FRACTALS AND SELF SIMILARITY

JOHN E. HUTCHINSON

This is a retyped (TeX'd) version of the article from Indiana University Mathematics Journal 30 (1981), 713-747 (with some minor formatting changes, a few old "typos" corrected, and hopefully few new ones introduced).

The original preprint appeared as Research Report No. 31-1979, Department of Pure Mathematics, Faculty of Science, Australian National University.

Contents

1. Introduction 2
2. Preliminaries 3
2.1. Sequences of Integers 3
2.2. Maps in Metric Spaces 4
2.3. Similitudes 4
2.4. Hausdorff Metric 6
2.5. Measures 6
2.6. Hausdorff Measure 7
2.7. Geometric Measure Theory 8
3. Invariant Sets 10
3.1. Elementary Proof of Existence and Uniqueness, and Discussion of
Properties
3.2. Convergence in the Hausdorff Metric 12
3.3. Examples 13
3.4. Remark 14
3.5. Parametrised Curves 14
4. Invariant Measures 15
4.1. Motivation 15
4.2. Definitions 16
4.3. The L metric 16
4.4. Existence and Uniqueness 16
4.5. Different Sets of Similitudes Generating the Same Set 17
5. Similitudes 18
5.1. Self-Similar Sets 18
5.2. Open Set Condition 18
5.3. Existence of Self Similar Sets. 19
5.4. Purely Unrectifiable Sets. 21
5.5. Parameter Space 24
6. Integral Flat Chains 24
6.1. The \mathcal{F}-metric. 24
6.2. The \mathcal{C}-metric 25
6.3. Invariant Chains 26

References 27

1. Introduction

Sets with non-integral Hausdorff dimension (2.6) are called fractals by Mandelbrot. Such sets, when they have the additional property of being in some sense either strictly or statistically self-similar, have been used extensively by Mandelbrot and others to model various physical phenomena (c.f. $[\mathrm{MB}]$ and the references there). However, these notions have not so far been studied in a general framework.

In this paper we set up a theory of (strictly) self-similar objects, in a subsequent paper we analyse statistical self-similarity.

We now proceed to indicate the main results. The reader should refer to the examples in 3.3 for motivation. We say the compact set $K \subset \mathbf{R}^{n}$ is invariant if there exists a finite set $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ of contraction maps on $K \subset \mathbf{R}^{n}$ such that

$$
K=\bigcup_{i=1}^{N} S_{i} K
$$

In such a case we say K is invariant with respect to \mathcal{S}. Often, but not always, the S_{i} will be similitudes, i.e. a composition of an isometry and a homothety (2.3).

In [MB], and in the case the S_{i} are similitudes, such sets are constructed by an iterative procedure using an "initial" and a "standard" polygon. However, here we need to consider instead the set \mathcal{S}.

It turns out, somewhat surprisingly at first, that the invariant set K is determined by \mathcal{S}. In fact, for given \mathcal{S} there exists a unique compact set K invariant with respect to \mathcal{S}. Furthermore, K is the limit of various approximating sequences of sets which can be constructed from \mathcal{S}.

More precisely we have the following result from 3.1(3), 3.2.
(1) Let $X=(X, d)$ be a complete metric space and $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ be a finite set of contraction maps (2.2) on X. Then there exists a unique closed bounded set K such that $K=\bigcup_{i=1}^{N} S_{i} K$. Furthermore, K is compact and is the closure of the set of fixed points $s_{i_{1} \ldots i_{p}}$ of finite compositions $S_{i_{1}} \circ \cdots \circ S_{i_{p}}$ of members of \mathcal{S}.

For arbitrary $A \subset X$ let $\mathcal{S}(A)=\bigcup_{i=1}^{N} S_{i} A, \mathcal{S}^{p}(A)=\mathcal{S}\left(\mathcal{S}^{p-1}(A)\right)$. Then for closed bounded $A, \mathcal{S}^{p}(A) \rightarrow K$ in the Hausdorff metric (2.4).

The compact set K in (1) is denoted $|\mathcal{S}| .|\mathcal{S}|$ supports various measures in a natural way. We have the following from 4.4.
(2) In addition to the hypotheses of (1), suppose $\rho_{1}, \ldots, \rho_{N} \in(0,1)$ and $\sum_{i=1}^{N} \rho_{i}=1$. Then there exists a unique Borel regular measure μ of total mass 1 such that $\mu=\sum_{i=1}^{N} \rho_{i} S_{i \#}(\mu)$. Furthermore $\operatorname{spt}(\mu)=|\mathcal{S}|$.

The measure μ is denoted $\|\mathcal{S}, \rho\|$.
The set $|\mathcal{S}|$ will not normally have integral Hausdorff dimension. However, in case (X, d) is \mathbf{R}^{n} with the Euclidean metric, $|\mathcal{S}|$ can often be treated as an m dimensional object, m an integer, in the sense that there is a notion of integration of $C^{\infty} m$-forms over $|\mathcal{S}|$. In the language of geometric measure theory (2.7), $|\mathcal{S}|$ supports an m-dimensional integral flat chain. The main result here is 6.3(3).

Now suppose (X, d) is \mathbf{R}^{n} with the Euclidean metric, and the $S_{i} \in \mathcal{S}$ are similitudes. Let Lip $S_{i}=r_{i}(2.2)$ and let D be the unique positive number for which $\sum_{i=1}^{N} r_{i}^{D}=1$. Then D is called the similarity dimension of \mathcal{S}, a term coined by Mandelbrot. In case a certain "separation" condition holds, namely the open set condition of 5.2(1), one has the following consequences from 5.3(1) (see 2.6(1), (3) for notation).
(i) $D=$ Hausdorff dimension of $|\mathcal{S}|$ and $0<\mathcal{H}^{D}(|\mathcal{S}|)<\infty$,
(ii) $\mathcal{H}^{D}\left(S_{i}|\mathcal{S}| \cap S_{j}|\mathcal{S}|\right)=0$ if $i \neq j$,
(iii) there exist λ_{1}, λ_{2} such that for all $k \in|\mathcal{S}|$,

$$
0<\lambda_{1} \leq \theta_{*}^{D}(|\mathcal{S}|, k) \leq \theta^{* D}(|\mathcal{S}|, k) \leq \lambda_{2}<\infty
$$

(iv) $\|\mathcal{S}, \rho\|=\left[\mathcal{H}^{D}(|\mathcal{S}|)\right]^{-1} \mathcal{H}^{D}\left\lfloor|\mathcal{S}|\right.$ if $\rho_{i}=r_{i}^{D}$.

A result equivalent to (3)(i) was first proved by Moran in [MP].
With a stronger separation condition we prove in 5.4(1) that for suitable $m,|\mathcal{S}|$ meets no m-dimensional C^{1} manifold in a set of strictly positive \mathcal{H}^{m} measure. In the notation of $[\mathrm{FH}],|\mathcal{S}|$ is purely $\left(\mathcal{H}^{m}, m\right)$ unrectifiable.

In the case of similitudes in \mathbf{R}^{n}, it is possible to parametrise invariant sets by points in a C^{∞} manifold (5.5).

My special thanks to F. J. Almgren, Jr., for making possible my stay at Princeton University, for suggesting I begin this study, and for his continuing comments and enthusiasm. I would also like to thank L. Simon for advice and for his invitation to Melbourne University. Helpful suggestions came from members of the Princeton and Melbourne seminars, especially R. Hardt, V. Scheffer and B. White.

Finally I wish to thank Benoit Mandelbrot, from whose ideas this paper developed.

2. Preliminaries

(X, d) is always a complete metric space, often Euclidean space \mathbf{R}^{n} with the Euclidean metric.

$$
\begin{aligned}
& \mathbf{B}(a, r)=\{x \in X: d(a, x) \leq r\}, \\
& \mathbf{U}(a, r)=\{x \in X: d(a, x)<r\} .
\end{aligned}
$$

If $A \subset X$, then \bar{A} is the closure of A, A° is the interior, ∂A is the boundary, and A^{c} is the complement $X \sim A$.

A C^{1} function is one whose first partial derivatives exist and are continuous. A C^{∞} function is a function having partial derivatives of all orders.

A C^{1} manifold in \mathbf{R}^{n} will mean a continuously differentiable embedded submanifold having the induced topology from \mathbf{R}^{n}.

A proper function is a function for which the inverse of every compact set is compact.
2.1. Sequences of Integers. $\mathbf{P}=\{1,2, \ldots\}$ is the set of positive integers. $N \in \mathbf{P}$, $N \geq 2$ is usually fixed.
(1) Ordered p-tuples are denoted $\left\langle i_{1}, \ldots, i_{p}\right\rangle$, where usually each $i_{j} \in\{1, \ldots, N\}$. We write $\alpha \prec \beta$ if α, β are p-tuples with α an initial segment of β, i.e. $\alpha=$ $\left\langle i_{1}, \ldots, i_{p}\right\rangle$ and $\beta=\left\langle i_{1}, \ldots, i_{p}, i_{p+1}, \ldots, i_{p+q}\right\rangle$ for some $q \geq 0$. $\alpha \supsetneqq \beta$ means $\alpha \prec \beta$ and $\alpha \neq \beta$.
(2) $\mathbf{C}(N)$, the Cantor set on N symbols, is the set of maps (i.e. sequences) $\alpha: \mathbf{P} \rightarrow\{1, \ldots, N\}$. Thus $\mathbf{C}(N)=\prod_{p=1}^{\infty}\{1, \ldots, N\}$. We write α_{p} for $\alpha(p)$. A typical element of $\mathbf{C}(N)$ is often written $\alpha_{1} \ldots \alpha_{p} \ldots$, or $i_{1} \ldots i_{p} \ldots$. We extend the notation $\alpha \prec \beta$ to the case $\alpha=\left\langle i_{1}, \ldots, i_{p}\right\rangle$ and $\beta=i_{1} \ldots i_{p} i_{p+1} \ldots i_{q} \ldots \in \mathbf{C}(N)$.
(3) If $i \in\{1, \ldots, N\}$ and $\alpha=\left\langle i_{1}, \ldots, i_{p}\right\rangle$ is a p-tuple, then $i \alpha=\left\langle i, i_{1}, \ldots, i_{p}\right\rangle$ is just concatenation of i and α. Similarly if $\alpha \in \mathbf{C}(N)$ then $i \alpha=i \alpha_{1} \ldots \alpha_{p-1} \alpha_{p} \ldots$. Likewise if β is a q-tuple and α is a p-tuple or $\alpha \in \mathbf{C}(N)$ we form $\beta \alpha$ in the obvious way.

The ith shift operator $\boldsymbol{\sigma}_{i}=\mathbf{C}(N) \rightarrow \mathbf{C}(N)$ is given by $\boldsymbol{\sigma}_{i}(\alpha)=i \alpha$.
(4) $\mathbf{C}(N)$ is given the product topology (also called the weak topology) induced from the discrete topology on each factor $\{1, \ldots, N\}$. Thus a sub-basis of open sets is given by sets of the form $\left\{\alpha: \alpha_{p}=i\right\}$ where $p \in \mathbf{P}, i \in\{1, \ldots, N\}$. $\mathbf{C}(N)$ is compact.
(5) By $\hat{i}_{1} \ldots \hat{i}_{p}$ we mean the infinite sequence $i_{1} \ldots i_{p} i_{1} \ldots i_{p} \ldots i_{1} \ldots i_{p} \ldots \in$ $\mathbf{C}(N)$. Thus $i_{1} \ldots i_{p} \hat{i}_{p+1} \ldots \hat{i}_{p+q}$ may be regarded as the general rational element of $\mathbf{C}(N)$.
(6) The set I will always be a finite set of finite ordered tuples (of not necessarily equal length) from $\{1, \ldots, N\}$.
$\hat{I}=\left\{\alpha_{1} \ldots \alpha_{q} \ldots: \alpha_{i} \in I\right\} \subset \mathbf{C}(N)$, where we are concatenating finite ordered tuples in the obvious way. Thus if $I=\{\langle 1\rangle, \ldots,\langle N\rangle\}$ then $\hat{I}=\mathbf{C}(N)$. If $I=$ $\{\langle 1,2\rangle,\langle 1\rangle\}$ then $2 \alpha_{2} \ldots \alpha_{p} \ldots \notin \hat{I}$, etc.
(7) For α an ordered tuple, let $\alpha^{*}=\{\beta \in \mathbf{C}(N): \alpha \prec \beta\}$.

We say I is secure if for every $\beta \in \mathbf{C}(N)$ there exists $\alpha \in I$ such that $\alpha \prec \beta$. This is equivalent to: for every p-tuple β with $p=\max \{$ length $\alpha: \alpha \in I\}$, there exists $\alpha \in I$ such that $\alpha \prec \beta$. Since I is finite there is an obvious algorithm to check if I is secure.

We say I is tight if for every $\beta \in \mathbf{C}(N)$ there exists exactly one $\alpha \in I$ such that $\alpha \prec \beta$. Again one can always check, in a finite number of steps, if I is tight.

(8) Proposition

(i) The following are equivalent
(1) $\hat{I}=\mathbf{C}(N)$,
(2) $\mathbf{C}(N)=\bigcup_{\alpha \in I} \alpha^{*}$,
(3) I is secure.
(ii) The following are equivalent:
(1) Each member of $\mathbf{C}(N)$ has a unique decomposition of the form $\alpha_{1} \ldots \alpha_{q} \ldots$, with $\alpha_{i} \in I$,
(2) $\mathbf{C}(N)=\bigvee_{\alpha \in I} \alpha^{*}$ (disjoint union),
(3) I is tight.

