
1 Introduction

We discuss a mathematical framework for deterministic and random (or non-
deterministic) fractals. The approach is via scaling laws and scaling oper-
ators; the latter also being known as iterated function systems. This gives
a very attractive theory with many applications, particularly to computer
graphics and to image and data compression. Various applications of frac-
tals are discussed elsewhere in this book.

The essential ideas will first be presented by means of a number of stan-
dard examples. Readers who wish to obtain a relatively informal overview
of the material can accordingly restrict themselves to Sections 2 and 3, and
to the less formal parts of the later Sections. Sections 4, 5 and 6 develop
much of the mathematics behind these ideas. I have tried to keep the math-
ematics self-contained, and in particular have attempted to motivate and
develop from first principles the relevant notions of metric spaces, measure
theory, and probability theory. The later sections may perhaps serve as a
brief introduction to some aspects of these subjects.

It is perhaps worth mentioning here one point that sometimes causes
confusion. A “mathematical” fractal in a certain precise sense looks the
same at all scales; i.e. when examined under a microscope at no matter what
the magnification it will appear similar to the original object. On the other
hand a “physical” fractal will display this “self-similarity” for only a range
of magnifications or scales. The mathematical object will of course only be
an accurate model within this particular range.

Examples of non-integer dimensional sets with scaling properties have
long been known to mathematicians. It was Mandelbrot who introduced
the term fractal and who in a series of papers and books (see [M] and the
references there) developed the connections between these ideas and a range
of phenomena in the physical, biological and social sciences.

In [H] we showed that to each Scaling Operator there corresponds a unique
fractal set (or measure) in a natural manner. Approximations via the scaling
operator, fractal coding, and dimension and density properties of fractals
were also developed. The terminology “Iterated Function System” was in-
troduced later by Barnsley and Demko [BD]. In earlier papers, Moran [Mo]
proved the dimension results for (fractal) sets satisfying an “Open Set Condi-
tion” and Williams [W] developed properties of iterates of contraction maps.
Applications to computer graphics were considered in Diaconis and Shahsha-
hani [DS]1, in [BD] and in Barnsley, Ervin, Hardin and Lancaster [BEHL].
The Markov Process approach to generating fractals has been developed in
[DS], [BD], and elsewhere.

The results for random fractal sets are due to Falconer [F2], Graf [G],

1See also: Esoteric Math Has Practical Result, Science, 1984 (225), 494–495.
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and Mauldin and Williams [MW], and for random fractal measures are due
to [MW] and Arbeiter [A]. A simple approach is given in Hutchinson and
Rüschendorf [HR]. Zähle [Z] and Patzschke and Zähle [PZ] developed an “ax-
iomatic” approach to random fractals and also established connections with
the ideas developed by Falconer, Graf, Mauldin & Williams and Arbeiter.

General references at an introductory level are Barnsley [B], Falconer [F1],
Peitgen, Jürgens and Saupe[PJS], and the book Fractal Geometry and Anal-
ysis [FG] (in particular, the article by Vrscray).

Acknowledgment I would particularly like to thank Jacki Wicks for many
valuable discussions we had during the writing of her undergraduate honours
thesis [Wi], and Andy Wood for various helpful suggestions in the section on
probability.

2 Some important examples

We begin with an informal discussion of some of the main ideas. Our inten-
tion is to develop the reader’s intuition. The relevant notions will be defined
later in a more precise manner.

2.1 The Koch curve

A fractal set is a set K in IRn2 with certain scaling properties. The Koch
curve is an example. The following diagram shows certain sets in a sequence
K(1), K(2), . . ., K(j), . . . which approximates the Koch curve K. The set K is
the limit of this sequence, but in practice we can only draw an approximation.

2IRn is n-dimensional Euclidean space. The important cases are the line IR = IR1, the
plane IR2, and three-dimensional space IR3.

2



From the diagram,

K = K1 ∪K2 ∪K3 ∪K4. (1)

The important point here is that each Ki is congruent to a scaled version
of K. It is also clear from the diagram that the scaling factor is 1/3. More
precisely, and significantly from our point of view, there are maps

Si : IR2 → IR2 i = 1, . . . , 4,

where each Si is a composition of a translation, rotation, and scaling (with
scaling factor 1/3), such that (1) can be written

K = S1(K) ∪ S2(K) ∪ S3(K) ∪ S4(K). (2)

If we look again at the Koch curve, we see that we can also write it as the
union of two sets (the left and right hand sides), each of which is obtained
from K by means of a translation, rotation, reflection and scaling (in this
case by 1/

√
3, as is easy to calculate). Denoting the corresponding maps by

Ti we have
K = T1(K) ∪ T2(K). (3)

2.2 A fractal measure on the line and the Koch mea-
sure

You should think of a measure µ in IRn as a “mass-distribution” and the
measure µ(E) of a subset E of IRn as the total mass in that set. Simple
examples are a unit mass concentrated at a point in IRn or a unit mass
uniformly distributed along a curve in IRn having finite length. The total
mass (i.e. the measure of IRn) is called the mass of the measure.

A fractal measure µ is a measure in IRn with certain scaling properties.
In the following diagram we have sketched various members in a sequence of
approximations µ(1), µ(2), . . . , µ(j), . . . to a fractal measure µ on the interval
I = [0, 1] ⊂ IR (as noted in the previous footnote, IR is the real line). Each
cross represents a point mass of a certain magnitude. The number of point
masses describing µ(j) is denoted by N (j) and each such point mass is given
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equal mass (or magnitude) 1/N (j). If E is a set then the measure µ(j)(E) of
E is defined by

µ(j)(E) = total mass of all jth-level point masses in E

= (total number of jth-level point masses in E) /N (j)

(notice that µ(j) has unit mass for every j). If j is large, then µ(j)(E) is a
very good approximation to µ(E) (at least for any “reasonable” set E and
in particular for any interval).

In this example we see from the diagram that

µ = µ1 + µ2, (4)

where µ1 is “supported” (c.f. Section 5.1) on the interval [0, .65] and µ2 is
“supported” on [.65, 1]. The important point is that µ1 can be obtained from
µ by first “rescaling” by the factor .65 and then “reweighting” by the factor
.5. A similar remark applies to µ2 except that the rescaling factor is .35 and
the reweighting factor is again .5. More precisely, and again significantly
from our point of view, there are linear maps

Si : IR→ IR i = 1, 2 ,

where each Si is a composition of a translation and scaling (with scaling
factors .65 and .35), and weighting factors

ρ1, ρ2

(here both equal to .5) such that (4) can be written

µ = ρ1S1(µ) + ρ2S2(µ) 3 (5)

In the present example the support4 of the fractal measure is the entire
interval [0, 1]. In many cases the support will be a more interesting fractal

3Think of S1(µ) as the measure (mass-distribution) obtained by “pushing” µ forward
with the map S1. Similarly for S2(µ). The measures S1(µ) and S2(µ) both have total
mass one, as does µ, and so if we want equality to hold in (5) it is necessary to reweight
by factors ρ1 and ρ2 whose sum is one.

4See Section (5.1) for the definition.
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set. A fractal measure carries more information than its supporting set. We
can often usefully think of a fractal measure as a fractal set together with a
grey scale, or weighting, at each point of the set.

