ -l (Tonl 4950+ [ V(s )] (T
Dy, Dy,
+/ |Vﬂh| |V(wh — wh)|
Dy,
< WV (unr =) |lL2o) IVwrll L2(Dy)
+ IV (vr = On)ll 2(py) (IVORllL2(Dy) + IVVRN L2(D)))
+ IV (wn = @) L2(pp) I VR L2(D,)
(100) = AB; + As(B21 + Ba) + A3Bs.
Now estimate these terms separately.
By (65)
Az‘@[(osfoer )’
1 rdn (v o sn —yo (sn+nm) i1 (D)
< Jyosn—vo(sh+mm)|gie +ch?yo s, —yo (sp+m)m
< cllle (lsallcor + Imallco) Innll vz + b2yl 2 llshllco llnm
by (61) and (62)
< cllicelsllor mnl s (1 + Nog Al sy )

+elylezlisller /> by (20), (19) and (23)
< (1 + Noghl2lmnl g2 ) lmnllose I7lle=lsllcn-

Again from (65)
Ay = ‘q)hlh (7’ osp &n—7 0 (sn+ 1) Eh) ‘Hl(Dh)
< (Y osn=7"0(sn+mm)) &nlmre
+ch?|(y 0 sn =" 0 (sn+ 1)) Enlm
< W osn—7"o(sh+mm)lmsellénllco
+ 117" osn =" o (sn+mm)llcolénlgrz by (48)
+ch' 2|1y o s =~ o (sn + 1)l oo |€nl
+ch2|y o sp =7 o (sh + )| |€nllco by (50)

(1 -+ [1og A" 2llmull /2 ) Il vz 1 sl sl gl o

IN

+cllyllczllnmlloolénl e + e 2Vl ez lnnllcolénlmr  using the argu-
ment for A; on the first and last terms in the preceding inequality

< c(1+ Nogh"mall /2 ) Hog bl mnll 2l collsl o 64l o

again using the inverse estimates (20) and (19) on 7y, and .
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In the same way we proceed for Ag to first obtain the analogue of the second
last inequality above:

Az = |@nln(y" 0 sn & =" 0 (sn + )& i o,
c(1++ [1og A" 2llmll /2 ) Il 27l s lsllen 163 o

+ elyleslimllco €l mve + b2l o llnmllool€Rlan
< o1+ Nog bl 2lmnll /2 ) llog bl lnmll gz s sl 16

IN

from the inverse estimates (19) and (20) applied to 7, and &, and since

I€ill 72 < 20€nllcollEnllmr, 1€ < 20€nlloliénllm -

For Bs,
By = |®pln(y o (sh+mm)lmr(Dy)
< |yo(sh+mm)lme +ch?lyo (sh+mu)|m by (65)
< AvlerUlsallze + Innll ) + b vl (lsalla + Nl )
< cllvllerlsnllzire + lInnllgiz) by (19)
< e+ lmnllae)llvllerllsller
For Bss,
By = |®nIn(y o (sh+mn) &n)la(Dy)
< o (sn+mm) Enlmse +ch'?Y o (sn+ 1) &l by (65)
< o (sn+mm)llcolénlmrr + 17 0 (sh+mm)l a2 ll€nllco
+ch2 (|17 o (sn 4+ m)llcolénl e + 17 o (sn + m) e €nllco )
by (48)
< cvllerlénl a4+ cllvliczlsn 4+ nnl gz (€l co
+ch!/? (||V||01 &nl e + [1Vllezllsn + mnllm ||€h|\00)
< dlylle=(llsn + mallr2)log Al ?([nll grare - by (19) and (20)
< oL+ Imnllgrs2) log b2 3l c2 |l sll o 16n l rave-

For B3; we have the same estimate with 7, set equal to 0;

Bay < c|logh|'?|l7llcalsll e I€nll e

Finally,
Bi = |®nl(v" o sn &) (py)

< Yo sn &Lz +chV2 " o5y &l by (65)

< I o salloléElase + 1" o snlase € oo
+en (" o sullcol€len + 1" o sulrs 3 o

< clvle2lénllcoénll e + cllvllesllsnllmzllénlZo
e (Inllezlnllcollnllas + Illesllsn s 1nllZo )