Proof. In both cases the implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i) are clear.
(9) One can check that I is tight iff I is essential and satisfies the tree condition, in the sense of [OP, III].
2.2. Maps in Metric Spaces. If $F: X \rightarrow X$, then we define the Lipschitz constant of F by

$$
\operatorname{Lip} F=\sup _{x \neq y} \frac{d(F(x), F(y))}{d(x, y)} .
$$

Of course if $\operatorname{Lip} F=\lambda$, then $d(F(x), F(y)) \leq \lambda d(x, y)$ for all $x, y \in X$, and moreover $\operatorname{Lip} F$ is the least such λ. We say F is Lipschitz if $\operatorname{Lip} F<\infty$ and F is a contraction if $\operatorname{Lip} F<1$.
(1) It is a standard fact that every contraction map (in a complete metric space) has a unique fixed point.
(2) Definition. Suppose $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ is a finite family of maps $S_{i}: X \rightarrow$ X. Then $S_{i_{1} \ldots i_{p}}=S_{i_{1}} \circ \cdots \circ S_{i_{p}}$.
2.3. Similitudes. $S: X \rightarrow X$ is a similitude if $d(S(x), S(y))=r d(x, y)$ for all $x, y \in X$ and some fixed r.

$$
\begin{aligned}
& \boldsymbol{\mu}_{r}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \text { is the homothety } \boldsymbol{\mu}_{r}(x)=r x(r \geq 0) . \\
& \boldsymbol{\tau}_{b}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \text { is the translation } \boldsymbol{\tau}_{b}(x)=x-b .
\end{aligned}
$$

(1) Proposition. $S: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a similitude iff $S=\boldsymbol{\mu}_{r} \circ \boldsymbol{\tau}_{b} \circ O$ for some homothety $\boldsymbol{\mu}_{r}$, translation $\boldsymbol{\tau}_{b}$, and orthonormal transformation O.

Proof. The "only if" is clear.
Conversely, let S be a similitude, Lip $S=r \neq 0$. Let $g(x)=r^{-1}(S(x)-S(0))$. Then g is an isometry fixing 0 .

Since

$$
\begin{aligned}
(x, y) & =\frac{1}{2}\left[\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}\right] \\
& =\frac{1}{2}\left[[d(0, x)]^{2}+[d(0, y)]^{2}-[d(x, y)]^{2}\right]
\end{aligned}
$$

it follows g preserves inner products.
Let $\left\{e_{i}: 1 \leq i \leq N\right\}$ be an orthonormal basis for \mathbf{R}^{n}. Then $\left\{g\left(e_{i}\right): 1 \leq i \leq N\right\}$ is also on orthonormal basis, and hence

$$
g(x)=\sum_{i=1}^{n}\left(g(x), g\left(e_{i}\right)\right) g\left(e_{i}\right)=\sum_{i=1}^{n}\left(x, e_{i}\right) g\left(e_{i}\right)
$$

since g preserves inner products. It follows g is linear and so is an orthonormal transformation.

Since

$$
S(x)=r g(x)+S(0)=r\left(g(x)+r^{-1} S(0)\right)
$$

it follows

$$
S=\boldsymbol{\mu}_{r} \circ \boldsymbol{\tau}_{-r^{-1} S(0)} \circ g
$$

and we are done.
(2) Remark. The same proof works in a Hilbert space to show that S is a similitude iff $S=\boldsymbol{\mu}_{r} \circ \boldsymbol{\tau}_{b} \circ O$, where now O is a unitary transformation.
(3) Convention. For the rest of this paper, unless mentioned otherwise, all similitudes are contractions.
(4) Returning to the case $\left(\mathbf{R}^{n}, d\right)$, let the similitude S have fixed point a, let $\operatorname{Lip} S=r$, and let O be the orthonormal transformation given by $O(x)=$ $r^{-1}[S(x+a)-a]$ (orthonormal since the origin is clearly fixed and O is clearly an isometry, now use (1)).

Then

$$
S(x+a)=r O(x)+a,
$$

so

$$
S(x)=r O(x-a)+a,
$$

and hence

$$
S=\boldsymbol{\tau}_{a}^{-1} \circ \boldsymbol{\mu}_{r} \circ O \circ \boldsymbol{\tau}_{a}=\left(\boldsymbol{\tau}_{a}^{-1} \circ \boldsymbol{\mu}_{r} \circ \boldsymbol{\tau}_{a}\right) \circ\left(\boldsymbol{\tau}_{a}^{-1} \circ O \circ \boldsymbol{\tau}_{a}\right),
$$

so that S may be conveniently thought of as an orthonormal transformation about a followed by a homothety about a. We write

$$
S=(a, r, O)
$$

and say that S is in canonical form. a and r are uniquely determined by S, and so is O if $r \neq 0$.

If $S_{1}=\left(a_{1}, r_{1}, O_{1}\right), S_{2}=\left(a_{2}, r_{2}, O_{2}\right)$, then $S_{1} \circ S_{2}=(a, r, O)$ where $r=r_{1} r_{2}$ and $O=O_{1} \circ O_{2}$. However the expression for a is not as simple, a calculation gives

$$
a=a_{2}+\left(I-r_{1} r_{2} O_{1} O_{2}\right)^{-1}\left(I-r_{1} O_{1}\right)\left(a_{2}-a_{1}\right) .
$$

2.4. Hausdorff Metric. If $x \in X, A \subset X$, define the distance between x and A by

$$
d(x, A)=\inf \{d(x, a): a \in A\} .
$$

If $A \subset X, \varepsilon>0$, define the ε-neighbourhood of A by

$$
A_{\varepsilon}=\{x \in X: d(x, A)<\varepsilon\} .
$$

Thus $A \subset A_{\varepsilon}$.
Let \mathcal{B} be the class of non-empty closed bounded subsets of X. Let \mathcal{C} be the class of non-empty compact subsets.

Define the Hausdorff metric δ on \mathcal{B} by

$$
\delta(A, B)=\sup \{d(a, B), d(b, A): a \in A, b \in B\}
$$

Thus $\delta(A, B)<\varepsilon$ iff $A \subset B_{\varepsilon}$ and $B \subset A_{\varepsilon}$. It is easy to check that δ is a metric on \mathcal{B}.

It follows from $[\mathrm{FH}, 2.10 .21]$ that (\mathcal{B}, δ) is a complete metric space. It also follows that if $K \subset X$ is compact, then $\mathcal{C} \cap\{A: A \subset K\}$ is compact.

Some elementary properties of δ which we will use are: let $F: X \rightarrow X$, then
(i) $\delta(F(A), F(B)) \leq \operatorname{Lip}(F) \delta(A, B)$,
(ii) $\delta\left(\bigcup_{i \in I} A_{i}, \bigcup_{i \in I} B_{i}\right) \leq \sup _{i \in I} \delta\left(A_{i}, B_{i}\right)$.

2.5. Measures.

(1) A measure μ on a set X is a map $\mu: \mathcal{P}(X)=\{A: A \subset X\} \rightarrow[0, \infty]$ such that
(i) $\mu(\emptyset)=0$,
(ii) $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right), \quad E_{i} \subset X$.

It follows $A \subset B$ implies $\mu(A) \leq \mu(B)$. Thus μ is what is often called an outer measure. One says A is measurable iff $\mu(T)=\mu(T \cap A)+\mu(T \sim A)$ for all $T \subset X$. The family of measurable sets forms a σ-algebra. μ is a finite measure if $\mu(X)<\infty$. If $A \subset X, \mu\lfloor A$ is the measure defined by $\mu\lfloor A(E)=\mu(A \cap E)$.

From now on, $X=(X, d)$ is a complete metric space. One says that μ is Borel regular iff all Borel sets are measurable and for each $A \subset X$ there exists a Borel set $B \supset A$ with $\mu(A)=\mu(B)$. If μ is finite and Borel regular, it follows from [FH, 2.2.2.] that for arbitrary Borel sets $E \subset X$,
(i) $\mu(E)=\sup \{\mu(K): E \supset K$ closed $\}$,
(ii) $\mu(E)=\inf \{\mu(V): E \subset V$ open $\}$.
(2) We define the support of μ to be the closed set

$$
\operatorname{spt} \mu=X \sim \bigcup\{V: V \text { open, } \mu(V)=0\}
$$

Define the mass of μ by

$$
\mathbf{M}(\mu)=\mu(X)
$$

Define \mathcal{M} to be the set of Borel regular measures having bounded support and finite mass.

Define

$$
\mathcal{M}^{1}=\{\mu \in \mathcal{M}: \mathbf{M}(\mu)=1\}
$$

For $a \in X$ define $\delta_{a}=[[a]] \in \mathcal{M}^{1}$ by $\delta_{a}(A)=1$ if $a \in A, \delta_{a}(A)=0$ if $a \notin A$.
(3) Let $\mathcal{B C}(X)=\{f: X \rightarrow R: f$ is continuous and bounded on bounded subsets $\}$. For $\mu \in \mathcal{M}, \phi \in \mathcal{B C}(X)$, define $\mu(\phi)=\int \phi d \mu$. Then $\mu: \mathcal{B C} \rightarrow[0, \infty), \mu$ is linear, and μ is positive (i.e. $\phi(x) \geq 0$ for all x implies $\mu(\phi) \geq 0$).

If $f: X \rightarrow X$ is continuous and sends bounded sets to bounded sets (e.g. if f is Lipschitz), then we define $f_{\#}: \mathcal{M} \rightarrow \mathcal{M}$ by $f_{\#} \mu(E)=\mu\left(f^{-1}(E)\right)$. Equivalently $f_{\#} \mu(\phi)=\mu(\phi \circ f)$. Notice that $\mathbf{M}\left(f_{\#} \mu\right)=\mathbf{M}(\mu)$.

We define the weak topology on \mathcal{M} by taking as a sub-basis all sets of the form $\{\mu: a<\mu(\phi)<b\}$, for arbitrary real $a<b$ and arbitrary $\phi \in \mathcal{B C}(X)$. It follows $\mu_{i} \rightarrow \mu$ in the weak topology iff $\mu_{i}(\phi) \rightarrow \mu(\phi)$ for all $\phi \in \mathcal{B C}(X)$.

2.6. Hausdorff Measure.

(1) Let the real number $k \geq 0$ be fixed. For every $\delta>0$ and $E \subset X$ we define

$$
\begin{aligned}
& \mathcal{H}_{\delta}^{k}(E)=\inf \left\{\sum_{i=1}^{\infty} \boldsymbol{\alpha}_{k} 2^{-k}\left(\operatorname{diam} E_{i}\right)^{k}: E \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam} E_{i} \leq \delta\right\} \\
& \mathcal{H}^{k}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{k}(E)=\sup _{\delta \geq 0} \mathcal{H}_{\delta}^{k}(E)
\end{aligned}
$$

$\mathcal{H}^{k}(E)$ is called the Hausdorff k-dimensional measure of E. A reference is [FH, 2.10.3]. $\boldsymbol{\alpha}_{k}$ is a suitable normalising constant. If k is an integer, $\boldsymbol{\alpha}_{k}=\mathcal{L}^{k}\left\{x \in \mathbf{R}^{k}\right.$: $|x| \leq 1\}$. For arbitrary k we define $\boldsymbol{\alpha}_{k}=\Gamma\left(\frac{1}{2}\right)^{k} / \Gamma\left(\frac{k}{2}+1\right)$. The particular value of $\boldsymbol{\alpha}_{k}$ for non-integer k will not be important. The value of $\mathcal{H}^{k}(E)$, but not that of $\mathcal{H}_{\delta}^{k}(E)$, remains unchanged if we restrict the E_{i} to be open (or closed, or convex).
\mathcal{H}^{k} is a Borel regular measure, but \mathcal{H}^{k} is not normally finite on bounded sets. If $X=\mathbf{R}^{n}$ then $\mathcal{H}^{n}=\mathcal{L}^{n}$. \mathcal{H}^{0} is counting measure. If $f: A \subset \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ is C^{1} and one-one, then $\mathcal{H}^{m}(f(A))=\int_{A} J(f) d \mathcal{L}^{m}$, where $J(f)$ is the Jacobian. Thus \mathcal{H}^{k} agrees with usual notions of k-dimensional volume on "nice" sets in case k is an integer.

If $F: X \rightarrow X$ is Lipschitz, then $\mathcal{H}^{k}(F(A)) \leq(\operatorname{Lip} F)^{k} \mathcal{H}^{k}(A)$. If F is a similitude, $F_{\#} \mathcal{H}^{k}=(\operatorname{Lip} F)^{-k} \mathcal{H}^{k}$.

For each $E \subset X$ there is a unique real number k, called the Hausdorff dimension of E, written $\operatorname{dim} E$, such that $\mathcal{H}^{\alpha}(E)=\infty$ if $\alpha<k, \mathcal{H}^{\alpha}(E)=0$ if $\alpha>k$. $\mathcal{H}^{k}(E)$ can take any value in $[0, \infty]$.
(2) Suppose $S: X \rightarrow X$ is a similitude with $\operatorname{Lip} S=r$. Then $\mathcal{H}^{k}\lfloor S(A)=$ $r^{k} S_{\#}\left(\mathcal{H}^{k}\lfloor A)\right.$. For $\left(\mathcal{H}^{k}\lfloor S(A))(E)=\mathcal{H}^{k}(S(A) \cap E)=\mathcal{H}^{k}\left(S\left(A \cap S^{-1}(E)\right)\right)=\right.$ $r^{k} \mathcal{H}^{k}\left(A \cap S^{-1}(E)\right)=r^{k}\left(\mathcal{H}^{k}\lfloor A)\left(S^{-1}(E)\right)=r^{k} S_{\#}\left(H^{k}\lfloor A)(E)\right.\right.$.
(3) The lower (upper) k-dimensional density of the set A at the point x is defined respectively to be

$$
\begin{aligned}
\theta_{*}^{k}(A, x) & =\liminf _{r \rightarrow 0} \frac{\mathcal{H}^{k}(A \cap \mathbf{B}(x, r))}{\boldsymbol{\alpha}_{k} r^{k}} \\
\theta^{* k}(A, x) & =\limsup _{r \rightarrow 0} \frac{\mathcal{H}^{k}(A \cap \mathbf{B}(x, r))}{\boldsymbol{\alpha}_{k} r^{k}}
\end{aligned}
$$

If they are equal, their common value is called the k-dimensional density of A at x, and is written $\theta^{k}(A, x)$.