Another fractal measure, the Koch measure, can be constructed in a man-
ner similar to the construction of the Koch curve. Thus (see the diagrams
for the Koch curve in Section 2.1) we take µ(1) to be a measure uniformly
distributed along K(1) and with total mass one, so that the mass of each of
the four line segments is 1/4. Similarly µ(2) is uniformly distributed along
K(2) again with total mass one, so that the mass of each of the 16 line seg-
ments is now 1/16. Likewise for µ(j) with j > 2. Then µ is the limit, in a
natural sense that can be made precise, of the sequence µ(1), µ(2), . . . , µ(j), . . .
. In this case

µ = ρ1S1(µ) + ρ2S2(µ) + ρ3S3(µ) + ρ4S4(µ) (6)

where each Si is a composition of a translation, rotation and scaling (with
scaling factor 1/3) and the scaling factors ρi all equal 1/4.

A fractal set or measure is often simply called a fractal. We also sometimes
instead use the terminology deterministic fractal (set, measure) to distin-
guish the present notions from the random (or statistical or non-deterministic)
versions which follow.

2.3 The random Koch curve

A random fractal set can be thought of as a set generated according to
some probability distribution K on sets, analogous to the manner in which a
random number is generated by a probability distribution on numbers. The
probability distribution K will be required to have a certain type of scaling
property. When we sketch a random fractal set we are in fact sketching a
particular realisation of K.

What is most important is the probability distribution K itself, rather
than any particular realisation. In fact, it is more precise to call K the
random fractal set, and to distinguish this from particular realisations of K.5

In the following diagrams we give three realisations of the same random
fractal, the random Koch curve.

5It is perhaps worth remarking that a particular realisation of a random number gives
little, or no, idea of the underlying probability distribution. In contrast, because of scaling
properties, even a single realisation of a random fractal gives a lot of information about
the underlying distribution.
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For each realisation K of K we have

K = K1 ∪K2 ∪K3 ∪K4,

where each Ki looks, “statistically” or “on the average”, like a re-scaled
version of K.

More precisely, and analogously to the deterministic case, we write

K ' S1(K(1)) ∪ S2(K(2)) ∪ S3(K(3)) ∪ S4(K(4)). (7)

Here K(1), . . . , K(4) are chosen independently and at random via K6 and the
single 4-tuple of maps (S1, S2, S3, S4) is chosen independently of the K(i) and
at random via some probability distribution S. Then the previous equation
says that the probability distribution K on compact sets K is the same as
the probability distribution on compact sets given by the right side of (7). In
other words, (7) indicates equality in the sense of probability distributions.

Other physical examples are given by Brownian motion, the irregular
oscillatory movement of microscopic particles in a limpid fluid.

2.4 The random Koch measure

A random fractal measure is a probability distributionM on measures which
has a certain type of scaling property. An example can be constructed parallel

6Do not confuse K(1), . . . ,K(4) with the K1, . . . ,K4 in the diagram!
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to the construction of the random Koch curve. Imagine a measure of unit
mass distributed “uniformly” along the various realisations of the Koch curve
in the previous diagram. This will give three realisations µ of the same
random Koch measure M.

The relevant property is

µ ' ρ1S1(µ(1)) + ρ2S2(µ(2)) + ρ3S3(µ(3)) + ρ4S4(µ(4)) (8)

Here µ(1), . . . , µ(4) are chosen independently and at random via M and
the single 8-tuple of maps and weights

(
(S1, . . . , S4), (ρ1, . . . , ρ4)

)
is chosen

independently of the µ(i) via some probability distribution S. The previous
equation indicates equality in the sense of probability distributions.

3 Discussion of main properties

We discuss some of the main properties of fractals as they apply to the
examples from the previous section.

3.1 Scaling laws and coding

From equation (3) we see that K is the union of two sets, each of which is a
scaled version of K itself. We can interpret (3) as saying that K satisfies the
scaling law (determined by) T = (T1, T2). Similarly, (2) can be interpreted
as saying that K satisfies the scaling law S where S = (S1, S2, S3, S4).

If we replace each occurrence ofK on the right side of (3) by T1(K)∪T2(K)
we obtain

K = T1

(
T1(K) ∪ T2(K)

)
∪ T2

(
T1(K) ∪ T2(K)

)
= T11(K) ∪ T12(K) ∪ T21(K) ∪ T22(K), (9)

where Tij = Ti ◦ Tj. Then (9) is in fact just the decomposition (2), even in
the same order. Repeating the construction, we obtain

K =
⋃

1≤σ1,σ2,σ3≤2

Tσ1σ2σ3(K),

where Tσ1σ2σ3 = Tσ1 ◦ Tσ2 ◦ Tσ3 . Thus K is the union of 8 sets, each of which
is a rescaled version of K, the rescaling factor being (1/

√
3)3.
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The previous construction can be iterated k times, writing K as the union
of 2k subsets each of which is a rescaled version of K with rescaling factor
(1/
√

3)k:
K =

⋃
1≤σ1,...,σk≤2

Tσ1...σk(K), (10)

where Tσ1...σk = Tσ1◦· · ·◦Tσk . For each infinite sequence σ = σ1, σ2, . . . , σk, . . .
the corresponding sequence

K ⊇ Tσ1(K) ⊇ Tσ1σ2(K) ⊇ · · · ⊇ Tσ1...σk(K) ⊇ · · · (11)

is a decreasing sequence of sets whose intersection is a single point. This
point is assigned the code or address σ = σ1σ2 . . .σk . . . . Every point in K
has such a representation.

Similar remarks apply to fractal measures. Thus equation (5) can be inter-

preted as saying that µ satisfies the scaling law S where S =
(
(S1, S2), (ρ1, ρ2)

)
.

We can iterate (5) and obtain

µ = ρ1S1

(
ρ1S1(µ) + ρ2S2(µ)

)
+ ρ2S2

(
ρ1S1(µ) + ρ2S2(µ)

)
= ρ1

2S11(µ) + ρ1ρ2S12(µ) + ρ2ρ1S21(µ) + ρ2
2S22(µ).

Repeating this construction, we obtain

µ =
∑

1≤σ1,σ2,σ3≤2

ρσ1σ2σ3Sσ1σ2σ3(µ)

=
∑

1≤σ1,...,σk≤2

ρσ1...σkSσ1...σk(µ),

where ρσ1...σk = ρσ1 · . . . · ρσk and Sσ1...σk = Sσ1 ◦ · · · ◦ Sσk .

Analogous ideas apply in the random case. Thus in Sections 2.3 and 2.4
the probability distributions S on the (S1, S2, S3, S4) and

(
(S1, . . . , S4), (ρ1, . . . , ρ4)

)
respectively, can be considered as scaling laws satisfied by the random Koch
curve and the random Koch measure respectively.

3.2 Existence and uniqueness of fractals

A basic fact is that the scaling law satisfied by the Koch curve in fact charac-
terises the Koch curve. This is a consequence of a general result which has
had interesting applications and which we now discuss.

We first need a little notation. A map S : IRn → IRn is said to be a
contraction map if there exists some r satisfying 0 ≤ r < 1 such that

|S(x1)− S(x2)| ≤ r|x1 − x2| for all x1, x2 ∈ IRn. (12)
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The number r is called a contraction ratio or Lipschitz constant for S.7 The
maps Si and Ti in Section 2 are all contraction maps of a particularly simple
kind in that equality holds in (12) with the appropriate choice of r.

If S = (S1, . . . , SN) (where N ≥ 2) is an N -tuple of contraction maps as
above and K is a compact subset (c.f. Section 4.2) of IRn, we say that K
satisfies the scaling law S if

K = S1(K) ∪ . . . ∪ SN(K). (13)

Then we have the rather surprising result (Theorem 4.2) that to each
scaling law there exists exactly one compact set (fractal) satisfying that law.
Note however that different scaling laws may give the same fractal. For
example, both S = (S1, S2, S3, S4) and T = (T1, T2) give the Koch curve; see
Section 2.1.