< clloghl |l ca lslleallgnl -
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Substituting the previous estimates in (100),

‘(EZ(Sh) — B} (sn + Uh)) (&n, ‘Eh)‘
< o1+ [1og A" 2llmll sz ) g2 Il ez sl
x Nlog hl I1yllcs sl a3/
e(1++ [1og A2l /2 ) Tog A2 il vz 1 ol sl Nl g
x (14 mnllzr/= ) Tog Ay lc2 sl 1l
(14 e ) Il lsllen

x (14 [og A2l g2 ) Nog B el /2 1ol sl €l 3

< {1+ N1og A1l 112 1o Il oo [l 50 5

It follows from the next result that Ey/ (pss) is nondegenerate with nondegeneracy
constant arbitrarily close to A, provided h is sufficiently small. This will be used to
establish the appropriate version of (97) in the proof of Theorem 5.4.

Remarks on the Proof See also the Remark preceding Proposition 4.3.
Nondegeneracy for “interpolants” of functions from the positive and negative

spaces for E’(s) must be treated separately—see the separate treatment of I; and

I5 below. In the first case, nondegeneracy follows more or less directly from Proposi-

tion 4.3. In the second case, the term ||V(v—vh)||%2(Dh), where v = ® (7’ os E,(;))

and vy, = Pplp (7’ o Sp 5}(;)), must be estimated. The main points are to apply

the regularity results (34) and Proposition 2.2 to members of the negative space.

Proposition 5.3. Let s € HNC? and v € C3. Suppose E"(s) is nondegenerate
with nondegeneracy constant A, as in (13). Let v be as in (12). Then

By () (€, 667 — 67 > (3 — b2 log V2 7122 sl ) a2

for every &, € Hy,.

Proof. We again denote pps by sp and split

Ejl(sn)(&n &7 =67 = Elsn)e. 65) — B (sn) (€7, 67)
(101) = I+ L.

It follows from (87), after discarding a positive term, that

I

Y

E"(s)(e7,657) = eh 2 log Y2 ||y [|2s 1812 16571202
= E'()(&h 60 + B (€767 - 6he)
— chM?|1og b2 [y || Zalls |2 €S 121 2

Using the notation of (13) there exists AT > 0 such that

E"(s)(& &) = AT NE I
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Also
[B() (6767 = . 6h)|
= ') (67 - ghg” v el

+ +
el llEalsliga 6" = & ez l6 + &l by (10)
chllylIE2v?lIslE 1€nll7/2 by (36).
Using (36) again, I; can then be estimated from below by

(102) I > Mg 12 — ch!2[log Al 2|y 1 B2 )1 e €0 a2

VARVA

With similar arguments, but now keeping all terms in (87) and using the notation
of (13),

L > A& e — b log h[V2 Y| 2av? s G2l €nll g 2

(103) — V@ = w72,y
where here
(104) v=7 ('YI oS 5](17)) , vp = Ol ('Y/ o Sp, 5](17)) .

JFrom (101), (102), (103), and using (13),
E(sn) (&7 =€) = (A= ek log A2y Zar?llsl1Ez ) 1€l
(105) — IV =vn)li2p,)-

It remains to estimate the last term. For this it is important to notice that &,
is a smooth function.

V(v —wvn)llL2(py)
= |®(y os 5;(1_)) — ®pIn (v 0 sy f}(L_))|H1(Dh)

< |B(y 0 s (67 =& o) + 1 @rIn(Y 0 50 (617 = &) (ow)
+|®(v 05 &) — Prln(y 05 & ) (py)
+ [ Pndn((Y 05 =" 0sn) &) (D)
= L+ 1+ 15+ I.
But
I < [Yos(€) —&)lun
< Nl oslloallel” — & e
< chllylezlisllorvliénllmz by (34).
And
I < osn (& —& M+ e osy (& —€7)m by (65)
<y o sullor (Ilg = &7 arvva + 12067 — €7 lm)
< chlyllezlIsllcrv|énll iz from (34) and (34).
Also

I ch'?ly o5 & |l by (64)
ch' 2|1 o sl &) |

ch' 2| llcallsllcrvi€nll a2 by (12).