Likewise, for μ a measure on X we define

$$
\begin{aligned}
& \theta_{*}^{k}(\mu, x)=\liminf _{r \rightarrow 0} \frac{\mu(\mathbf{B}(x, r))}{\boldsymbol{\alpha}_{k} r^{k}} \\
& \theta^{* k}(\mu, x)=\limsup _{r \rightarrow 0}^{\operatorname{lim(B}(x, r))} \\
& \boldsymbol{\alpha}_{k} r^{k}
\end{aligned},
$$

and $\theta^{k}(\mu, x)$ to be their common value if both are equal. Thus $\theta_{*}^{k}(A, x)=\theta_{*}^{k}\left(\mathcal{H}^{k}\lfloor A, x)\right.$, and similarly for $\theta^{* k}, \theta^{k}$.

Upper densities turn out to be more important than lower densities. The main results we will need are that for $\mu \in \mathcal{M}$,
(i) $\theta^{* k}(\mu, a) \geq \lambda$ for all $a \in A$ implies $\mathcal{H}^{k}(A) \leq \lambda^{-1} \mu(A)$,
(ii) $\theta^{* k}(\mu, a) \leq \lambda$ for all $a \in A$ implies $\mathcal{H}^{k}(A) \geq 2^{-k} \lambda^{-1} \mu(A)$.

In particular if $0<\mu(A)<\infty$, and the upper density is bounded away from 0 and ∞, this enables us to establish that $0<\mathcal{H}^{k}(A)<\infty$. For a reference see [FH, 2.10.19 (1), (3)].
2.7. Geometric Measure Theory. We will briefly sketch the ideas from geometric measure theory needed for $\S 6$. A complete treatment is [FH], in particular Chapter 4, and a good exposition of the main results is in [FH1]. At a number of places we have found it convenient to abbreviate the standard notation.
(1) Suppose $m \geq 0$ is a positive integer. A set $E \subset \mathbf{R}^{n}$ is m-rectifiable iff E is \mathcal{H}^{m}-measurable, $\mathcal{H}^{m}(E)<\infty$, and there exist m-dimensional C^{1} manifolds $\left\{M_{i}\right\}_{i=1}^{\infty}$ in \mathbf{R}^{n} such that $\mathcal{H}^{m}\left(E \sim \bigcup_{i-1}^{\infty} M_{i}\right)=0$. (Here we differ somewhat from the convention of $[\mathrm{FH}])$. For \mathcal{H}^{m} a.a. $x \in E$ the tangent spaces at x to distinct M_{i} containing x are equal. Let $\overleftrightarrow{E}_{x}$ be this tangent space where it exists.
(2) Suppose now we are given
(1) a bounded m-rectifiable set E with $m \geq 1$,
(2) a multiplicity function θ, i.e. an \mathcal{H}^{m}-measurable function θ with domain E and range a subset of the positive integers, such that $\int_{E} \theta d \mathcal{H}^{m}<\infty$,
(3) an orientation \vec{T}, i.e. an \mathcal{H}^{m}-measurable function \vec{T} with domain E such that for \mathcal{H}^{m} a.a. $x \in E, \vec{T}(x)$ is one of the two simple unit m-vectors associated with $\overleftrightarrow{E}_{x}$
With the above ingredients we define a linear operator on $C^{\infty} m$-forms ϕ by

$$
T(\phi)=\int_{E} \theta(x)\langle\vec{T}(x), \phi(x)\rangle d \mathcal{H}^{m}
$$

This generalises the notion of integration over an oriented manifold. The set of all such operators is called the set of m-dimensional rectifiable currents. A 0dimensional rectifiable current is defined to be a linear operator T on C^{∞} functions (i.e. 0-forms) such that

$$
T(\phi)=\sum_{i=1}^{r} \lambda_{i} \phi\left(a_{i}\right)
$$

where $r \geq 0, \lambda_{1}, \ldots, \lambda_{r}$ are integers, and $a_{1}, \ldots, a_{r} \in \mathbf{R}^{n}$. Thus T corresponds to a finite number of points with integer multiplicities. T is written $\sum_{i=1}^{r} \lambda_{i}\left[\left[a_{i}\right]\right]$.

The set of m-dimensional rectifiable currents forms an abelian group in a natural way. It is denoted \mathcal{R}_{m}.
(3) For each $T \in \mathcal{R}_{m}, m \geq 1$, we define a linear operator ∂T on $C^{\infty}(m-1)$ forms by Stokes formula:

$$
\partial T(\phi)=T(d \phi)
$$

If T corresponds to a compact oriented manifold with boundary, then ∂T corresponds to the oriented boundary. Clearly $\partial \partial T=0$. However it is not necessarily true that $\partial T \in \mathcal{R}_{m-1}$. Accordingly we define the abelian group of m-dimensional integral currents by

$$
\begin{aligned}
\mathbf{I}_{m} & =\left\{T \in \mathcal{R}_{m}: \partial T \in \mathcal{R}_{m-1}\right\} \quad \text { if } m \geq 0, \\
\mathbf{I}_{0} & =\mathcal{R}_{0} .
\end{aligned}
$$

Clearly $\mathbf{I}_{m} \subset \mathcal{R}_{m}$. For $m \geq 1, \partial: \mathbf{I}_{m} \rightarrow \mathbf{I}_{m-1}$, and is a group homomorphism.
We can also enlarge \mathcal{R}_{m} to the abelian group of m-dimensional integral flat chains, or m-chains for short, defined by

$$
\mathcal{F}_{m}=\left\{R+\partial S: R \in \mathcal{R}_{m}, S \in \mathcal{R}_{m+1}\right\} .
$$

In the natural way ∂ is extendible to a group homomorphism $\partial: \mathcal{F}_{m} \rightarrow \mathcal{F}_{m-1}$ if $m \geq 1$.
(4) For $T \in \mathcal{R}_{m}$ we define the mass of T by

$$
\begin{array}{r}
\mathbf{M}(T)=\int_{E} \theta d \mathcal{H}^{m} \quad \text { if } m \geq 1 \\
\mathbf{M}\left(\sum_{i=1}^{r} \lambda_{i}\left[\left[a_{i}\right]\right]\right)=\sum_{i=1}^{r}\left|\lambda_{i}\right| .
\end{array}
$$

One can extend the definition of \mathbf{M} to \mathcal{F}_{m}, but then one has [FH, 4.2.16].

$$
\begin{aligned}
\mathcal{R}_{m} & =\mathcal{F}_{m} \cap\{T: \mathbf{M}(T)<\infty\} \\
\mathbf{I}_{m} & =\mathcal{R}_{m} \cap\{T: \mathbf{M}(\partial T)<\infty\}
\end{aligned}
$$

One now defines the integral flat "norm" on \mathcal{F}_{m} by

$$
\mathcal{F}(T)=\inf \{\mathbf{M}(R)+\mathbf{M}(S): T=R+\partial S\}
$$

and the integral flat metric by

$$
\mathcal{F}\left(T_{1}, T_{2}\right)=\mathcal{F}\left(T_{1}-T_{2}\right)
$$

Figure $2.1 \quad \mathcal{F}\left(T_{1}, T_{2}\right)=\mathcal{F}\left(T_{1}-T_{2}\right)$.
Thus T_{1} and T_{2} of Figure 2.1 are close in the \mathcal{F}-metric since there exist R and S of small mass such that $T_{1}-T_{2}=R+\partial S . \partial$ is continuous in the \mathcal{F}-metric, indeed $\mathcal{F}\left(\partial T_{1}, \partial T_{2}\right) \leq \mathcal{F}\left(T_{1}, T_{2}\right)$.
(5) The m-dimensional integral flat chains generalise the notion of an oriented m-dimensional C^{1} manifold, but retain many of the desirable properties and at the same time are closed under various useful operations.

Thus \mathcal{F}_{m} is a complete metric space under \mathcal{F} [FH, 4.1.24]. The infimum in the definition of \mathcal{F} is always realised [FH, 4.2.18].

Convergence in \mathbf{M} implies convergence in \mathcal{F}, but certainly not conversely. If $T_{j} \rightarrow T$ in \mathcal{F}, then $\mathbf{M}(T) \leq \liminf \mathbf{M}\left(T_{j}\right)$.

For integral currents there is the important compactness theorem [FH, 4.2.17]: if $K \subset \mathbf{R}^{n}$ is compact and $c<\infty$, then

$$
\left\{T \in \mathbf{I}_{m}: \mathbf{M}(T)<c, \mathbf{M}(\partial T)<c, \text { spt } T \subset K\right\}
$$

is compact in the \mathcal{F}-topology. For $T \in \mathcal{F}_{m}$ we define spt T, the support of T, to be the intersection of all closed sets C such that spt $\phi \cap C=\emptyset$ implies $T(\phi)=0$.

If $T \in \mathcal{F}_{m}, m \geq 1$, and $\partial T=0$ (or if $T \in \mathcal{F}_{0}$), we say T is an m-dimensional integral flat cycle or m-cycle for short. If $m \geq 1$, it follows by a cone construction [FH, 4.1.11] that $T=\partial S$ for some $S \in \mathcal{F}_{m+1}$. Furthermore, one has the isoperimetric inequality [FH, 4.2.10]: for $m \geq 1$ there is a constant $\gamma=\gamma(m, n)$ depending only on m and n, such that if $T \in \mathbf{I}_{m}$ and $\partial T=0$, then $T=\partial S$ for some $S \in \mathbf{I}_{m+1}$ with $\mathbf{M}(S) \leq \gamma \mathbf{M}(T)^{m+1 / m}$.

If $T \in \mathcal{F}_{m}$ and $T=\partial S$ for some $S \in \mathcal{F}_{m+1}$, we say T is an m-dimensional integral flat boundary, or m-boundary for short. Thus if $m \geq 1$, every m-cycle is an m-boundary.
(6) If $T \in \mathcal{F}_{m}$ and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is Lipschitz and proper, then one defines $f_{\#} T \in \mathcal{F}_{m}[\mathrm{FH}, 4.1 .14,4.1 .24]$. In case T corresponds to an oriented manifold and
f is C^{1}, then $f_{\#} T$ corresponds to the oriented image of T under f, with appropriate multiplicities if f is not one-one.

The properties of $f_{\#} T$ we will need are:
(a) $f_{\#} \partial T=\partial f_{\#} T$;
(b) $f: \mathcal{F}_{m} \rightarrow \mathcal{F}_{m}$, is linear, and is continuous in the \mathcal{F}-metric;
(c) if $\operatorname{Lip} f=r$ and $T \in \mathcal{F}_{m}$, then $\mathbf{M}\left(f_{\#} T\right) \leq r^{m} \mathbf{M}(T)$ and $\mathcal{F}\left(f_{\#} T\right) \leq$ $\max \left\{r^{m}, r^{m+1}\right\} \mathcal{F}(T)$;
(d) $\operatorname{spt} f_{\#} T \subset f(\operatorname{spt} T)$.
(7) One can generalise from the integral flat chains to the so-called flat chains, and even more generally to the currents of de Rham. However, one loses the useful geometric properties of the integral flat chains. For a full treatment of all these subjects see [FH].

3. Invariant Sets

We follow the notation of 2.2 , and the other subsections of 2 as necessary. $\mathcal{S}=$ $\left\{S_{1}, \ldots, S_{N}\right\}$ is a set of contraction maps on the complete metric space (X, d). Lip $S_{i}=r_{i} . s_{i_{1} \ldots i_{p}}$ is the fixed point of $S_{i_{1} \ldots i_{p}}$.

We show the existence and uniqueness of a compact set invariant with respect to S, and discuss its properties.

We suggest the reader considers Examples 3.3 for motivation.

3.1. Elementary Proof of Existence and Uniqueness, and Discussion of Properties.

(1) For arbitrary $A \subset X$ let $\mathcal{S}(A)=\bigcup_{i=1}^{N} S_{i}(A)$. Let $\mathcal{S}^{0}(A)=A, \mathcal{S}^{1}(A)=\mathcal{S}(A)$, $\mathcal{S}^{p}(A)=\mathcal{S}\left(\mathcal{S}^{p-1}(A)\right)$ for $p \geq 2$. We will often use the notation $A_{i_{1} \ldots i_{p}}=S_{i_{1} \ldots i_{p}}(A)$. Notice $\mathcal{S}^{p}(A)=\bigcup_{i_{1}, \ldots, i_{p}} A_{i_{1} \ldots i_{p}}$. Notice also that $\operatorname{diam}\left(A_{i_{1} \ldots i_{p}}\right) \leq r_{i_{1}} \cdot \ldots \cdot r_{i_{p}}$ diam $(A) \rightarrow 0$ as $p \rightarrow \infty$, provided A is bounded.
(2) Definition. A is invariant (with respect to \mathcal{S}) if $A=\mathcal{S}(A)$.

(3) Theorem and Definitions.