Analogous results apply to scaling laws for fractal measures, and to scaling
laws for random fractal sets and random fractal measures, c.f. Theorems 5.2,
6.4 and 6.8.

3.3 Approximating fractals

3.3.1 Deterministic approximations

Corresponding to the scaling law S = (S1, . . . , SN) there is a scaling operator ,
also denoted by S, such that for any compact set A the compact set S(A) is
defined by

S(A) = S1(A) ∪ . . . ∪ SN(A).

Thus the fact (13) that K satisfies the scaling law S can be written

K = S(K).

Beginning with any compact set A, sometimes called a seed, the scaling
operator S can be iterated to obtain a sequence of sets

S1(A) = S(A), S2(A) = S(S(A)), S3(A) = S(S(S(A))), . . . . (14)

Then (Theorem 4.2) the sequence S1(A), S2(A), . . . ,Sk(A), . . . converges to
the unique compact set corresponding to the scaling law S. This is a con-
structive procedure that allows one to construct the fractal corresponding to
the given scaling law to within any prescribed degree of accuracy.

In the diagram in Section 2.1 the sets K(k) equal Sk(A), where A is a
horizontal line segment.

7Thus the distance between the images of any two points in space is less than the
distance between the two points by a factor r < 1, where r is independent of the two
chosen points.
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In the following diagram another sequence of approximations is shown to
the Koch curve. In this case we use the scaling operator T = (T1, T2) as
in (3). Moreover, A contains a single point x and so Tk(A) consists of all
points of the form Tσ1...σk(x).

Analogous results apply to fractal measures. In this case a scaling law is
a 2N -tuple

S =
(
(S1, . . . , SN), (ρ1, . . . , ρN)

)
where N ≥ 2 is an integer, S1, . . . , SN : IRn → IRn are contraction maps, and
ρ1, . . . , ρN are positive real numbers such that ρ1 + · · · + ρN = 1. Then we
say µ satisfies the scaling law S if

µ = ρ1S1(µ) + · · ·+ ρNSN(µ). (15)

The result (Theorem 5.2) is that there is exactly one unit mass fractal which
satisfies the scaling law S.

There is a corresponding scaling operator also denoted by S and defined
by

S(ν) = ρ1S1(ν) + · · ·+ ρNSN(ν),

where ν is any compactly supported unit mass measure in IRn. Thus the fact
(15) that µ satisfies the scaling law S can be conveniently written

µ = S(µ).

Beginning from a (finite mass) measure ν we can iterate the scaling op-
erator S to obtain a sequence of measures

S1(ν) = S(ν), S2(ν) = S(S(ν)), S3(ν) = S(S(S(ν))), . . . . (16)

Then (Theorem 5.2 again) for any unit mass measure ν the sequence S1(ν),
S2(ν),. . . , Sk(ν), . . . converges to the unique unit mass measure corresponding
to the scaling law S.

Once again, analogous results to the preceding apply to the random case.
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3.3.2 Random approximations

In (6) we saw that the Koch curve satisfies

µ =
1

4
S1(µ) +

1

4
S2(µ) +

1

4
S3(µ) +

1

4
S4(µ),

where the Si are certain maps Si : IR
2 → IR2.

This leads to the following procedure, a random method to construct the
deterministic Koch curve and measure.

(0) Begin with an arbitrary point (seed) x0 ∈ IR2.

(1) Choose Sσ1 from (S1, . . . , S4), where the probability of choice of any
particular Si is 1/4. Let x1 = Sσ1(x0).

(2) Choose Sσ2 from (S1, . . . , S4) independently of Sσ1 , where again the
probability of choosing any particular Si is 1/4. Let x2 = Sσ2(x1).

. . .

(k) Choose Sσk similarly and independently of the Sσ1 , . . . , Sσk−1
. Let xk =

Sσk(xk−1).

. . .

In this way an orbit of points

x0, x1 = Sσ1(x0), x2 = Sσ2(x1), . . . , xk = Sσk(xk−1), . . .

is constructed. Then with probability one (c.f. Section 6.1) the orbit will
come arbitrarily close to every point in the Koch curve K. Moreover, see
[E], if µ is the Koch measure then the measure µ(B) of any subset B ⊆ IRn

is given by

µ(B) = lim
k→∞

N (k,B)

k + 1
, 8

where

N (k,B) = number of points in {x0, x1, x2, . . . , xk} ∩B.

Thus the relative visitation frequency of the finite orbit x0, x1, x2, . . . , xk in
the set B is a good approximation to µ(B) for k large.

In computer simulations using either the algorithm here or from the pre-
vious section, as successive points are plotted on the screen, increasingly
accurate approximations to the Koch curve will be constructed. The density
of points will indicate the distribution of mass according to the Koch mea-
sure. The Koch measure as we have defined it is in a certain sense distributed

8Technical condition: one needs to assume that µ(∂B) = 0, where ∂B is the boundary
of B in the usual topological sense.
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A B
C

rA rB rC

volume(rA) =
   r3 volume(A)

area(rB) = 
    r2 area(B)

length(rC) =   
   r length(C) = 

uniformly along the Koch curve, but in other cases such as the fractal mea-
sure on the line in Section 2.2, the mass is not uniformly distributed. The
density of points constructed via appropriate modifications of either algo-
rithm will closely approximate the mass distribution of the corresponding
fractal measure.

3.4 Dimension of fractals

If S satisfies (12) with “≤” there replaced by “=”, we say S is a similitude
with scaling factor r. There is a standard classical notion of “D-dimensional”
volume, D-vol (E), for certain sets E ⊂ IRn. For D = 1, 2, 3 this gives the
length, area, and usual volume, respectively. A standard property is

D-vol (S(E)) = rDD-vol (E)

if S is a similitude with scaling factor r.

Now suppose
E = S1(E) ∪ . . . ∪ SN(E)

where S1, . . . , SN are similitudes with scaling factors r1, . . . , rN , and assume
the Si(E) intersect each other on sets of lower dimension than D.9 Then

D-vol (E) = r1
DD-vol (E) + · · ·+ rN

DD-vol (E).

Thus we obtain the relation

r1
D + · · ·+ rN

D = 1, (17)

assuming 0 < D-vol (E) <∞.

Motivated by this, from (2) we expect that the “dimension” D of the
Koch curve K should satisfy

4
(

1

3

)D
= 1. (18)

9More precisely, the D-dimensional volume of the intersections is zero. In particular
the intersections may be empty.
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This gives D = log 4/ log 3 = 1.2615 . . . for the dimension of the Koch curve.
If we use (3) we obtain

2

(
1√
3

)D
= 1,

which leads to the same value for D.

There is a notion of dimension, the Hausdorff dimension, which assigns to
any subset of IRn a real number in the range [0, n]. Then (Theorem 4.4) if the
scaling property S satisfies a certain “Open Set Condition”, the corresponding
fractal K will have Hausdorff dimension D given by (17)10. In particular,
the Hausdorff dimension of the Koch curve is indeed log 4/ log 3. Analogous
results hold for random fractal sets (Section 6).

Note that the dimension of the Koch curve is greater than one, and in
particular the Koch curve will have “infinite length” in the sense that its
one dimensional measure is infinite (c.f. Section 4.6). Any realisation (more
precisely, with probability one as discussed in Section 6) of the random Koch
curve will also have dimension greater than one.

A coastline can often be modelled by a kind of random fractal, c.f. [M].
The mathematical model will have dimension greater than one and hence
infinite length, so in this sense we say that the coastline itself has dimension
greater than one and has infinite length.

4 Fractal sets

In this and subsequent sections we develop the important ideas involved in
the proofs of the main properties of fractals as discussed in Section 3. The
mathematical level is accordingly a little higher, but we have attempted to
keep the details to a minimum and hope that the ideas will be clear even to
those to whom much of the background is new.