IN AN IA
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Finally,
Is < (v os—"0sn) & lmm+ch?(y os—+"0sn) & lm by (65)
< el os =7 osullcos (6 vz + /20 ) by (49) and (51)
< clhlleslislierlls = sulleoavlénllm by (63) and (12)
< chllieslslZavlinll e from (23).

If we now put together the estimates for I, I4, I5 and I, we get
(106) IV (0 = on)ll2(p,) < b PllyllesvlislEslénll .
This together with (105) proves the Proposition. 1

The next result gives the main error estimates for discrete maps s; which are
stationary for Fp. As remarked at the beginning of this Section, the proof uses
Lemma 5.1. The necessary estimates were established in Propositions 4.2, 5.2
and 5.3.

Theorem 5.4. Assume v € C*. Let s be a monotone nondegenerate stationary
point for E, with nondegeneracy constant \ as in (13).

Then there exist positive constants ho and co depending on ||| ca and || || =1 || Lo,
and X\ in the case of hqg, such that if 0 < h < hgy then there exists sy € Hp, which is
stationary for En and satisfies

(107) ||S - Sh”Hl/z S C()Ailh.

Moreover, there exists eg = eo(||v]|c1, || |Vt |z, A) > 0 such that sy, is the unique
stationary point for Ky satisfying

(108) ||S - Sh”Hl/z S €0|10g h|71.

Proof. We will apply Lemma 5.1 with X = H,, X = Hp, Y = Hj, (the dual space
of Hy), f = Ej, and zg = pps.

Note that
Ej, Hy — Hj,.
From Propositions 4.2 and 2.1, since E’(s) =0,
(109) 1EL (Pns) |y, < c1h

where c1 = c1([vlles, [ V7 [[o)-
The derivative (E})’ of E} is a map

(E;L)I ‘Hp — L(Hy, H,/L)
and is naturally identified in the usual way with E} via

(110) (((BR) (tn),€n)s ) = B, (tn)(Ens n)

for all t;, € Hp and &p,mn € Hp. From Propositions 5.3, 2.1 and 2.2, since
h/?|log h|'/? — 0 as h — 0,

_ 3\
(111) Byl ns) (& 6.7 = €07) = il e
for all &, € Hy, provided 0 < h < ho = ho(||7]lcs, || || 71 |z, A). But

1€ — e < N6 =&l + 165 — €57 e + 165 — €7 1 use
(112) < (L+chw)l|Enll e

from (36) and (34), and since [|§; — &, || g1/2 = ||€n | g1/2. Hence from (110), (111)
and (112),

- A -
(113)  {(B) (), 606 = 67) = Slnllinallgy” — &7 linnre
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for all £ € Hy, provided 0 < h < hg for a new hg with the same dependencies as
before. Thus for each &, € Hy with ||| g1/2 = 1, the map ((E})(pns), én) (€ H})
has norm > A\/2. It follows, since Hj and Hj have equal finite dimension, that
(Er,) (pns) is invertible and

(114 esmresn ., . <(3)

Next note that from (110) and Proposition 5.2, by the symmetry of the second
derivative,

1CERY (ons) = (B3 (s + 1) sty 1)
2
< o (14 1og Al mnll sz ) [10g bl n 12

for all ny, € Hy, where ca = ca(||v|lc4, || |Y/| 71 || ) from Proposition 2.1.
We can now choose €9 = eo(||v]|c1, || V|72 |2, A) so that |log bl ||np |l g1/2 < €o
implies
!/ \/ ! \/ )\
(115) ICER) (Pns) — () (s + 1)l Loy sy < 7
By further restricting hg, again with the same dependencies, we can ensure that,
see (109),

A
(116) 0<h<hy implies c1h< 76 llog h| ™.

(From (109), (114), (115), (116) and Lemma 5.1 with o = A\/2, 8 = A\/4, § = c1h
and € = egllog h| 71, it follows that for 0 < h < hg there is a unique s, € Hj, which
is stationary for Fj and such that

(117) llsn — prsl| g1z < eollogh|™t.