(i) There is a unique closed bounded set K which is invariant with respect to \mathcal{S}. Thus $K=\bigcup_{i=1}^{N} K_{i}$. Moreover K is compact.
(ii) $K_{i_{1} \ldots i_{p}}=\bigcup_{i_{p+1}=1}^{N} K_{i_{1} \ldots i_{p} i_{p+1}}$.
(iii) $K \supset K_{i_{1}} \supset \cdots \supset K_{i_{1} \ldots i_{p}} \supset \cdots$, and $\bigcap_{p=1}^{\infty} K_{i \ldots i_{p}}$ is a singleton whose member is denoted $k_{i_{1} \ldots i_{p} \ldots} . K$ is the union of these singletons.
(iv) $k_{\hat{i}_{1} \ldots \hat{i}_{p}}=s_{i_{1} \ldots i_{p}}$, and in particular $s_{i_{1} \ldots i_{p}} \in K$ (recall 2.1(5)). Also $k_{i_{1} \ldots i_{p} \ldots}=$ $\lim _{p \rightarrow \infty} s_{i_{1} \ldots i_{p}}$, and in particular this limit exists.
(v) K is the closure of the set of fixed points of the $S_{i_{1} \ldots i_{p}}$.
(vi) $S_{j_{1} \ldots j_{q}}\left(K_{i_{1} \ldots i_{p}}\right)=K_{j_{1} \ldots j_{q} i_{1} \ldots i_{p}}, S_{j_{1} \ldots j_{q}}\left(k_{i_{1} \ldots i_{p} \ldots}\right)=k_{j_{1} \ldots j_{q} i_{1} \ldots i_{p} \ldots}$.
(vii) The coordinate map $\boldsymbol{\pi}: \mathbf{C}(N) \rightarrow K$ given by $\boldsymbol{\pi}(\alpha)=k_{\alpha}$ is a continuous map onto K.
(viii) If A is a non-empty bounded set, then $d\left(A_{i_{1} \ldots i_{p}}, k_{i_{1} \ldots i_{p} \ldots}\right) \rightarrow 0$ uniformly as $p \rightarrow \infty$. In particular $\mathcal{S}^{p}(A) \rightarrow K$ in the Hausdorff metric.
(4) Proof of Uniqueness. We first remark that (i) and (viii) are established in 3.2 independently of the following.

Assume now that K is a closed bounded set invariant with respect to \mathcal{S}, and observe the following consequences.

$$
\begin{aligned}
K & =\bigcup_{i=1}^{N} S_{i}(K)=\bigcup_{i, j} S_{i}\left(S_{j} K\right)=\bigcup_{i, j} S_{i j}(K)=\bigcup_{i, j} K_{i j} \\
& \ldots \\
& =\bigcup_{i_{1}, \ldots, i_{p}} K_{i_{1} \ldots i_{p}} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
K_{i_{1} \ldots i_{p}} & =S_{i_{1} \ldots i_{p}}(K)=S_{i_{1} \ldots i_{p}}\left(\bigcup_{i_{p+1}=1}^{N} S_{i_{p+1}}(K)\right) \\
& =\bigcup_{i_{p+1}=1}^{N} S_{i_{1} \ldots i_{p+1}}(K)=\bigcup_{i_{p+1}=1}^{N} K_{i_{1} \ldots i_{p} i_{p+1}}
\end{aligned}
$$

Thus $K \supset K_{i_{1}} \supset K_{i_{1} i_{2}} \supset \cdots \supset K_{i_{1} \ldots i_{p}} \supset \cdots$, and since $\operatorname{diam}\left(K_{i_{1} \ldots i_{p}}\right)$ as $p \rightarrow \infty$, $\bigcap_{p} K_{i_{1} \ldots i_{p}}$ is a singleton (by completeness of X) whose unique member we denote $k_{i_{1} \ldots i_{p} \ldots}$. Thus we have established (ii) and (iii) under the given assumptions on K.

The first part of (vi) is immediate, since

$$
S_{j_{1} \ldots j_{q}}\left(K_{i_{1} \ldots i_{p}}\right)=S_{j_{1} \ldots j_{q}}\left(S_{i_{1} \ldots i_{p}}(K)\right)=S_{j_{1} \ldots j_{q} i_{1} \ldots i_{p}}(K)=K_{j_{1} \ldots j_{q} i_{1} \ldots i_{p}}
$$

The second part follows, since

$$
S_{j_{1} \ldots j_{q}}\left(k_{i_{1} \ldots i_{p} \ldots}\right) \in S_{j_{1} \ldots j_{q}} \bigcap_{p=1}^{\infty} K_{j_{1} \ldots i_{p}}=\bigcap_{p=1}^{\infty} K_{j_{1} \ldots j_{q} i_{1} \ldots i_{p}}=k_{j_{1} \ldots j_{q} i_{1} \ldots i_{p} \ldots} .
$$

Since $S_{i_{1} \ldots i_{p}}\left(k_{\hat{i}_{1} \ldots \hat{i}_{p}}\right)=k_{\hat{i}_{1} \ldots \hat{i}_{p}}$ by the above, it follows $k_{\hat{i}_{1} \ldots \hat{i}_{p}}$ is the unique fixed point $s_{i_{1} \ldots i_{p}}$ of $S_{i_{1} \ldots i_{p}}$. It follows both $s_{i_{1} \ldots i_{p}}, k_{i_{1} \ldots i_{p} \ldots} \in K_{i_{1} \ldots i_{p}}$, and hence since $\lim _{p \rightarrow \infty} \operatorname{diam}\left(K_{i_{1} \ldots i_{p}}\right)=0$, that $\lim _{p \rightarrow \infty} s_{i_{1} \ldots i_{p}}=k_{i_{1} \ldots i_{p} \ldots}$. This establishes (iv), and (v) follows from (iv). Notice we have established the uniqueness of K (since K is the union of singletons, each of which is the limit of a certain sequence of fixed points of the $\left.S_{i_{1} \ldots i_{p}}\right)$.

To establish (vii), and hence that K is compact (being the continuous image of a compact set), let $\boldsymbol{\pi}$ be as in (vii). Suppose $\alpha=\left\langle\alpha_{1} \ldots \alpha_{p} \ldots\right\rangle \in \mathbf{C}(N)$ and $\varepsilon>0$. Then $\boldsymbol{\pi}(\alpha)=k_{\alpha_{1} \ldots \alpha_{p} \ldots}$ and so there is a q such that $K_{\alpha_{1} \ldots \alpha_{q}} \subset\{x \in K$: $d(x, \boldsymbol{\pi}(\alpha))<\varepsilon\}$. Since $K_{\alpha_{1} \ldots \alpha_{q}}$ is the image of the open set $\left\{\beta: \beta_{i}=\alpha_{i}\right.$ if $\left.i \leq q\right\}$, it follows $\boldsymbol{\pi}$ is continuous.

To prove (viii) suppose A is non-empty and bounded. Then

$$
\begin{aligned}
d\left(A_{i_{1} \ldots i_{p}}, k_{i_{1} \ldots i_{p} \ldots}\right) & =d\left(S_{i_{1} \ldots i_{p}}(A), S_{i_{1} \ldots i_{p}}\left(k_{i_{p+1} \ldots}\right)\right) \\
& \leq r_{i_{1}} \cdot \ldots \cdot r_{i_{p}} d\left(A, k_{i_{p+1} \ldots}\right) \\
& \leq r_{i_{1}} \cdot \ldots \cdot r_{i_{p}} \sup \{d(a, b): a \in A, b \in K\} \\
& \leq \operatorname{Constant}\left(\max _{1 \leq i \leq N} r_{i}\right)^{p} \\
& \rightarrow 0 \quad \text { as } p \rightarrow \infty .
\end{aligned}
$$

All that remains now is to prove the existence of a closed bounded invariant set. But notice that we know from (v) what this set must be.
(5) Proof of Existence. First we need to establish the following lemma.

Lemma. If $\left\{S_{1}, \ldots, S_{N}\right\}$ is a set of contraction maps on a complete metric (X, d), and $s_{i_{1} \ldots i_{p}}$ is the fixed point of $S_{i_{1} \ldots i_{p}}=S_{i_{1}} \circ \cdots \circ S_{i_{p}}$ then for each sequence $i_{1} \ldots i_{p} \ldots, \lim _{p \rightarrow \infty} s_{i_{1} \ldots i_{p}}$ exists.

Proof. Let $\lambda=\max _{1 \leq i, j \leq N} d\left(s_{i}, s_{j}\right)$, and let $R=\lambda(1-r)^{-1}$ where $r=\max \left\{r_{i}=\right.$ $\left.\operatorname{Lip}\left(S_{i}\right): 1 \leq i \leq N\right\}$.

Then $\bigcup_{i=1}^{N} B\left(s_{i}, r R\right) \subset \bigcap_{i=1}^{N} B\left(s_{i}, R\right)=C$, say. For if $d\left(s_{i}, x\right) \leq r R$ then $d\left(s_{j}, x\right) \leq \lambda+r R=\lambda+r \lambda(1-r)^{-1}=\lambda(1-r)^{-1}=R$. Thus $S_{i} C \subset C$ for $i=1, \ldots, N$, and so $C \supset S_{i_{1}}(C) \supset S_{i_{1} i_{2}}(C) \supset \cdots \supset S_{i_{1} \ldots i_{p}}(C) \supset \cdots$, i.e. $C \supset$ $C_{i_{1}} \supset C_{i_{1} i_{2}} \supset \cdots \supset C_{i_{1} \ldots i_{p}} \supset \cdots$. But the fixed point $s_{i_{1} \ldots i_{p}}$ must lie in $S_{i_{1} \ldots i_{p}}(C)$, and so since $\operatorname{diam}\left(S_{i_{1} \ldots i_{p}}(C)\right) \rightarrow 0$ as $p \rightarrow \infty$ and the $S_{i_{1} \ldots i_{p}}(C)$ are closed, it follows $\lim _{p \rightarrow \infty} s_{i_{1} \ldots i_{p}}$ exist and is the unique member of $\bigcap_{p=1}^{\infty} S_{i_{1} \ldots i_{p}}(C)$.

For $\alpha \in \mathbf{C}(N)$ let $s \alpha=\lim _{p \rightarrow \infty} s_{\alpha_{1} \ldots \alpha_{p}}$, and let $K=\left\{s_{\alpha}: \alpha \in \mathbf{C}(N)\right\}$. Then $S_{i}\left(s_{\alpha}\right)=s_{i \alpha}$, since $S_{i}\left(s_{\alpha}\right) \in S_{i}\left(\bigcap_{p=1}^{\infty} C_{\alpha_{1} \ldots \alpha_{p}}\right)=\bigcap_{p=1}^{\infty} C_{i \alpha_{1} \ldots \alpha_{p}} \ni s_{i \alpha}$ (notice that it is not normally true that $\left.S_{i}\left(s_{\alpha_{1} \ldots \alpha_{p}}\right)=\left(s_{i \alpha_{1} \ldots \alpha_{p}}\right)\right)$. Thus $K=\bigcup_{i=1}^{N} S_{i}(K)=\mathcal{S}(K)$, i.e. K is invariant with respect to \mathcal{S}.

It remains to prove that K is compact. Define $\boldsymbol{\pi}: \mathbf{C}(N) \rightarrow K$ by $\boldsymbol{\pi}(\alpha)=s_{\alpha}$. Since diam (K) is bounded (being a subset of C in the previous lemma) it follows precisely as in the proof of (vii) that $\boldsymbol{\pi}$ is continuous and hence that K is compact. This gives the existence of (i) and completes the proof of the theorem.
(6) Definition. The compact set invariant under \mathcal{S} is denoted by $|\mathcal{S}|$.
(7) Non-compact invariant sets. There are always non-bounded invariant sets, \mathbf{R}^{n} being a trivial example.

For any $A, \mathcal{S}(A)=A$ implies $\mathcal{S}(\bar{A})=\bar{A}$. Thus if A is bounded and invariant, then so is \bar{A}, and hence $\bar{A}=|\mathcal{S}|$ by (3)(i). For example, $\mathcal{S}_{\frac{1}{2}}(0,1)=(0,1)$ where $\mathcal{S}_{\frac{1}{2}}$ is as in 3.3(1).
(8) The following observation is useful. Suppose A is a set such that $\mathcal{S}(A) \subset A$. Then clearly $A \supset \mathcal{S}(A) \supset \mathcal{S}^{2}(A) \supset \cdots \supset \mathcal{S}^{p}(A) \supset \cdots$. If furthermore A is closed and non-empty, then $K(=|\mathcal{S}|) \subset A$, and $K_{i_{1} \ldots i_{p}} \subset A_{i_{1} \ldots i_{p}}$ for all i_{1}, \ldots, i_{p}.

To see this latter, choose $a \in A$. Then by (3)(viii) for each fixed $i_{1}, \ldots, i_{p}, \ldots$, $k_{i_{1} \ldots i_{p} \ldots}=\lim _{p \rightarrow \infty} S_{i_{1} \ldots i_{p}}(a) \in A$. Hence $K \subset A$. Applying $S_{i_{1} \ldots i_{p}}$ to both sides, $K_{i_{1} \ldots i_{p}} \subset A_{i_{1} \ldots i_{p}}$.
(9) If $\sum_{i=1}^{N} r_{i}<1$, then K is totally disconnected. For given $a, b \in K$ select p such that $\lambda\left(\sum_{i_{1}, \ldots, i_{p}} r_{i} \cdot \ldots \cdot r_{i_{p}}\right)=\lambda\left(\sum_{i=1}^{N} r_{i}\right)^{p}<d(a, b)$, where $\lambda=\operatorname{diam} K$. Since $K=\bigcup_{i_{p}, \ldots, i_{p}} K_{i_{1} \ldots i_{p}}$, and $\operatorname{diam} K_{i_{1} \ldots i_{p}}=r_{i} \cdot \ldots \cdot r_{i_{p}} \lambda$, it follows by an elementary argument that a and b are in distinct components of K.
3.2. Convergence in the Hausdorff Metric. We remark that this Section is independent of 3.1(3), (4).

Let \mathcal{B} be the family of closed bounded subsets of X, \mathcal{C} the family of compact subsets. Clearly $\mathcal{S}: \mathcal{B} \rightarrow \mathcal{B}$ and $\mathcal{S}: \mathcal{C} \rightarrow \mathcal{C}$. We have
(1) Theorem. \mathcal{S} is a contraction map on \mathcal{B} (respectively \mathcal{C}) in the Hausdorff metric.