4.1 Contraction Maps

Euclidean n-space is denoted by IRn. We have already introduced the notion
of a contraction map on IRn and the corresponding contraction ratio. Recall
also that S is a similitude with scaling factor r if S satisfies (12) with “≤”
there replaced by “=”.

10Note that if we define f(x) = r1
x + · · · + rN

x then f(0) = N , f(x) → 0 as x → ∞,
and f(x) is strictly decreasing for x ∈ IR. It follows that there is indeed a unique value of
D for which (17) is satisfied.

13
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4.2 Metric spaces

A metric space (X, d) is a set X together with a notion of distance d(a, b)
between any two members a, b ∈ X which satisfies the following properties:

1. d(a, b) ≥ 0 and d(a, b) = 0 precisely when a = b,

2. d(a, b) ≤ d(a, c) + d(c, b),

3. d(a, b) = d(b, a).

One also calls d a metric.

A simple example of a metric space is where X = IRn (e.g. IR2) and d(a, b)
is the usual distance between the two points a and b. Another example is
where X = D is the unit disc consisting of points in the plane whose distance
from the origin is strictly less than one, and d(a, b) is again the usual distance
between the points a and b (see the next diagram). We will soon meet some
other very important, but more complicated examples.

A metric space (X, d) is complete if whenever a sequence x1, x2, . . . , xk, . . .
of members of X has the property that

d(xj, xk)→ 0 as j, k →∞

then d(xk, x) → 0 for some x ∈ X. In this case one says xk converges to x
and writes xk → x as k →∞.

The metric space (IRn, d) is complete but the metric space (D, d) discussed
above is not complete. In the following diagram we show the sequence of
points xk = (1− 1/k, 0). We see that

d(xj, xk) =

∣∣∣∣∣1j − 1

k

∣∣∣∣∣→ 0 as j, k →∞.

But the limit x = (1, 0) of this sequence is not in D.

As in (12), a map F : X → X is said to be a contraction map if there
exists some r ∈ (0, 1) such that

d(F (x1), F (x2)) ≤ rd(x1, x2) for all x1, x2 ∈ X.
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The Contraction Mapping Principle asserts that: if (X, d) is a complete
metric space and F :X → X is a contraction map, then there exists exactly
one a ∈ X, called the fixed point of F , such that F (a) = a. Moreover, for
any x ∈ X, the sequence

x, F 1(x) = F (x), F 2(x) = F (F (x)), F 3(x) = F (F (F (x))), . . .

converges to a. Also, if d(x, F (x)) ≤ ε and r is a contraction ratio for F ,
then d(x, a) ≤ ε/(1− r).

The point to the last claim is that if x is near F (x) then in fact x is near
the fixed point a. The proof of this claim is easy, since each application of F
decreases the distance between points by the factor r. Thus

d(x, F k(x)) ≤ d(x, F (x)) + d(F (x), F 2(x)) + · · ·+ d(F k−1(x), F k(x))

≤ d(x, F (x)) (1 + r + · · ·+ rk−1)

≤ ε
1− rk
1− r .

Now let k →∞ to see that d(x, a) ≤ ε/(1− r).

4.3 The metric space (C, dH) of compact subsets of IRn

A set A ⊂ IRn is closed if whenever x1, x2, . . . , xk, . . . is a sequence of points
from A and xk → x for some x ∈ IRn, then x ∈ A (in other words, A contains
all its limit points). A set A ⊂ IRn is bounded if the distance between any
two points in A is less than some fixed finite number b (where b depends of
course on A, but not on the particular points in A).

A compact subset of IRn is a closed and bounded subset. The set of all such
compact subsets is denoted by C. There is an important notion of distance
between two members of C, called the Hausdorff distance or Hausdorff metric
and denoted by dH.

Before introducing the Hausdorff distance we need some preliminary def-
initions.

1. If x ∈ IRn and A ∈ C we define the distance d(x,A) between the point
x and the set A by

d(x,A) = min{ d(x, a) : a ∈ A }, 11

where d(x, a) is the usual distance between points.

11Technical aside: one usually writes “inf” for infimum, instead of “min” for minimum,
but this is equivalent in the present setting.
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A
e

.x
d(x,A)

Ae

A

B

There is a small  e  such that 
B   Í Ae  and  A Í Be .  Then 
dH(A,B) £ e  for any such  e. 

A

B

There is a small  e  such that 
A Í Be  but there is no  
small  e  such that  B  Í Ae . 
Thus  dH(A,B) is not  small.

2. For a set A ∈ C and a real number ε ≥ 0 define the ε-enlargement by

Aε = { x : d(x,A) ≤ ε }.

Thus A = A0, and Aε1 ⊆ Aε2 if ε1 ≤ ε2.

3. For two sets A,B ∈ C define the Hausdorff distance between A and B
by

dH(A,B) = min{ ε : A ⊆ Bε and B ⊆ Aε }.12

Then one can show that (C, dH) is a complete metric space.

Two important properties of the Hausdorff metric are

dH

(
N⋃
i=1

Ai,
N⋃
i=1

Bi

)
≤ max

1≤i≤N
dH(Ai, Bi); (19)

dH(F (A), F (B)) ≤ rdH(A,B), (20)

where in the second inequality F : IRn → IRn is a contraction map with
contraction ratio r.13

Finally, if A ∈ C then the diameter of A is defined by

diam (A) = max
x,y∈A

d(x, y).

12As in the previous footnote, one could equivalently write “inf” instead of “min”.
13One does not require r ≤ 1 for this result.
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4.4 Existence, uniqueness and approximation

Definition 4.1 A scaling law for sets is an N -tuple S of contraction maps
(S1, . . . , SN) defined on IRn. The corresponding scaling operator S is defined
on compact sets by S(A) =

⋃N
i=1 Si(A). We say K satisfies the scaling law S

if K = S(K).

We can now prove the Existence and Uniqueness Result for fractal sets
discussed previously, see [H] 3.2(1).

Theorem 4.2 There is a unique compact set K satisfying a given scaling
law S. If A is any compact subset of IRn then Sk(A)14 converges to K in the
Hausdorff metric as k →∞.

Proof: Let S = (S1, . . . , SN) and let r be the maximum contraction ratio
of the Si’s.

For any A1, A2 ∈ C,

dH(S(A1),S(A2)) = dH

(
N⋃
i=1

Si(A1),
N⋃
i=1

Si(A2)

)
≤ max

1≤i≤N
dH(Si(A1), Si(A2))

≤ rdH(A1, A2),

by (19) and (20). It follows that the scaling operator S :C → C is a contraction
map.15

The conclusion of the theorem now follows from the completeness of
(C, dH) and the Contraction Mapping Principle.

Remark : The set K satisfying the scaling law S is usually called a fractal
(set).

A simple corollary of the Theorem is that if some set A satisfies the
inequality dH(A,S(A)) ≤ ε then dH(A,K) ≤ ε/(1 − r), where K is the
compact set satisfying the scaling law S. This follows from the last part of
the Contraction Mapping Principle in Section 4.2. Barnsley calls this the
Collage Theorem since it implies that if A can be covered by scaled copies of
itself to within some small Hausdorff distance ε then there is a corresponding
“nearby” fractal K whose distance from A is at most ε/(1− r).

The previous theorem also justifies the deterministic method for approx-
imating fractals discussed in Section 3.3.1 in the context of the Koch curve.