Next apply Lemma 5.1 with a = A/2, 8 = \/4, § = c1h and € = 4¢1h/A. Note
that § = (a— )€ (= c1h). Moreover, if 0 < h < hg then € < ¢g|logh|~! from (116).
It follows that the unique stationary sp as in (117) satisfies

Co
(118) ||Sh _ph3||H1/2 < Xh,

where cg = 4c;.
Since

s = pusll iz < ch®2|s|l g2 < ch®?|sllo2 < ch®?|ly|cs,

we may replace pps by s in (117) and (118), after further restricting hg, €y and ¢y
if necessary. |

Remark Suppose u = ®(yos):D — IR™ is harmonic. Then

lull i oD,y < chllullgropy from (70) and (71)
< chlyl|lcr||sllcr from (57) and (59)
< ch,

where ¢ = ¢(||v||¢2). Thus the contribution to |lu||1(p)y from the boundary strip
D\ Dy, is O(h). This is consistent with the order of approximation in the following
Theorem.

Theorem 5.5. Assume v € C*. Let u be a nondegenerate minimal surface span-
ning I' with nondegeneracy constant A as in (13).
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Then there exist positive constants ho and co depending on ||| ca and || || =1 || Lo,
and X\ in the case of hg, such that if 0 < h < hqg then there is a discrete minimal
surface up satisfying

(119) ||u—uh||H1(Dh) < Co)\_lh.

Moreover, there exists eo = eo(||]|ca, || |V~ |z, A) > 0 such that if u = ®(yo s)
and up, = ®plp(y o sp) then uy, is the unique discrete minimal surface satisfying

(120) s — snllgi2 < €ollogh| !
Proof. Let
u=®(yos), un=Pnln(yosn),

where s and s, are as in Proposition 5.4. We begin with hg, €9 and ¢o as in
Proposition 5.4.
Now

|U*Uh|H1(Dh)

= |<I>('yos) —@hfh('yosh”Hl(Dh)

< (0 8) = Puln(y 0 pus) oy + 1 ®uIn(v 0 prs =7 © s1)l i (Dy)
(121) = A+ B.

But
(122) A< ch|ezlslIE,

by the estimate (77) for I; in the proof of Proposition 4.1.
Also,

B < 1+ [Togh"?|ls, = pnsll sz ) lsn = pusll szl cellsllon

by the estimate for A; in the proof of Proposition 5.2, with s; and 7y, there replaced
by prs and sp — pps respectively. Hence

(123) B< %Oh from (118)

provided 0 < h < hg, for a new hg and ¢y with the same dependencies.
It follows from (121), (122) and (123), possibly again with new ¢y and ho with
the same dependencies as before, that

C
(124) lu — |1 (pyy < Xoh
if 0 < h < hy.
Now
(125)  llu =l o) < e(fu—unlm o + = unllzzon,) ).

as follows easily by integrating along rays (¢ depends only on n). It is routine to
estimate |[u — up||2(ap,). Let

ah = q>hlh('7 Ophs).
Then

IN

lu —tnl 20D, + llin — unllz2(0D,)
ch?([Vllc2llsllEe + llan — unllL2@p,)
(126) = ch’|7lle2llsllge + D

lu —unlL2o0,)

IN
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from the argument used to estimate Is in the proof of Proposition 4.1, with wuy,
there replaced by u,. Moreover,

D = |In(yopnrs—7osn)llz2om,)
1197 (v o prs — v o sn)ll20m) by (21) as [Vrr| < 1

IN

< lvopns —yosallrz +chlyoprs —yosu|m
< cvlierllpas = sullz + chllvlczlislcrllpas — shll
by (60), (62) and (23)
< c|llczIsllctllpns — snllzz by a standard inverse estimate
(127) < %Oh from (118)

with a new ¢o but with the same dependencies, for 0 < h < hg. {From (124), (125),
(126) and (127) it follows that if 0 < h < hg then

co
lu — unll (D)) < Th’

where co = co([|vllcs, | 177 =) and ho = ho([lyllcs, Y17 e, A). i
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