Proof.

$$
\begin{aligned}
\delta(\mathcal{S}(A), \mathcal{S}(B)) & =\delta\left(\bigcup_{i} S_{i}(A), \bigcup_{i} S_{i}(B)\right) \\
& \leq \max _{1 \leq i \leq N} \delta\left(S_{i}(A), S_{i}(B)\right) \\
& \leq\left(\max _{1 \leq i \leq N} r_{i}\right) \delta(A, B) .
\end{aligned}
$$

Existence and uniqueness of a closed bounded invariant set $|\mathcal{S}|$ follow from the contraction mapping principle. Since \mathcal{C} is a closed subset of \mathcal{B}, it follows that $|\mathcal{S}| \in \mathcal{C}$.

Remark added subsequent to publication: As pointed out by a number of people, since $A \in \mathcal{B}$ does not imply $S_{i}(A)$ closed, one should replace $S_{i}(A)$ by its closure in the definition of $\mathcal{S}(A)$, when \mathcal{S} operates on \mathcal{B}. This new map \mathcal{S} has a unique fixed point in \mathcal{B}, which must then agree by uniqueness with the fixed point of \mathcal{S} operating on \mathcal{C}.

3.3. Examples.

(1) Cantor Set. In the notation of 2.3 let

$$
\begin{aligned}
\mathcal{S}_{r}=\left\{S_{1}(r), S_{2}(r)\right\}, & S_{i}(r): \mathbf{R} \rightarrow \mathbf{R} \\
S_{1}(r)=(0, r, I), & S_{2}(r)=(1, r, I)
\end{aligned}
$$

where I is the identity map.

Figure 3.1 The classical Cantor set C.
If $r=\frac{1}{3}$, then $\mathcal{S}_{r}(C)=C$ where C is the classical Cantor set, and so $\left|\mathcal{S}_{\frac{1}{3}}\right|=C$. We have sketched C, more precisely $\mathcal{S}^{3}([0,1])$, in Figure 3.1. Notice the numbering system for the various components $C_{i_{1} \ldots i_{p}}$.

If $0<r<\frac{1}{2}$, then $\left|\mathcal{S}_{r}\right|$ is a generalised Cantor set. It is standard, and a consequence of $5.3(1)(\mathrm{ii})$, that $\operatorname{dim}\left|\mathcal{S}_{r}\right|=\log 2 / \log \left(\frac{1}{r}\right)$.

If $\frac{1}{2} \leq r<1$, then $\mathcal{S}_{r}([0,1])=[0,1]$, and hence $\left|\mathcal{S}_{r}\right|=[0,1]$. Thus different \mathcal{S}_{r} can generate the same set. In this connection see 4.1.
(2) Koch Curve. We refer to Figure 3.2. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be as shown. Let $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ where $S_{i}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the unique similitude mapping $\overrightarrow{a_{1} a_{5}}$ to $\overrightarrow{a_{i} a_{i+1}}$ and having positive determinant (i.e. no reflections).

Figure 3.2 The Koch curve K.
Let $K=|\mathcal{S}|$. Actually Figure 3.2 shows the approximation $\mathcal{S}^{4}\left(\left[a_{1}, a_{5}\right]\right)$ to K. Notice how one finds the components of K, e.g. $K_{331} . S_{i}$ has the fixed point $s_{i}=k_{\hat{i}}$;
$s_{1}=a_{1}, s_{4}=a_{5}$, and s_{2}, s_{3} are shown. Similarly $S_{i j}=S_{i} \circ S_{j}$ has the fixed point $s_{i j}=k_{\hat{i} \hat{j}}$, where s_{23} is shown.

One can visualise $\mathcal{S}^{p}(A)=\bigcup_{i_{1}, \ldots, i_{p}} A_{i_{1} \ldots i_{p}} \rightarrow K$ as $p \rightarrow \infty$, for arbitrary bounded A (e.g. A a singleton).

Now let $\mathcal{S}^{\prime}=\left\{S_{1}^{\prime}, S_{2}^{\prime}\right\}$, where S_{i}^{\prime} is the unique similitude mapping $\overrightarrow{a_{1} a_{5}}$ to $\overrightarrow{a_{1} a_{3}}$ $(i=1), \overrightarrow{a_{3} a_{5}}(i=2)$, having negative determinant (i.e. the S_{i}^{\prime} include a reflection component). Then it follows $\mathcal{S}^{\prime}(K)=K$ and hence $\left|\mathcal{S}^{\prime}\right|=K$. For $S_{1}^{\prime} \circ S_{1}^{\prime}=S_{1}$, $S_{1}^{\prime} \circ S_{2}^{\prime}=S_{2}, S_{2}^{\prime} \circ S_{1}^{\prime}=S_{3}, S_{1}^{\prime} \circ S_{2}^{\prime}=S_{4}$, hence $\left(\mathcal{S}^{\prime}\right)^{2}=\mathcal{S}$, hence $\left|\mathcal{S}^{\prime}\right|$ is fixed by \mathcal{S}, hence $\left|\mathcal{S}^{\prime}\right|=|\mathcal{S}|$ by uniqueness. Thus as in (2), different \mathcal{S} can generate the same set.
(3) Let $M \subset \mathbf{R}^{n}$ be an oriented m-dimensional manifold with oriented boundary N as in Figure 3.3. Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ where $S_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ are contraction maps such that $\sum_{i=1}^{N} S_{i}(N)=N$, taking into account orientation and after allowing cancellation of portions of manifolds having opposite orientation. Obviously such \mathcal{S} are easy to find.

Figure 3.3 $M \subset \mathbf{R}^{3}, M$ has the boundary N. Consider the case where M and N do not lie in a plane.
$|\mathcal{S}|$ will normally have dimension $>m$, and so cannot be an m-dimensional manifold, yet in some sense $|\mathcal{S}|$ is an m-dimensional object with oriented boundary N. We make this precise in $\S 6$, where under mild restrictions on the $S_{i},|\mathcal{S}|$ becomes an integral flat m-chain having N as its boundary.
3.4. Remark. The following gives a curious characterisation of line segments:

A compact connected set $A \subset \mathbf{R}^{n}$ is a line segment iff $A=\mathcal{S}(A)$ for some $\mathcal{S}=$ $\left\{S_{1}, \ldots, S_{N}\right\}$ where $N \geq 2$, the S_{i} are similitudes, Lip $S_{i}=r_{i}$, and $\sum_{i=1}^{N} r_{i}=1$.

Proof. One direction is trivial.
Conversely, suppose $A=\mathcal{S}(A)$ with \mathcal{S} as above. Let $\operatorname{diam} A=d(p, q)$ where $p, q \in A$. By projecting A onto the line segment $\overline{p q}$, one sees that $\mathcal{H}^{1}(A) \geq \operatorname{diam} A$. If $A \neq \overline{p q}$, by taking the nearest point retraction π of A onto a suitably thin solid ellipsoid having p and q as extremal points, one finds $\mathcal{H}^{1}(A) \supsetneqq \mathcal{H}^{1}(\pi(A))$. But $\mathcal{H}^{1}(\pi(A)) \geq \operatorname{diam} A$ as we just saw, and so $\mathcal{H}^{1}(A) \nexists \operatorname{diam} A$ unless $A=\overline{p q}$. One can check $\mathcal{H}^{1}(A) \leq \operatorname{diam} A$ by a covering argument, and so the required result follows.

The above was in response to a query of B. Mandelbrot concerning characterisations of the line - his query in turn arose from some rather vague remarks in a work of Liebniz. F. J. Almgren Jr. suggested a shortening of the original proof.

3.5. Parametrised Curves.

(1) Suppose $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ has the property that

$$
\begin{gathered}
a=s_{1}=\text { fixed point of } S_{1}, \\
b=s_{N}=\text { fixed point of } S_{N}, \\
S_{i}(b)=S_{i+1}(a) \text { if } 1 \leq i \leq N-1,
\end{gathered}
$$

(for example, 3.3(2)). Then one can define a continuous $f:[0,1] \rightarrow|\mathcal{S}|$, with Image $(f)=|\mathcal{S}|$, in a natural way.

For this purpose, fix $0=t_{1}<t_{2}<\cdots<t_{N+1}=1$. Define $g_{i}:\left[t_{i}, t_{i+1}\right] \rightarrow(0,1)$ for $1 \leq i \leq N$ by

$$
g_{i}(x)=\frac{x-t_{i}}{t_{i+1}-t_{i}} .
$$

Let

$$
\mathcal{F}=\mathcal{F}(a, b)=\{f:[0,1] \rightarrow X: f \text { is continuous, } f(0)=a, f(1)=b\}
$$

Define $\mathcal{S}(f)$ for $f \in \mathcal{F}$ by

$$
\mathcal{S}(f)(x)=S_{i} \circ f \circ g_{i}(x) \quad \text { for } x \in\left[t_{i}, t_{i+1}\right], 1 \leq i \leq N
$$

Define a metric \mathcal{P} on \mathcal{F} by

$$
\mathcal{P}\left(f_{1}, f_{2}\right)=\sup \left\{\left|f_{1}(x)-f_{2}(x)\right|: x \in[0,1]\right\}
$$

P is clearly a metric, and is furthermore complete since the uniform limit of continuous functions is continuous.
(2) Proposition. \mathcal{S} is well-defined, $\mathcal{S}: \mathcal{F} \rightarrow \mathcal{F}$, and \mathcal{S} is a contraction map in the metric \mathcal{P}.

Proof. \mathcal{S} is well-defined and $\mathcal{S}(f) \in \mathcal{F}$ if $f \in \mathcal{F}$, since $S_{i} \circ f \circ g_{i}\left(t_{i+1}\right)=S_{i} \circ$ $f(1)=S_{i}(b)=S_{i+1}(a)=S_{i+1} \circ f(0)=S_{i+1} \circ f \circ g_{i+1}\left(t_{i+1}\right)$ for $1 \leq i \leq N-1$, $S_{1} \circ f \circ g_{1}(0)=S_{1} \circ f(0)=S_{1}(a)=a$, and $S_{N} \circ f \circ g_{N}(1)=S_{N} \circ f(1)=S_{N}(b)=b$.

Now suppose $x \in\left[t_{i}, t_{i+1}\right]$ and $f_{1}, f_{2} \in \mathcal{F}$. Then

$$
\begin{aligned}
\left|\mathcal{S}\left(f_{1}\right)(x)-\mathcal{S}\left(f_{2}\right)(x)\right| & =\left|S_{i} \circ f \circ g_{i}(x)-S_{i} \circ f_{2} \circ g_{i}(x)\right| \\
& \leq \operatorname{Lip} S_{i}\left|f_{1}\left(g_{i}(x)\right)-f_{2}\left(g_{i}(x)\right)\right| \\
& \leq \operatorname{Lip} S_{i} \mathcal{P}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

Hence $\mathcal{P}\left(\mathcal{S}\left(f_{1}\right), \mathcal{S}\left(f_{2}\right)\right) \leq r \mathcal{P}\left(f_{1}, f_{2}\right)$, where $r=\max \left\{\operatorname{Lip} S_{i}: 1 \leq i \leq N\right\}$. It follows \mathcal{S} is a contraction map.
(3) Theorem. Under the hypotheses on \mathcal{S} in (1), there is a unique $g \in \mathcal{F}$ such that $\mathcal{S}(g)=g$. Furthermore Image $(g)=|S|$.

Proof. The existence of a unique such g follows from (2).
By construction, Image $\mathcal{S}(f)=\mathcal{S}$ (Image f) for every $f \in \mathcal{F}$. If $\mathcal{S}(g)=g$, this implies Image $g=\mathcal{S}$ (Image g), and hence Image $g=|\mathcal{S}|$ by 3.1(3)(i).
(4) It is often possible to parametrise other invariant sets $|\mathcal{S}| \subset \mathbf{R}$ by maps $g:\left\{x \subset \mathbf{R}^{m}:|x| \leq 1\right\} \rightarrow \mathbf{R}^{n}$ for suitable m, for example $m=2$ in 3.3(3). But if $m>1$ there is a lot of arbitrariness in the selection of the particular parametric map g. It is often better to treat $|\mathcal{S}|$ as an intrinsic " m-dimensional" object in \mathbf{R}^{n} via the notion of an m-dimensional integral flat chain, c.f. 2.7 , and 6 .

4. Invariant Measures

4.1. Motivation. A motivation for this section is the following. In 3.3(1), (2) we saw examples of different families of contractions generating the same set. Yet the \mathcal{S}_{r} of 3.3(1) seem to be different from one another in a way that S and \mathcal{S}^{\prime} of 3.3(2) are not. We make this precise in 4.4(6).

Another motivation is that it will be easier to "use" invariant sets if we can impose additional natural structure on them, in this case a measure.
4.2. Definitions. (X, d) is a complete metric space, $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ is a family of contraction maps. Additionally, we assume the existence of a set $\rho=\left\{\rho_{1}, \ldots, \rho_{N}\right\}$ with $\rho_{i} \in(0,1)$ and $\sum_{i=1}^{N} \rho_{i}=1$. In 5 we will see that in case the S_{i} are similitudes with Lip $S_{i}=r_{i}$, it is natural to take $\rho_{i}=r_{i}^{D}$, where D is the similarity dimension of $S, 5.1(3)$.