14See (14) for notation.
15Do not confuse this with the fact that the Si are contraction maps on IRn.
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4.5 Code space

Let K be the fractal set invariant under the scaling law S = (S1, . . . , SN).
Write

Sσ1...σk = Sσ1 ◦ · · · ◦ Sσk . (21)

Then for any k, exactly as in (10) and (11), we can decomposeK into “smaller
and smaller” pieces:

K =
⋃

1≤σ1,...,σk≤N
Sσ1...σk(K), (22)

K ⊇ Sσ1(K) ⊇ Sσ1σ2(K) ⊇ · · · ⊇ Sσ1...σk(K) ⊇ · · · . (23)

If r is the maximum contraction ratio of S1, . . . , SN , then it is easy to see
that

diamSσ1...σk(K) ≤ rkdiam (K).

Hence diamSσ1...σk(K) → 0 as k → ∞. Thus there is a unique point which
belongs to every member of the sequence (23). We give this point the code
or address

σ = σ1σ2 . . .σk . . .

and denote the point by
Π(σ). (24)

Every point in K has a code, but the code is not necessarily unique. For
example, in the diagram in Section 3.1 in which the Koch curve is generated
by two similitudes T1 and T2, the top-most point has the two addresses
1222 . . . and 2111 . . .. On the other hand, if the generating maps S1, . . . , SN
satisfy Si(K)∩Sj(K) = ∅ for i 6= j, then the Nk sets in (22) are also mutually
disjoint and it follows that every point in K does have a unique address.

The set CN of all codes σ with each σk ∈ {1, . . . , N} is called code space.
It is a metric space with metric

δ(σ, τ) =
∞∑
k=1

|σk − τk|
Nk

.

Then one has ([H], Theorem 3.1):

Theorem 4.3 For any x ∈ IRn

Sσ1...σk(x)→ Π(σ) ∈ K as k →∞.

Moreover, the map Π:CN → K is a continuous map onto K.

Proof: To prove the first result first note that if r is the maximum con-
traction ratio of the S1, . . . , SN then

d(Sσ1...σk(x), Sσ1...σk(K)) ≤ rkd(x,K)→ 0 as k →∞.
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Since
Π(σ) ∈ Sσ1...σk(K)

and
diamSσ1...σk(K)→ 0 as k →∞

the first claim follows.

For the second claim suppose σ, τ ∈ CN , that σi = τi for i = 1, . . . , k and
σk+1 6= τk+1. Then

δ(σ, τ) ≥ 1/Nk. (25)

On the other hand

Π(σ),Π(τ) ∈ Sσ1...σk(K) = Sτ1...τk(K),

and so
d(Π(σ),Π(τ)) ≤ diamSσ1...σk(K) ≤ rkdiam (K). (26)

From (25), δ(σ, τ) is small implies k is large, and from (26) this implies
d(Π(σ),Π(τ)) is small. Thus Π is continuous.

One can also give a direct proof of Theorem 4.2 by arguing as in the
previous proof, see [H] Theorem 3.1.

4.6 Dimension

4.6.1 Hausdorff dimension

Assume E ⊆ IRn and d ≥ 0. If δ > 0 we define the d-dimensional δ-
approximating measure by

Hd
δ(E) = inf

∑
i≥1

(diamBi)
d, (27)

where the infimum is taken over all (finite or infinite) sequences of balls16

(Bi)i≥1 such that (i) diamBi ≤ δ and (ii) E ⊆ ⋃i≥1 Bi.

If δ1 ≤ δ2 then Hd
δ1

(E) ≥ Hd
δ2

(E) since there are fewer allowable families
of balls for δ1 than for δ2. Thus Hd

δ(E) is increasing as δ → 0. We define the
d-dimensional Hausdorff measure of E by

Hd(E) = lim
δ→0
Hd
δ(E). (28)

16Technical aside: One usually allows arbitrary subsets of IRn. This will make no
difference to the later definition of the Hausdorff dimension d but may change the value
of Hd(E).
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two cop ies of E

Balls of diameter £  d

H1(E) » length(E)
d

Ball of diameter 1

H1(E) » 1 <<  length(E)
1

Clearly,
0 ≤ Hd(E) ≤ +∞.

It is not too hard to show that there exists a unique d ∈ [0, n] such that

Hd(E) =

{
∞ if d < d
0 if d > d.

(29)

This unique d is called the Hausdorff dimension of E.

It is possible to construct examples of sets E where Hd(E) = a for any
given a satisfying 0 ≤ a ≤ ∞. But if Hd(E) is finite and non-zero for some
d then d = d. If Hd(E) = 0 then d ≤ d, if Hd(E) =∞ then d ≥ d.

In case E is a smooth curve in IR2 or IR3 then d = 1 and H1(E) is the
length of E. In case E is a smooth surface in IR3 then d = 2 and H2(E) is
the area of E. For the fractal sets we are considering, d will not usually be
an integer.

4.6.2 Scaling dimension and the Open Set Condition

Assume S = (S1, . . . , SN) where the Si are similitudes with scaling factors
r1, . . . , rN respectively. Then the scaling dimension corresponding to S is
defined to be the unique value of D such that

rD1 + · · ·+ rDN = 1, (30)

c.f. Section 3.4 and the final footnote there. Under certain conditions (The-
orem 4.4) this scaling dimension will equal the Hausdorff dimension of the
associated fractal set.

For this reason, we say that S satisfies an Open Set Condition if there
exists a non-empty open set O ⊆ IRn such that

1.
⋃N
i=1 Si(O) ⊆ O,

2. Si(O) and Sj(O) are disjoint if i 6= j.
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O  is the interior of the large triangle;
S1(O),...,  S4(O)  are the interiors of 
the shaded triangles.

The scaling operator S = (S1, . . . , S4) for the Koch curve K satisfies
the Open Set Condition, where O is the interior of the large triangle in the
following diagram. Notice, on the other hand, that the sets S1(K), . . . , S4(K)
are not disjoint.

The following result showing the equality of scaling dimension and Haus-
dorff dimension if the Open Set Condition is satisfied, is due to [Mo].

Theorem 4.4 If S consists of similitudes and satisfies the Open Set Con-
dition then the scaling dimension D of S equals the Hausdorff dimension of
the associated fractal set K. Moreover, HD(K) is finite and non-zero.

Proof: We will prove the easier result that the Hausdorff dimension is less
than or equal to the scaling dimension D. This does not require the Open
Set Condition, and so holds much more generally.

Using (30) first note that

1 = rD1 + · · ·+ rDN

= rD1
(
rD1 + · · ·+ rDN

)
+ · · ·+ rDN

(
rD1 + · · ·+ rDN

)
=

N∑
i,j=1

rDi r
D
j .

Similarly,
N∑

i1,...,ik=1

rDi1 · . . . · rDik = 1 (31)

for any k.

Now choose a ball B, with diameter b (say), such that K ⊂ B. From (22),

K =
⋃

1≤σ1,...,σk≤N
Sσ1...σk(K)

⊆
⋃

1≤σ1,...,σk≤N
Sσ1...σk(B). (32)
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Notice that Sσ1...σk(B) is a ball of diameter r1 · . . . · rk · b.
Take any δ > 0. By choosing k sufficiently large we may assume r1 ·

. . . · rk · b ≤ δ (if r = max{r1, . . . , rn} is the maximum contraction ratio just
choose k so rkb ≤ δ). It follows from (32) and (31) that K is covered by a
finite number of balls of diameter ≤ δ such that∑

(diameter of the balls)D =
N∑

i1,...,ik=1

(ri1 · . . . · rik · b)D

= bD
N∑

i1,...,ik=1

rDi1 · . . . · rDik

= bD.

Hence HD
δ (K) ≤ bD from (27), for all δ > 0. But then HD(K) ≤ bD

from (28). It follows from the remarks following (29) that if d is the Hausdorff
dimension of K then d ≤ D.