We refer back to 2.5 for terminology on measure.
(1) Definition. If $\nu \in \mathcal{M}$ let $(\mathcal{S}, \rho)(\nu)=\sum_{i=1}^{N} \rho_{i} S_{i \#} \nu$. Thus $(\mathcal{S}, \rho)(\nu)(A)=$ $\sum_{i=1}^{N} \rho_{i} \nu\left(S_{i}^{-1}(A)\right)$. Let $(\mathcal{S}, \rho)^{0}(\nu)=\nu,(\mathcal{S}, \rho)^{1}(\nu)=(\mathcal{S}, \rho)(\nu)$, and $(\mathcal{S}, \rho)^{p}(\nu)=$ $(\mathcal{S}, \rho)\left((\mathcal{S}, \rho)^{p-1}(\nu)\right)$ for $p \geq 2$. Let

$$
\nu_{i_{1} \ldots i_{p}}=\rho_{i_{1}} \cdot \ldots \cdot \rho_{i_{p}} S_{i_{1} \ldots i_{p} \#}(\nu) .
$$

(2) Notice $(\mathcal{S}, \rho)^{p}(\nu)=\sum_{i_{1}, \ldots, i_{p}} \nu_{i_{1} \ldots i_{p}}$. Also $\mathbf{M}((\mathcal{S}, \rho)(\nu))=\mathbf{M}(\nu)$ and so $\mathbf{M}\left((\mathcal{S}, \rho)^{p}(\nu)\right)=\mathbf{M}(\nu)$ for all p. In particular, $(\mathcal{S}, \rho): \mathcal{M}^{1} \rightarrow \mathcal{M}^{1}$.
(3) Definition. ν is invariant (with respect to (\mathcal{S}, ρ)) if $(\mathcal{S}, \rho)(\nu)=\nu$.
4.3. The \mathbf{L} metric. We introduce a metric L on \mathcal{M}^{1} (see $\left.2.5(2)\right)$ similar to the one introduced by Almgren in [AF, 2.6], but modified in a way which enables 4.4(1) to hold.
(1) Definition. For $\mu, \nu \in \mathcal{M}^{1}$ let

$$
L(\mu, \nu)=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: X \rightarrow \mathbf{R}, \operatorname{Lip} \phi \leq 1\} .
$$

Notice that ϕ of the definition is a member of $\mathcal{B C}(X)$, and notice also that there is no restriction on $\sup \{\phi(x): x \in X\}$.

In checking that L is indeed a metric, the only part which is not completely straightforward is verifying $L(\mu, \nu)<\infty$. So suppose spt $\mu \cup \operatorname{spt} \nu \subset \mathbf{B}(a, R)$. Then for $\operatorname{Lip} \phi \leq 1$,

$$
\begin{aligned}
\mu(\phi)-\nu(\phi) & =\mu(\phi-\phi(a)+\phi(a))-\nu(\phi-\phi(a)+\phi(a)) \\
& =\mu(\phi-\phi(a))-\nu(\phi-\phi(a)), \quad \text { since } \mu(\phi(a))=\nu(\phi(a)) \\
& \leq \mu(R)+\nu(R) \\
& =2 R .
\end{aligned}
$$

One can check that the L metric topology and the weak topology coincide on $\mathcal{H}^{1} \cap\{\mu:$ spt μ is compact $\}$.

Finally notice that $L\left(\delta_{a}, \delta_{b}\right)=d(a, b)$.

4.4. Existence and Uniqueness.

(1) Theorem.
(i) $(\mathcal{S}, \rho): \mathcal{M}^{1} \rightarrow \mathcal{M}^{1}$ is a contraction map in the L metric.
(ii) There exists a unique $\mu \in \mathcal{M}^{1}$ such that $(\mathcal{S}, \rho) \mu=\mu$. If $\nu \in \mathcal{M}^{1}$ then $(\mathcal{S}, \rho)^{p}(\nu) \rightarrow \mu$ is the L metric, and hence in the topology of convergence with respect to each compactly supported continuous function.

Proof. (ii) follows immediately from (i).
To establish (i), suppose $\operatorname{Lip} \phi \leq 1$ and let $r=\max _{1 \leq i \leq N} r_{i}$. Then for $\mu, \nu \in$ \mathcal{M}^{1},

$$
\begin{aligned}
(\mathcal{S}, \rho)(\mu)(\phi)-(\mathcal{S}, \rho)(\nu)(\phi) & =\sum_{i=1}^{N}\left(\rho_{i} S_{i \#} \mu\right)(\phi)-\sum_{i=1}^{N}\left(\rho_{i} S_{i \#} \nu\right)(\phi) \\
& =\sum_{i=1}^{N} \rho_{i}\left(\mu\left(\phi \circ S_{i}\right)-\nu\left(\phi \circ S_{i}\right)\right) \\
& =\sum_{i=1}^{N} \rho_{i} r\left(\mu\left(r^{-1} \phi \circ S_{i}\right)-\nu\left(r^{-1} \phi \circ S_{i}\right)\right) \\
& \leq \sum_{i=1}^{N} \rho_{i} r L(\mu, \nu)=r L(\mu, \nu)
\end{aligned}
$$

since $\operatorname{Lip}\left(r^{-1} \phi \circ S_{i}\right) \leq r^{-1} \cdot 1 \cdot r_{i} \leq 1$.
(2) Definition. The unique measure invariant with respect to (\mathcal{S}, ρ) is denoted $\|S, \rho\|$.
(3) Definition. Let τ be the product measure on $\mathcal{C}(N)$ induced by the measure $\rho(i)=\rho_{i}$ on each factor $\{1, \ldots, N\}$.
(4) Theorem.
(i) $\|\mathcal{S}, \rho\|=\boldsymbol{\pi}_{\#} \tau$, where $\boldsymbol{\pi}: \mathcal{C}(N) \rightarrow K$ is the coordinate map of 3.1(3)(vii).
(ii) spt $\|\mathcal{S}, \rho\|=|\mathcal{S}|$.

Proof. (ii) follows from (i) and 3.1(3)(vii).
To establish (i) let $\sigma_{i}: \mathbf{C}(N) \rightarrow \mathbf{C}(N)$ be the i th shift operator 2.1(3). Clearly $\boldsymbol{\pi} \circ \sigma_{i}=S_{i} \circ \boldsymbol{\pi}$ and τ is $\left(\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}, \rho\right)$ invariant. Hence $\sum \rho_{i} S_{i \#}\left(\boldsymbol{\pi}_{\#} \tau\right)=$ $\sum \rho_{i} \boldsymbol{\pi}_{\#}\left(\sigma_{i \#} \tau\right)=\pi_{\#} \sum \rho_{i}\left(\sigma_{i \#} \tau\right)=\boldsymbol{\pi}_{\#} \tau$, and so by uniqueness $\boldsymbol{\pi}_{\#} \tau=\|\mathcal{S}, \rho\|$.

(5) Remarks.

(1) It follows from 4 (ii) that $\|\mathcal{S}, \rho\|$ has compact support.
(2) There are unbounded invariant measures, in particular and trivially, \mathcal{L}^{n} on \mathbf{R}^{n}.
(3) If ν is invariant, so is $\lambda \nu$ for any positive constant λ. Requiring $\|\mathcal{S}, \rho\| \in \mathcal{M}^{1}$ is simply a normalisation requirement.
(6) Example. Referring back to 3.3(1), let $\rho=\left\{\frac{1}{2}, \frac{1}{2}\right\}$ and write μ_{r} for $\left\|\mathcal{S}_{r}, \rho\right\|$. We will show $\mu_{r} \neq \mu_{s}$ for $\frac{1}{2} \leq r<s<1$. In 5.3(iii) we see that $\mu_{r}=\mathcal{H}^{r}\left\lfloor\left\|\mathcal{S}_{r}\right\|\right.$ for $0<r \leq \frac{1}{2}$.

Suppose $\frac{1}{2} \leq r<s<1$. Take $A \subset[0,1-s)$. Then $S_{2}(r)^{-1}(A) \cap[0,1]=\emptyset$ and hence $\mu_{r}\left(S_{2}(r)^{-1}(A)\right)=\emptyset$ since spt $\mu_{r} \subset[0,1]$. It follows $\mu_{r}(A)=\frac{1}{2} \mu_{r}\left(S_{1}(r)^{-1}(A)\right)=$ $\frac{1}{2} \mu_{r}(r A)$. Similarly $\mu_{s}(A)=\frac{1}{2} \mu_{s}(s A)$. If $\mu_{r}=\mu_{s}=\mu$, say, it follows $\mu(s A \sim r A)=$ 0 . Choosing $A=[0,1-s)$, this contradicts spt $\mu=[0,1]$.
4.5. Different Sets of Similitudes Generating the Same Set. For I a finite set as in 2.1(6), let $\mathcal{S}_{I}=\left\{S_{\alpha}: \alpha \in I\right\}$. Then $\left|\mathcal{S}_{I}\right|=\left\{k_{\beta}: \beta \in \hat{I}\right\}$, as follows by applying $3.1(3)(\mathrm{iii})$, (iv) to \mathcal{S}_{I}. From 2.1(8)(i), $\hat{I}=I$ iff I is secure. Thus $\left|\mathcal{S}_{I}\right|=|\mathcal{S}|$ if I is secure, and if the coordinate map π is one-one, then $\left|\mathcal{S}_{I}\right|=|\mathcal{S}|$ iff I is secure. A similar result was first shown in [OP].

Let $\rho_{I}: I \rightarrow(0,1)$ be given by $\rho_{I}\left(\left\langle i_{1}, \ldots, i_{p}\right\rangle\right)=\rho\left(i_{1}\right) \cdot \ldots \cdot \rho\left(i_{p}\right)$. Then if I is tight, by using $2.1(8)(\mathrm{ii})$, one can check $\sum_{\alpha \in I} \rho_{I}(\alpha)=1$, and furthermore
$\left\|\mathcal{S}_{I}, \rho_{I}\right\|=\|\mathcal{S}, \rho\|$ as follows from 4.4(4) and 3.1(3). Finally, if $\boldsymbol{\pi}$ is one-one, then $\left\|\mathcal{S}_{I}, \rho_{I}\right\|=\|\mathcal{S}, \rho\|$ iff I is tight.

5. Similitudes

5.1. Self-Similar Sets. We continue the notation of $\S 3$ and $\S 4$.
(1) Definition. K is self-similar (with respect to \mathcal{S}) if
(1) K is invariant with respect to \mathcal{S}, and
(2) $\mathcal{H}^{k}(K)>0, \mathcal{H}^{k}\left(K_{i} \cap K_{j}\right)=0$ for $i \neq j$, where $k=\operatorname{dim} K$.

Thus (ii) is a kind of "minimal overlap" condition, and rules out the examples in $3.3(1)$ with $\frac{1}{2}<r<1$. However, it is still rather weak. For example, if $\mathcal{S}=\left\{S_{1}, S_{2}\right\}$, $S_{i}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, S_{1}\left(r e^{i \theta}\right)=(\sqrt{2})^{-1} r e^{i(\theta-\pi / 4)}$ and $S_{2}\left(1+r e^{i \theta}\right)=1+(\sqrt{2})^{-1} r e^{i(\theta+\pi / 4)}$, then $|\mathcal{S}|$ is a continuous image of $[0,1]$ with a dense set of self-intersections, see [OP, $\mathrm{D}=2, \mathrm{~L}=0$] or [LP, Figure 3]. In [LP, page 374] it is shown $\mathcal{H}^{2}(|\mathcal{S}|)=\frac{1}{4}$, and so $\operatorname{dim}|\mathcal{S}|=2$ and $|\mathcal{S}|$ is self-similar in the above sense by (4)(ii).

A more useful notion of self-similarity may be a condition analogous to the open set condition below, which we will see implies $|\mathcal{S}|$ is self-similar, but allows us to "separate out" the components $|\mathcal{S}|_{i}$.
(2) Convention. For the rest of this section we restrict to the case \mathcal{S} is a family of similitudes. (X, d) will be \mathbf{R}^{n} with the Euclidean metric, although other conditions suffice. \mathcal{H}^{k} is Hausdorff k-dimensional measure. Lip $\left(S_{i}\right)=r_{i}$.

Let $\gamma(t)=\sum_{i=1}^{N} r_{i}^{t}$. Then $\gamma(0)=N$ and $\gamma(t) \downarrow 0$ as $t \rightarrow \infty$, and hence there is a unique D such that $\sum_{i=1}^{N} r_{i}^{D}=1$.
(3) Definition. If $\sum r_{i}^{D}=1, D$ is called the similarity dimension of \mathcal{S}.

We will see in $5.3(1)$ that D often equals the Hausdorff dimension of $|\mathcal{S}|$.
For the rest of this section $\rho=\left\{\rho_{1}, \ldots, \rho_{N}\right\}$ where $\rho_{i}=r_{i}^{D}$, and so ρ is determined by \mathcal{S}. We write $\|\mathcal{S}\|$ for $\|\mathcal{S}, \rho\|$, and often write K for $|\mathcal{S}|$ and μ for $\|\mathcal{S}\|$.

Note that $\sum_{i_{1}, \ldots, i_{p}} r_{i_{1}}^{D} \cdot \ldots \cdot r_{i_{1}}^{D}=\left(\sum_{i=1}^{N} r_{i}^{D}\right)^{p}=1$, a fact we use frequently.
Finally we take $r_{1} \leq r_{2} \leq \cdots \leq r_{N}$, so that $r_{1}=\min \left\{r_{i}: 1 \leq i \leq N\right\}$, $r_{N}=\max \left\{r_{i}: 1 \leq i \leq N\right\}$.
(4) Proposition. Let $K=|\mathcal{S}|$, $\operatorname{dim} K=k$. Then
(i) $\mathcal{H}^{D}(K)<\infty$ and so $k \leq D$ (this is true for arbitrary contractions S_{i}).
(ii) $0<\mathcal{H}^{k}(K)<\infty$ implies (K is self-similar iff $k=D$).