The proof that d ≥ D (and hence that d = D) is more involved. The
idea is to use the Open Set Condition to cover K by small balls that do
not overlap “too much”. We refer the reader to [Mo], or to [H] Theorem 5.3
where a result involving densities is also proved. The fact that HD(K) is
finite and non-zero is also a consequence of the argument.

4.7 Parameter space

An affine map S : IRn → IRn is a composition of a linear map and a trans-
lation. Such an affine map is completely described by means of an n × n
matrix and an n vector, and hence by a finite number of parameters. Thus a
scaling operator S = (S1, . . . , SN) of affine maps can be thought of as a point
in some finite dimensional parameter space IRm, c.f. [H] §5.5 and [O]. Not all
points in IRm will actually correspond to a family of contraction maps and so
parameter space will in fact correspond to a certain (open) subset of IRm. It
is often natural to work with certain restricted families of scaling operators,
in which case the dimension m may be considerably reduced.

It follows from Theorem 4.2 and (3) that the Koch curve is uniquely
characterised by the scaling law T = {T1, T2}, which in turn corresponds to
a point in IRm where m = (2× 2 + 2) + (2× 2 + 2) = 12. If T1 is replaced by
the same affine map except that no reflection is performed, and if T2 is left
unchanged, then the following Dragon fractal is obtained.
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The same calculation as in (18) shows that the scaling dimension of the
scaling law which gives the Dragon is log 4/ log 3. Presumably the Hausdorff
dimension of the Dragon is also log 4/ log 3, but the Open Set Condition does
not apply here.

If T1 and T2 are as for the Koch curve, except that no reflection is per-
formed in either case, then the following Brain fractal is obtained.

The scaling dimension is again log 4/ log 3, and the Hausdorff dimension
is presumably the same.

If T1 and T2 are similar to the previous example except that now T1 fixes
P = (−1.5, 0) and maps Q = (1.5, 0) to (−.225, .9) instead of to (0,

√
3/2),

and T1 fixes Q and maps P to (.225, .9) instead of to (0,
√

3/2), then the
following Clouds fractal is obtained. We can only show an approximation,
and in fact the actual fractal in this case will in a certain precise sense be
“totally disconnected”.

The contraction ratios are here each r = .5202 . . . and so the dimension
of the Clouds is log 2/ log(1/r) = 1.0606 . . . .

5 Fractal measures

5.1 Some notions from measure theory

A finite measure17 ν on IRn assigns to every set E ⊆ IRn a positive real
number such that (i) ν(∅) = 0 where ∅ is the empty set, (ii) if E1 ⊆ E2

17What we here call a finite measure is often called a finite Radon outer measure.
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then ν(E1) ≤ ν(E2), and (iii) if E ⊆ ⋃∞
i=1 Ei then ν(E) ≤ ∑∞

i=1 ν(Ei). We
also require that there be a class of subsets of IRn, called the class of (ν-
)measurable subsets, which includes the open and closed sets, is closed under
complements and under finite and countably infinite intersections and unions,
and satisfies ν(E) =

∑∞
i=1 ν(Ei) whenever E =

⋃∞
i=1 Ei and the sets Ei are

mutually disjoint and measurable. The mass of ν is ν(IRn). If the mass of ν
is one, we say that ν is a unit mass measure. The integral

∫
f dν of various

functions f : IRn → IR is defined in such a way that, roughly speaking, “
∫
f dν

is a weighted sum of the values of f , where the weighting is done according
to ν”.

The support spt(ν) of ν is the intersection of all closed sets whose com-
plement has ν measure zero; and so spt(ν) is the smallest closed set whose
complement has ν measure zero. If S : IRn → IRn then the finite measure
S(ν) is defined by (S(ν))(E) = ν(S−1(E)); think of S(ν) as the measure ν
“pushed forward” by the function S. If ρ is a positive number then the finite
measure ρν is defined by (ρν)(E) = ρ · ν(E); think of the measure ρν as
the measure ν reweighted by the factor ρ. Moreover, we have the important
properties ∫

f dS(ν) =
∫
f ◦ S dν (33)

where f ◦ S is the usual composition of functions, and∫
f d(ρν) = ρ

∫
f dν (34)

where ρ is any positive number.

5.2 The metric space (U , dU) of measures on IRn with
unit mass and compact support

The set of all unit mass measures18 on IRn with compact support is denoted
by U .19

For our purposes there is a useful notion of distance between two such
measures, called the Monge-Kantorovitch distance, which is defined by

dMK(µ, ν) = sup
{ ∣∣∣∣∫ f dµ−

∫
f dν

∣∣∣∣ | |f : IRn → IR and

|f(x1)− f(x2)| ≤ |x1 − x2| for all x1, x2 ∈ IRn
}
.(35)

As a simple example, suppose P and Q are two point in IR2. Let δP and
δQ be unit measures concentrated at P and Q respectively—thus for E ⊆ IRn,

18A unit mass measure µ is itself a probability distribution in a natural way, but we do
not here think of µ in this way.

19If µ satisfies a scaling law as described in the next section, so does any multiple of µ.
Thus there is no essential loss of generality in restricting to unit mass measures
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δP (E) = 1 if P ∈ E and δP (E) = 0 if P 6∈ E, and similarly for δQ and Q.
Then with any f as in the definition of dMK, we see∣∣∣∣∫ f dδP −

∫
f dδQ

∣∣∣∣ = |f(P )− f(Q)| ≤ |P −Q|.

Thus dMK(δP , δQ) ≤ |P −Q|. On the other hand, it is easy to find a (in fact
linear) function f as in the definition of dMK such that |∫ f dδP − ∫ f dδQ| =
|P −Q|. It follows that dMK(δP , δQ) = |P −Q|, the usual distance between
the points P and Q.

If X is a subset of IRn, the set of measures in U whose support is a subset
of X is denoted by UX . Although (U , dMK) is not a complete metric space,
it can be shown that if X ⊂ IRn is compact then (UX , dMK) is a complete
metric space.

5.3 Existence, uniqueness and approximation

Definition 5.1 A 2N -tuple S =
(
(S1, . . . , SN), (ρ1, . . . , ρN)

)
of contraction

maps Si : IRn → IRn and positive numbers ρi such that ρ1 + · · · + ρN = 1
is called a scaling law for measures. The corresponding scaling operator S
is defined on measures in U by S(ν) =

∑N
i=1 ρiSi(ν). We say ν satisfies the

scaling law S if S(ν) = ν.

We now prove the Existence and Uniqueness Result from [H] Theorem
4.4(1) for fractal measures .

Theorem 5.2 There is a unique measure µ ∈ U satisfying a given scaling
law S. If ν is any measure in U then Sk(ν)20 converges to µ in the Monge-
Kantorovitch metric as k → ∞. If K is the support of µ, then K is the
unique compact set satisfying the corresponding scaling law (S1, . . . , SN) for
sets.

Proof: We outline the main points.

Because the Si are all contraction maps, it is possible to find R0 > 0 such
that if BR is the (compact) set consisting of all points whose distance from
the origin is ≤ R, then S(BR)(=

⋃N
i=1 Si(BR) ) ⊂ BR for any R ≥ R0.