Proof. (i) $K=\bigcup_{i_{1}, \ldots, i_{p}} K_{i_{1} \ldots i_{p}}$ and $\sum_{i_{1}, \ldots, i_{p}}\left(\operatorname{diam} K_{i_{1} \ldots i_{p}}\right)^{D}=\sum_{i_{1}, \ldots, i_{p}} r_{i_{1}}^{D} \ldots$. $r_{i_{p}}^{D}(\operatorname{diam} K)^{D}=(\operatorname{diam} K)^{D}$. Since diam $K_{i_{1} \ldots i_{p}} \leq r_{N}^{p} \operatorname{diam} K \rightarrow 0$ as $p \rightarrow \infty$, we are done.
(ii) Suppose $0<\mathcal{H}^{k}(K)<\infty$ and K is self-similar, so that $\mathcal{H}^{k}\left(K_{i} \cap K_{j}\right)=0$ if $i \neq j$. Then $\mathcal{H}^{k}(K)=\sum_{i=1}^{N} \mathcal{H}^{k}\left(K_{i}\right)=\sum_{i=1}^{N} r_{i}^{k} \mathcal{H}^{k}(K)$, hence $\sum r_{i}^{k}=1$, hence $D=k$.

Conversely, suppose $0<\mathcal{H}^{D}(K)<\infty$. Then $\mathcal{H}^{D}(K) \leq \sum_{i=1}^{N} \mathcal{H}^{D}\left(K_{i}\right)=$ $\sum_{i=1}^{N} r_{i}^{D} \mathcal{H}^{D}(K)$. Since $\sum_{i=1}^{N} r_{i}^{D}=1, \mathcal{H}^{D}(K)=\sum_{i=1}^{N} \mathcal{H}^{D}\left(K_{i}\right)$ and so it is standard measure theory that $\mathcal{H}^{D}\left(K_{i} \cap K_{j}\right)=0$ if $i \neq j$.
5.2. Open Set Condition. Recall convention 5.1(2).
(1) Definition. \mathcal{S} satisfies the open set condition if there exists a non-empty open set O such that
(i) $\bigcup_{i=1}^{N} S_{i} O \subset O$,
(ii) $S_{i} O \cap S_{j} O=\emptyset$ if $i \neq j$.
(2) Examples. (a) Suppose we already have a non-empty closed set C satisfying (i) and (ii) of (1) with O replaced by C. Let $d=\min _{i \neq j} d\left(S_{i} C, S_{j} C\right.$), and select ε so $r_{i} \varepsilon<d / 2$ for $i=1, \ldots, N$. Then \mathcal{S} satisfies the open set condition with $O=\bigcup_{x \in C} \mathbf{B}(x, \varepsilon)$. To see this observe that

$$
S_{i} O=\bigcup_{x \in C} S_{i} \mathbf{B}(x, \varepsilon)=\bigcup_{x \in C} \mathbf{B}\left(S_{i} x, r_{i} \varepsilon\right)=\bigcup_{y \in S_{i} C} \mathbf{B}\left(y, r_{i} \varepsilon\right)
$$

Hence $S_{i} O \cap S_{j} O=\emptyset$ if $i \neq j$ and furthermore $S_{i} O \subset O$. This situation applies to $3.3(1), 0<r<\frac{1}{2}$, with the non-empty closed set $[0,1]$.
(b) Suppose there is a closed set C with non-empty interior such that
(1) $S_{i} C \subset C$ if $i=1, \ldots, N$,
(2) $\left(S_{i} C\right)^{\circ} \cap\left(S_{j} C\right)^{\circ}=\emptyset$ if $i \neq j$.

Then the open set condition holds with $O=C^{\circ}$. This situation applies in 3.3(1), (2) with C the closed convex hull of $|\mathcal{S}|$, i.e. $C=[0,1]$ for $3.3(1)$ and C is the triangle (a_{1}, a_{5}, a_{3}) for 3.3(2).
(3) Elementary consequences. Suppose S satisfies the open set condition with O. Note that $S_{i_{1} \ldots i_{p}}$ commutes with the topological operators ${ }^{-},{ }^{\circ}, \partial,{ }^{c}$. In particular $\left(O_{i_{1} \ldots i_{p}}\right)^{-}=\left(O^{-}\right)_{i_{1} \ldots i_{p}}$, and so we can write $\bar{O}_{i_{1} \ldots i_{p}}$ unambiguously.

Then
(i) $O \supset O_{i_{1}} \supset O_{i_{1} i_{2}} \supset \cdots \supset O_{i_{1} i_{2} \ldots i_{p}} \supset \cdots$;
(ii) $K_{i_{1} \ldots i_{p}} \subset \bar{O}_{i_{1} \ldots i_{p}}$;
(iii) $K_{j_{1} \ldots j_{p}} \cap O_{i_{1} \ldots i_{p}}=\emptyset$ if $\left(j_{1}, \ldots, j_{p}\right) \neq\left(i_{1}, \ldots, i_{p}\right)$;
(iv) if I is tight (2.1(7)), then the $O_{\alpha}, \alpha \in I$, are mutually disjoint.

Thus (ii) and (iii) say that $O_{i_{1} \ldots i_{p}}$ "isolates" $K_{i_{1} \ldots i_{p}}$ from the $K_{j_{1} \ldots j_{p}}$ for $\left(j_{1}, \ldots, j_{p}\right) \neq$ $\left(i_{1}, \ldots, i_{p}\right)$.

Proof. (i) and (ii) follow immediately from 3.1(8).
For (iii), suppose $\left(j_{1}, \ldots, j_{p}\right) \neq\left(i_{1}, \ldots, i_{p}\right)$. But $K_{j_{1} \ldots j_{p}} \subset \bar{O}_{j_{1} \ldots j_{p}}$, and $\bar{O}_{j_{1} \ldots j_{p}} \cap$ $O_{i_{1} \ldots i_{p}}=\emptyset$ since $O_{j_{1} \ldots j_{p}} \cap O_{i_{1} \ldots i_{p}}=\emptyset$.

For (iv), suppose I is tight, $\alpha, \beta \in I$, and $\alpha \neq \beta$. Let p be the greatest integer (perhaps 0) for which there is a sequence $\left\langle i_{1}, \ldots, i_{p}\right\rangle$ with $\left\langle i_{1}, \ldots, i_{p}\right\rangle \prec \alpha$ and $\left\langle i_{1}, \ldots, i_{p}\right\rangle \prec \beta$. Since I is tight there exist $i_{p+1} \neq j_{p+1}$ such that $\left\langle i_{1}, \ldots, i_{p}, i_{p+1}\right\rangle \prec$ $\alpha,\left\langle i_{1}, \ldots, i_{p}, j_{p+1}\right\rangle \prec \beta$. But then $O_{\alpha} \subset O_{i_{1} \ldots i_{p} i_{p+1}}, O_{\beta} \subset O_{i \ldots i_{p} j_{p+1}}$ by (1), and so

$$
O_{\alpha} \cap O_{\beta} \subset S_{i_{1} \ldots i_{p}}\left(O_{i_{p+1}} \cap O_{j_{p+1}}\right)=\emptyset
$$

5.3. Existence of Self Similar Sets.

(1) Theorem. Suppose \mathcal{S} satisfies the open set condition. Then
(i) there exist λ_{1}, λ_{2} such that

$$
0<\lambda_{1} \leq \theta_{*}^{D}(K, k) \leq \theta^{* D}(K, k) \leq \lambda_{2}<\infty \text { for all } k \in K
$$

(ii) $0<\mathcal{H}^{D}(K)<\infty$ and so K is self-similar by 5.1(4)(ii). In particular dim $K=D$,
(iii) $\|\mathcal{S}\|=\left[\mathcal{H}^{D}(K)\right]^{-1} \mathcal{H}^{D}\lfloor K$.

Proof.
(a) Lemma. Suppose $0<c_{1}<c_{2}<\infty$ and $0<\rho<\infty$. Let $\left\{U_{i}\right\}$ be a family of disjoint open sets. Suppose each U_{i} contains a ball of radius ρc_{1} and is contained in a ball of radius ρc_{2}. Then at most $\left(1+2 c_{2}\right)^{n} c_{1}^{-n}$ of the \bar{U}_{i} meet $\mathbf{B}(0, \rho)$.

For suppose $\bar{U}_{i}, \ldots, \bar{U}_{k}$ meet $\mathbf{B}(0, \rho)$. Then each of $\bar{U}_{i}, \ldots, \bar{U}_{k}$ is a subset of $\mathbf{B}\left(0,\left(1+2 c_{2}\right) \rho\right)$. Summing the volumes of the k corresponding disjoint spheres of radius ρc_{1}, we see that

$$
k \boldsymbol{\alpha}_{n} \rho^{n} c_{1}^{n} \leq \boldsymbol{\alpha}_{n}\left(1+2 c_{2}\right)^{n} \rho^{n},
$$

and hence $k \leq\left(1+2 c_{2}\right)^{n} c_{1}^{-n}$.
(b) For the rest of the proof let O be the open set asserted to exist by the open set condition.

Let $\mu=\|\mathcal{S}\|$. We will first prove that there exist constants κ_{1}, κ_{2} such that

$$
0<\kappa_{1} \leq \theta_{*}^{D}(\mu, k) \leq \theta^{* D}(\mu, k) \leq \kappa_{2}<\infty
$$

for all $k \in K$.
First note that

$$
\begin{aligned}
\mu\left(K_{i_{1} \ldots i_{p}}\right) & \geq \mu_{i_{1} \ldots i_{p}}\left(K_{i_{1} \ldots i_{p}}\right)=r_{i_{1}}^{D} \cdot \ldots \cdot r_{i_{p}}^{D} \mu\left(S_{i_{1} \ldots i_{p}}^{-1} K_{i_{1} \ldots i_{p}}\right) \\
& =r_{i_{1}}^{D} \cdot \ldots \cdot r_{i_{p}}^{D} \mu(K)=r_{i_{1}}^{D} \cdot \ldots \cdot r_{i_{p}}^{D} .
\end{aligned}
$$

Let $k=k_{i_{1} \ldots i_{p} \ldots}$ and consider $\mathbf{B}(k, \rho)$. Choose the least p such that $K_{i_{1} \ldots i_{p}} \subset$ $\mathbf{B}(k, \rho)$. Then $r_{i_{1}} \cdot \ldots \cdot r_{i_{p}}(\operatorname{diam} K) \geq \rho r_{1}\left(\right.$ recalling $\left.r_{1} \leq \cdots \leq r_{N}\right)$. Hence

$$
\frac{\mu \mathbf{B}(k, \rho)}{\boldsymbol{\alpha}_{D} \rho^{D}} \geq \frac{\mu\left(K_{i_{1} \ldots i_{\rho}}\right)}{\boldsymbol{\alpha}_{D} \rho^{D}} \geq \frac{r_{i_{1}}^{D} \cdot \ldots \cdot r_{i_{p}}^{D}}{\boldsymbol{\alpha}_{D} \rho^{D}} \geq \frac{r_{1}^{D}}{\boldsymbol{\alpha}_{D}(\operatorname{diam} K)^{D}}
$$

Hence $\theta_{*}^{D}(\mu, k) \geq r_{1}^{D} \boldsymbol{\alpha}_{D}^{-1}(\operatorname{diam} K)^{-D}$ for $k \in K$.
We now show that $\theta^{* D}(\mu, k)$ is uniformly bounded away from ∞ for $k \in K$.
Suppose O contains a ball of radius c_{1} and is contained in a ball of radius c_{2}. For each sequence $j_{1} \ldots j_{q} \ldots \in \mathbf{C}(N)$ select the least q such that $r_{1} \rho \leq r_{j_{1}} \ldots \ldots \cdot r_{j_{q}} \leq \rho$. Let I be the set of $\left\langle j_{1}, \ldots, j_{q}\right\rangle$ thus selected, and notice that I is tight (2.1(7)). From 5.2(3) it follows $\left\{O_{j_{1} \ldots j_{q}}:\left\langle j_{1}, \ldots, j_{q}\right\rangle \in I\right\}$ is a collection of disjoint open sets. Moreover, each such $O_{j_{1} \ldots j_{q}}$ contains a ball of radius $r_{j_{1}} \cdot \ldots \cdot r_{j_{q}} c_{1}$ and hence of radius $r_{1} \rho c_{1}$ and is contained in a ball of radius $r_{j_{1}} \cdot \ldots \cdot r_{j_{q}} c_{2}$ and hence of radius ρc_{2}. It follows from (a) that at most $\left(1+2 c_{2}\right)^{n}\left(r_{1} c_{1}\right)^{-n}$ of the $\bar{O}_{j_{1} \ldots j_{q}}$, $\left\langle j_{1}, \ldots, j_{q}\right\rangle \in I$, meet $\mathbf{B}(k, \rho)$. Hence at most $\left(1+2 c_{2}\right)^{n}\left(r_{1} c_{1}\right)^{-n}$ of the $K_{j_{1} \ldots j_{q}}$, $\left\langle j_{1}, \ldots, j_{q}\right\rangle \in I$, meet $\mathbf{B}(k, \rho)$.