For any such BR, S is a contraction map on the complete metric space
(UBR , dMK). The main point in showing this fact is that for ν1, ν2 ∈ UBR , if
f is as in (35) and r is the maximum contraction ratio of the Si’s, then∣∣∣∣∫ f d

(
S(ν1)

)
−
∫
f d
(
S(ν2)

)∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

[∫
f d(ρiSi(ν1))−

∫
f d(ρiSi(ν2))

]∣∣∣∣∣
20See (16) for notation.
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≤
N∑
i=1

∣∣∣∣∫ f d(ρiSi(ν1))−
∫
f d(ρiSi(ν2))

∣∣∣∣
≤

N∑
i=1

∣∣∣∣ρi ∫ (f ◦ Si) dν1 − ρi
∫

(f ◦ Si) dν2

∣∣∣∣
=

N∑
i=1

∣∣∣∣ρir ∫ r−1(f ◦ Si) dν1 − ρir
∫
r−1(f ◦ Si) dν2

∣∣∣∣
≤

N∑
i=1

ρirdMK(ν1, ν2)

≤ rdMK(ν1, ν2).

For the second inequality we have used (33) and (34). For the penultimate
inequality we have used the fact that since f is as in (35) then∣∣∣r−1(f ◦ Si)(x1)− r−1(f ◦ Si)(x2)

∣∣∣ ≤ |x1 − x2|,

as can be readily checked, and hence (35) can now be applied with f there
replaced by r−1(f ◦ Si).

It follows from the Contraction Mapping Principle that S has a unique
fixed point µ ∈ UBR , and if ν ∈ UBR then Sk(ν) converges to µ in the
Hausdorff metric as k → ∞. The first two claims in the Theorem follow
since we can choose any R ≥ R0.

The final claim follows from elementary properties of the support of a
measure. Namely,

sptµ = spt S(µ) = spt
N∑
i=1

ρiSi(µ)

=
N⋃
i=1

sptSi(µ) =
N⋃
i=1

Si(sptµ).

Thus the compact set sptµ satisfies the scaling law (S1, . . . , SN) and so is
the unique such compact set by Theorem 4.2.

Remark : The measure µ satisfying the scaling law S is usually called a
fractal measure.

The method from Section 3.3.2 generalises to any fractal measure, see [E].
At the kth stage in the iteration, the map Sσk is chosen from (S1, . . . , SN),
where the probability of choice of any particular Si is pi.

6 Random fractals

6.1 Probability theory

We begin with some Examples :
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1. If a fair dice is thrown, the set of possible outcomes is X = {1, 2, . . . , 6}.
The associated probability distribution or measure P assigns to each of
these numbers the equal measure (or probability) 1/6. If E = {1} then
P (E) = 1/6, if E = {1, 5} then P (E) = 1/3, and of course P (X) = 1.

2. Consider an experiment in which a dart is thrown at a dartboard, all
points are “equally likely” to be hit, and the dart never misses the
board. If we take the dart board to be the disc of radius R given by

BR = {(x, y) ∈ IR2 :
√
x2 + y2 ≤ R},

then the probability measure P is a unit mass uniformly distributed
over BR. Thus we write

P = 1
πR2 dx dy|BR = 1

πR2L2|BR ,

by which we mean the usual Lebesgue (i.e. “unit density”) measure
on IR2 restricted to the disc BR, and reweighted so the total mass
(measure) for BR is one. For any event E (which we identify with a
subset of BR) the probability of E (i.e. the probability that the dart
lands in the set E) is given by

P (E) =
∫
E

1
πR2 dx dy = 1

πR2 L2(E).

By
∫
E we mean integration over the set E.

3. Suppose a number x is selected according to the normal distribution
with mean a and variance σ2. Then the frequency function is

f(x) = 1√
2πσ

exp

(
−(x− a)2

2σ2

)
,

and the corresponding probability measure is denoted by

P = f(x) dx.

The probability of an event E, i.e. the probability that a number se-
lected by this normal distribution lies in the set E ⊆ IR, is

P (E) =
∫
E
f(x) dx.

Motivated in part by these examples, one defines a probability distribution
or probability measure P to be a unit mass measure on the set X of possible
outcomes of an experiment. The definition of a finite measure is as in the
first sentence of Section 5.1 with IRn there replaced by X, but we also now
require that P (X) = 1 (so 0 ≤ P (E) ≤ 1 if E ⊆ X).

If E is an event, i.e. E is a set of possible outcomes of the experiment
and so E ⊆ X, then P (E) is interpreted as the probability of E occurring.
We might also think of P (E) as the “measure” of E via P .
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One point that sometimes causes confusion is the following. To say that
an event E occurs with probability zero does not mean that it cannot occur.
For example, in (b) above the mathematical probability of hitting a pre-
designated point on the board with an idealised dart whose tip is also a
(mathematically ideal) point is zero. One sometimes says that E occurs
almost never. Similarly, if an event occurs with probability one we say it
occurs almost surely. For example, the (idealised) dart almost surely will not
hit the origin.

In the previous three examples we have the situation where a number , or
a point in IR2, is “selected” via some probability distribution (or measure)
P . The set X of outcomes was identified with a subset of IR or of IR2.

We, however, will be interested in conceptually more difficult cases where
the set X of outcomes is either the set C of compact subsets of IRn (as in
the case of random fractal sets), or the set U of compactly supported unit
mass measures on IRn (as in the case of random fractal measures), or certain
sets of N -tuples (S1, . . . , SN) of contraction maps Si on IRn, or certain sets

of 2N -tuples
(
(S1, . . . , SN), (ρ1, . . . , ρN)

)
where the Si are again contraction

maps and the “weights” ρi are positive numbers.

6.2 Random fractal sets

We first make precise the ideas from Section 2.3.

Definition 6.1 A random set E is a set generated according to a a proba-
bility distribution on the set C of compact subsets of IRn.

More precisely, a random set E is the actual probability distribution itself,
and one distinguishes this from particular “realisations” of E .

Thus when we think of a random set we usually consider, somewhat
imprecisely, various “typical” realisations (i.e. outcomes) selected according
to the underlying probability distribution E , as in the diagrams in Section 2.3.

Definition 6.2 A scaling law for random sets is a probability distribution
S on the set of N -tuples (S1, . . . , SN) of contraction maps Si : IR

n → IRn, for
some fixed N ≥ 2. Moreover, we assume that for some fixed compact set
B ⊂ IRn, Si(B) ⊆ B for 1 ≤ i ≤ N whenever (S1, . . . , SN) is selected via
S.21

Example In the case of the Koch curve as described in (3), recall that
T1(1.5, 0) = T2(−1.5, 0) = (0,

√
3/2).

21Note that this last condition implies that if (S1, . . . , SN ) is selected via S then the
fixed point of each Si is contained in B (to be precise, with probability one).
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Suppose now that instead of the point (0,
√

3/2) we select a point (0, a)
according to the uniform probability distribution on the vertical line segment
joining the points (0,

√
3/2 − .15) and (0,

√
3/2 + .15), say. This induces in

a natural way a probability distribution T on pairs of maps (T1, T2).22

Definition 6.3 Suppose compact sets E(1), . . . , E(N) are each selected inde-
pendently according to the probability distribution (i.e. random set) E , and
a single N -tuple S = (S1, . . . , SN) of contraction maps is selected indepen-
dently of the E(i) and according to the scaling law S (remember that S is a
probability distribution)23. Consider the compact set

N⋃
i=1

Si(E
(i)). (36)

The method of selection of the E(i) and of S = (S1, . . . , SN) induces in this
way a natural probability distribution on compact sets. This probability
distribution on compact sets is denoted by

S(E).

Since S when applied to a random set E yields another random set S(E), we
also say S is a scaling operator.

We say the random set K satisfies the scaling law S iff

K = S(K).

The following result is due independently to [F2], [G] and Mauldin &
Williams (1986).

Theorem 6.4 For each scaling law S on random sets, there exists a unique
random set K which satisfies S. Moreover, if E is any random set then SkE
converges24 to K as k →∞.

Proof: (Ideas and remarks only) Completely disregarding significant tech-
nical difficulties, we make the following comments.

The method in [F2] is to define a certain metric on the set of random sets
and then to show that S is a contraction map with respect to this metric.
This is analogous to the proof of Theorem 4.2.

The method in [G] and [MW] is to suitably randomise the construction in
Section 4.5 and in the proof of Theorem 4.3. Informally the idea is to build
a (random) construction tree as follows:

22More precisely, after selecting (0, a) according to the prescribed uniform distribution,
T1 is obtained by reflecting in the x-axis, followed by a contraction and rotation about
(−1.5, 0) so that (1.5, 0) is mapped to (0, a). One similarly obtains T2, but in this case the
contraction and rotation are about the point (1.5, 0), and (−1.5, 0) is mapped to (0, a).

23Note that the Si are not selected “individually”. The entire N -tuple is chosen accord-
ing to S.

24That is, the sequence E , S(E), S2(E) = S(S(E)), S3(E) = S(S2(E)), . . . converges in
the technical sense of weak convergence of probability measures.
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(0) choose an N -tuple (of contraction maps) S = (S1, . . . , SN) according to
S;

(1) for each 1 ≤ i1 ≤ N choose N -tuples (of contraction maps) Si1 =
(Si11 , . . . , Si1N ) according to S, independently of one another and of the
S chosen in (0);

(2) for 1 ≤ i1, i2 ≤ N choose N -tuples (of contraction maps) Si1i2 =
(Si1i21 , . . . , Si1i2N ) according to S, independently of one another and of
the previously chosen N -tuples;

(3) for 1 ≤ i1, i2, i3 ≤ N choose N -tuples Si1i2i3 = (Si1i2i31 , . . . , Si1i2i3N ) ac-
cording to S, independently of one another and of the previously chosen
N -tuples;

. . .

Define
Sσ1...σk = Sσ1 ◦ Sσ1

σ2
◦ Sσ1σ2

σ3
◦ · · · ◦ Sσ1...σk−1

σk
. (37)

The reasons for this definition are as follows:

1. First note the correspondence with (21), with the difference that here
there is no longer a single fixed N -tuple S = (S1, . . . , SN). Analogously
to (24), there is associated to each code σ = σ1σ2 . . .σk . . . a point

Π(σ) = lim
k→∞

Sσ1...σk(x),

which is independent of x.25

2. The set Π(CN)26 of all points Π(σ) will form a compact set analogous
to those in each of the three diagrams in Section 2.327. For a fixed
x ∈ IRn and a fixed large k, the set of points of the form Sσ1...σk(x)
will be a good approximation to Π(CN), analogous to the diagram in
Section 3.3.1 for the deterministic case (see also the sentence preceding
that diagram).

Since Π depends on the choices made in (0), (1), (2), . . . , we actually
have a random set Π(CN), or more precisely a probability distribution on
the set of compact subsets of IRn. This random set is, moreover, invariant

25The independence follows as in the deterministic case if we assume that for some fixed
r < 1 the contraction maps in any selected N -tuple have contraction ratio less than or
equal to r; c.f. (12). But more general conditions are also possible.

26Recall from Section 4.5 that CN is code space consisting of all codes σ = σ1σ2 . . .σk . . .
where each σi ∈ {1, . . . , N}

27More precisely, the diagrams in Section 2.3 are three different realisations of T 9E ,
where E is (with probability one) the line segment joining the endpoints P = (−1.5, 0)
and Q = (1.5, 0), and T is a probability distribution on pairs (T1, T2) similar to the one
in the Example near the beginning of this section.
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under the scaling law S. The point is that if (S∗1 , . . . , S∗N) is chosen via S
and independently of all the choices made in (0), (1), (2), . . . , then Π(CN)
and

⋃N
i=1 S

∗
i (Π(CN)) will have the same probability distribution.

6.3 Random fractal measures

We next make precise the ideas from Section 2.4.

Definition 6.5 A random measure N is a measure generated according to
a a probability distribution on the set U of compactly supported unit mass
measures in IRn.

More precisely, a ‘random measure E is the actual probability distribution
itself, and one distinguishes this from particular “realisations” of E .

We think of a random measure as a measure “selected according to” the
distribution N .

Definition 6.6 A scaling law for random measures is a probability distri-
bution S on the set of 2N -tuples

(
(S1, . . . , SN), (ρ1, . . . , ρN)

)
of contrac-

tion maps Si : IRn → IRn, and of positive numbers ρ1, . . . , ρN satisfying
ρ1 + · · · + ρN = 1, for some fixed N ≥ 2.28 Moreover, we assume that for
some fixed compact set B, Si(B) ⊆ B for 1 ≤ i ≤ N whenever (S1, . . . , SN)
is selected via S.

Example Consider the Example of the random Koch curve in the pre-
vious section. If the same probability distribution T on pairs of contrac-
tion maps (T1, T2) is again used, and if the weights (ρ1, ρ2) are each always
taken to be 1/2, then this induces a probability distribution T ∗ on 4-tuples(
(T1, T2), (ρ1, ρ2)

)
which satisfies the previous definition with N = 2.

Definition 6.7 Suppose measures ν(1), . . . , ν(N) are each selected indepen-
dently according to the probability distribution (i.e. random measure) N ,

and a single 2N -tuple S =
(
(S1, . . . , SN), (ρ1, . . . , ρN)

)
is selected indepen-

dently of the ν(i) and according to the scaling law S. Consider the measure

N∑
i=1

ρiSi(ν
(i)). (38)

The method of selection of the ν(i) and of S induces in a natural way a
probability distribution on measures (selecting in particular, measures of the
form (38) with probability one). This probability distribution (i.e. random
measure) is denoted by

S(N ).

28Weaker conditions are sometimes used, in particular that the expected value (or average
value) of ρ1 + · · ·+ ρN equals 1.
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Since S when applied to a random measureN yields another random measure
S(N ), we also say S is a scaling operator.

We say the random measure M satisfies the scaling law S iff

M = S(M).

The following result is due to [MW] and [A]. See also [Z] and [PZ] for
related ideas and [Wi] for connections between these approaches.

Theorem 6.8 For each scaling law S on random measures, there exists a
unique random measureM which satisfies S. Moreover, if N is any random
measure then SkN converges29 to M as k →∞.

Proof: (Some ideas only) Given a scaling operator S for random mea-
sures, one can proceed parallel to the selection of the S

i1...ip
j in the proof

of Theorem 6.4 and simultaneously obtain weights ρ
i1...ip
j . This leads to a

natural (random) measure on code space CN .

Namely, for each k and for each σ1, . . . , σk, the set of all codes of the form
σ1 . . .σk . . . is given the measure

ρσ1...σk = ρσ1 · ρσ1
σ2
· ρσ1σ2

σ3
· . . . · ρσ1...σk−1

σk
.

One can check that for fixed k this defines the measure of sets in a partition
of CN and that the total measure of these sets is one. As k increases this
partition becomes “finer”. One can show that there is a unique corresponding
measure on CN which will be denoted by Ψ30.

If Π is the map constructed in the proof of Theorem 6.4 then Π(Ψ) is a
measure on IRn. Since Π and Ψ depend on the choices in (0), (1), (2), . . . ,
the measure Π(Ψ) is in fact a random measure on IRn. Moreover, it follows
from the construction process that Π(Ψ) satisfies the scaling law S.

Remark : In [HR] we give a simple proof of generalisations of the previous
theorem using the Contraction Mapping Principle.

Final Remark : Conditions under which the dimension of random fractals
can be computed have been extensively investigated. See [A], [F2], Graf
(1987), [GMW], [MW] and Patzschke & Zähle (1990).
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