Now $\operatorname{spt}\left(\mu_{j_{1} \ldots j_{q}}\right)=K_{j_{1} \ldots j_{q}}$ by $4.4(4)($ ii). By 4.5

$$
\mu=\sum_{\left\langle j_{1}, \ldots, j_{q}\right\rangle \in I} \mu_{j_{1} \ldots j_{q}} .
$$

Finally $\mathbf{M}\left(\mu_{j_{1} \ldots j_{q}}\right)=r_{j_{1}}^{D} \cdot \ldots \cdot r_{j_{q}}^{D} \leq \rho^{D}$ for $\left\langle j_{1}, \ldots, j_{q}\right\rangle \in I$.
Hence

$$
\frac{\mu \mathbf{B}(k, \rho)}{\boldsymbol{\alpha}_{D} \rho^{D}} \leq \frac{\left(1+2 c_{2}\right)^{n}}{r_{1}^{n} c_{1}^{n}} \cdot \frac{\rho^{D}}{\boldsymbol{\alpha}_{D} \rho^{D}}=\frac{\left(1+2 c_{2}\right)^{n}}{\boldsymbol{\alpha}_{D} r_{1}^{n} c_{1}^{n}}
$$

It follows $\theta^{* D}(\mu, k) \leq\left(1+2 c_{2}\right)^{n}\left(\boldsymbol{\alpha}_{D} r_{1}^{n} c_{1}^{n}\right)^{-1}$.
(c) (ii) now follows from 2.6(3).
(d) Since K is self-similar, $\mathcal{H}^{D}\left(K_{i} \cap K_{J}\right)=0$ if $i \neq j$, and so

$$
\mathcal{H}^{D}\left\lfloor K=\sum_{i=1}^{N} \mathcal{H}^{D}\left\lfloor K_{i}=\sum_{i=1}^{N} r_{i}^{D} S_{i \#}\left(\mathcal{H}^{D}\lfloor K)\right.\right.\right.
$$

by $2.6(2)$.
Letting $\tau=\left[\mathcal{H}^{D}(K)\right]^{-1} \mathcal{H}^{D}\left\lfloor K\right.$, it follows that $\tau=\sum_{i=1}^{N} r_{i}^{D} S_{i \#}(\tau)$, and that $\mathbf{M}(\tau)=1$. By uniqueness, $\tau=\mu$, proving (iii).
(e) From (iii), $\theta_{*}^{D}(K, k)=\theta_{*}^{D}\left(\mathcal{H}^{D}\lfloor K, k)=\left[\mathcal{H}^{D}(K)\right]^{-1} \theta_{*}^{D}(\mu, k)\right.$, and similarly for $\theta^{* D}$. (i) now follows from (b).
(2) Remarks. Result (i) says that K is rather uniformly spread out in the dimension k. But on the other hand, by a result of Marstrand [MJ], the inequality between the upper and lower densities cannot be replaced by an equality if D is non-integral.

Result (ii) is due to Moran [MP].
5.4. Purely Unrectifiable Sets. We continue our assumptions that (X, d) is \mathbf{R}^{n} with the Euclidean metric and that \mathcal{S} is a family of similitudes.
(1) Theorem. Suppose \mathcal{S} satisfies the open set condition with both the open set O and the open set U, where $O \subset U$. Suppose furthermore that whenever A is an m-dimensional affine subspace of \mathbf{R}^{n} for which $A \cap \bar{O}_{i} \neq \emptyset$ and $A \cap \bar{O}_{j} \neq \emptyset$ for some $i \neq j$, then $A \cap\left(U \sim \bigcup_{i=1}^{N} \bar{O}_{i}\right) \neq \emptyset$. Then for any m-dimensional C^{1} manifold M in $\mathbf{R}^{n}, \mathcal{H}^{m}(M \cap|\mathcal{S}|)=0$.

Proof. We proceed in stages.
(a) Let
$\mathcal{A}=\{A: A$ is an m-dimensional affine space with

$$
\left.A \cap \bar{O}_{i} \neq \emptyset, A \cap \overline{0}_{j} \neq \emptyset \text { for some } i \neq j\right\}
$$

(see Figure 5.1.)

Figure 5.1
Let $g: \mathcal{A} \rightarrow(0, \infty)$ be defined by

$$
g(A)=\sup \left\{r: \mathbf{B}(a, r) \subset U \sim \bigcup_{i=1}^{N} \bar{O}_{i} \text { for some } a \in A\right\}
$$

By the hypotheses of the theorem, $0<g(A)<\infty$. We want to show that:

$$
g \text { is uniformly bounded away from } 0 \text {. }
$$

To do this we define a topology on \mathcal{A} and prove that \mathcal{A} is compact and g is lower semi-continuous (i.e. $g\left(A_{0}\right)>\lambda$ implies $g(A)>\lambda$ for all A sufficiently close to A_{0}). The required result then follows.

Let \mathbf{O}_{m} be the set of m-dimensional subspaces through the origin, give \mathbf{O}_{m} its usual compact topology as a subset of $\mathbf{R}^{n^{2}}$, and let $\mathbf{R}^{n} \times \mathbf{O}_{m}$ have the product
topology. The map $(a, O) \mapsto a+O$ is a map from $\mathbf{R}^{n} \times \mathbf{O}_{m}$ onto the set of m dimensional affine spaces in \mathbf{R}^{n}, we give this set the induced topology. Since \mathcal{A} is the image of a closed bounded (hence compact) set, it is compact.

Next suppose $g\left(A_{0}\right)>\lambda, A_{0} \in \mathcal{A}$. Select $a_{0} \in A_{0}$ and $\lambda_{0}>\lambda$ such that $\mathbf{B}\left(a_{0}, \lambda_{0}\right) \subset U \sim \bigcup_{i=1}^{N} \bar{O}_{i}$. For all A sufficiently close to $A_{0}, d\left(a_{0}, A\right)<\lambda_{0}-\lambda$. Select $a \in A$ such that $d\left(a_{0}, a\right)<\lambda_{0}-\lambda$. Then $\mathbf{B}(a, \lambda) \subset \mathbf{B}\left(a_{0}, \lambda_{0}\right) \subset U \sim \bigcup_{i=1}^{N} \bar{O}_{i}$. Hence $g(A)>\lambda$. Thus g is lower semi-continuous. The required result follows.
(b) For each $\varepsilon>0$, let

$$
\mathcal{C}_{\varepsilon}=\left\{C: C \text { is an } m \text {-dimensional } C^{1} \text { manifold in } \mathbf{R}^{n},\right. \text { and for some }
$$

$A \in \mathcal{A}$ there exists a C^{1} map $f: A \cap U \rightarrow C$ such that
(i) f is one-one,
(ii) Lip $f \leq 1+\varepsilon, \operatorname{Lip} f^{-1} \leq 1+\varepsilon$,
(iii) $d(f(x), x)<\varepsilon$ for all $x \in A \cap U\}$.

We will show:

$$
\text { there exist } \varepsilon>0, \delta>0 \text { such that }
$$

$$
\mathcal{H}^{m}\left(C \cap\left(U \sim \bigcup_{i=1}^{N} \bar{O}_{i}\right)\right)>\delta \text { for all } C \in \mathcal{C}_{\varepsilon}
$$

Suppose by (a) that $g(A)>\lambda>0$ for all $A \in \mathcal{A}$. Fix ε so $0<\varepsilon<\lambda / 3$. Suppose $C \in \mathcal{C}_{\varepsilon}$ with f and A as in the definition of $\mathcal{C}_{\varepsilon}$. Select $a \in A$ such that $\mathbf{B}(a, \lambda) \subset U \sim \bigcup_{i=1}^{N} \bar{O}_{i}$.

Since $d(f(a), a)<\varepsilon$ it follows $\mathbf{B}(f(a), \lambda-\varepsilon) \subset \mathbf{B}(a, \lambda)$ and hence $\mathbf{B}(f(a), \lambda-\varepsilon) \subset$ $U \sim \bigcup_{i=1}^{N} \bar{O}_{i}$. But one can check that $f(A \cap \mathbf{B}(a, \lambda-3 \varepsilon)) \subset C \cap \mathbf{B}(f(a), \lambda-\varepsilon)$. It follows that

$$
\mathcal{H}^{m}\left(C \cap\left(U \sim \bigcup_{i=1}^{N} \bar{O}_{i}\right)\right) \geq \int_{A \cap \mathbf{B}(a, \lambda-3 \varepsilon)} J(f) d \mathcal{H}^{m} \geq \boldsymbol{\alpha}_{m}(\lambda-3 \varepsilon)^{m}(1+\varepsilon)^{-m}
$$

where $J(f)$ is the Jacobian of f. This gives the required result.
(c) Now assume that the hypotheses of the theorem hold and that $\mathcal{H}^{m}(M \cap$ $K) \neq 0$ for some C^{1} manifold M, where $K=|\mathcal{S}|$. We will deduce a contradiction.

First note that $\theta^{m}(M \cap K, k)=1$ for some $k \in M \cap K[F H, 3.2 .19]$ since $M \cap K$ is $\left(\mathcal{H}^{m}, m\right)$-rectifiable. Alternatively the corresponding result for θ^{m} in \mathbf{R}^{m} [MM, page 184] can readily be lifted back to the manifold M be means of the area formula

$$
\mathcal{H}^{m}(f(A))=\int_{A} J(f) d \mathcal{L}^{m} \text { for } C^{1} \text { diffeomorphisms } f: A \rightarrow \mathbf{R}^{n}, A \subset \mathbf{R}^{m}
$$

In the following we will need to be a little careful, since due to "overlap" it is possible that for fixed p, an arbitrary member of K may belong to more than one $K_{i_{1} \ldots i_{p}}$.

Since k is a point of non-zero m-dimensional density for $M \cap K$, it follows that there is a sequence $k_{j} \rightarrow k$ as $j \rightarrow \infty, k \neq k_{j} \in M \cap K$. By passing to a subsequence we may suppose all $k_{j} \in K_{i_{1}}$ for some i_{1}, which we fix. By passing to a subsequence again we may suppose all $k_{j} \in K_{i_{1} i_{2}}$ for some i_{2} which we also fix. Repeating this argument and then diagonalising, we extract a subsequence $k_{j} \rightarrow k$ and a sequence $i_{1} \ldots i_{j} \ldots$, such that $k_{j} \in K_{i_{1} \ldots i_{j}}$ for all j. Moreover $k=k_{i_{1} \ldots i_{j} \ldots}$.

For each j let $p(j)$ be the least integer p such that $k_{j} \in K_{i_{1} \ldots i_{p}}, k_{j} \notin K_{i_{1} \ldots i_{p} i_{p+1}}$, and notice $p(j) \geq j$, so $p(j) \rightarrow \infty$ as $j \rightarrow \infty$.

Now $\theta^{m}(M \cap K, k)=1$, and $\theta^{m}(M, k)=1$ since M is a C^{1} manifold, hence $\theta^{m}(M \sim K, k)=0$. Select $R \geq \operatorname{diam} U$, so that $\operatorname{diam} U_{i_{1} \ldots i_{p(j)}}<R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}$.

We have
(α)

$$
\lim _{j \rightarrow \infty} \frac{\mathcal{H}^{m}\left((M \sim K) \cap \mathbf{B}\left(k, R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}\right)\right)}{\boldsymbol{\alpha}_{m}\left(R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}\right)^{m}}=0
$$

To simplify notation we write p for $p(j)$. See Figure 5.2.

Figure 5.2
Now

$$
\begin{aligned}
(M \sim K) \cap & \mathbf{B}\left(k, R r_{i_{1}} \cdot \ldots \cdot r_{i_{p}}\right) \\
& \supset(M \sim K) \cap U_{i_{1} \ldots i_{p}} \\
& =M \cap\left(U_{i_{1} \ldots i_{p}} \sim K\right) \\
& =M \cap\left(U_{i_{1} \ldots i_{p}} \sim K_{i_{1} \ldots i_{p}}\right) \text { by } 5.2(3)(\mathrm{iii}) \\
& \supset M \cap\left(U_{i_{1} \ldots i_{p}} \sim \bigcup_{\alpha=1}^{N} \bar{O}_{i_{1} \ldots i_{p} \alpha}\right) \text { by } 5.2(3)(\mathrm{ii}) .
\end{aligned}
$$

Hence
(β)

$$
\begin{aligned}
& \frac{\mathcal{H}^{m}\left((M \sim K) \cap \mathbf{B}\left(k, R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}\right)\right)}{\boldsymbol{\alpha}_{m}\left(R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}\right)^{m}} \\
& \quad \geq \frac{\mathcal{H}^{m}\left(M \cap\left(U_{i_{1} \ldots i_{p(j)}} \sim \bigcup_{\alpha=1}^{N} \bar{O}_{i_{1} \ldots i_{p(j)}} \alpha\right)\right)}{\boldsymbol{\alpha}_{m}\left(R r_{i_{1}} \cdot \ldots \cdot r_{i_{p(j)}}\right)^{m}} \\
& \quad=\frac{\mathcal{H}^{m}\left(f_{j}(M) \cap\left(U \sim \bigcup_{\alpha=1}^{N} \bar{O}_{\alpha}\right)\right)}{\boldsymbol{\alpha}_{m} R^{m}},
\end{aligned}
$$

where $f_{j}=S_{i_{p(j)}}^{-1} \circ \cdots \circ S_{i_{1}}^{-1}$ is an "explosion" map. Here we are using the fact that $f_{j}\left(U_{i_{1} \ldots i_{p(j)}}\right)=U, f_{j}\left(\bar{O}_{i_{1} \ldots i_{p(j)} \alpha}\right)=\bar{O}_{\alpha}$, and $\mathcal{H}^{m}\left(f_{j}(A)\right)=r_{i_{p(j)}}^{-m} \cdot \ldots \cdot r_{i_{1}}^{-m} \mathcal{H}^{m}(A)$ for arbitrary A.

But for sufficiently large j we will show that $f_{j}(M) \in \mathcal{C}_{\varepsilon}$. From (b) this shows the expression in (β) is bounded away from 0 for all sufficiently large j, contradicting (α). Thus our original assumption that $\mathcal{H}^{m}(M \cap K) \neq 0$ is false.

To see that $f_{j}(M) \in \mathcal{C}_{\varepsilon}$ for all sufficiently large j we first observe that in analogy with the definition of $\mathcal{C}_{\varepsilon}$, we have for all sufficiently large j a $C^{1} \operatorname{map} g_{j}: f_{j}(T) \cap V \rightarrow$ $f_{j}(M)$ where
(i) V is a fixed open neighbourhood of \bar{U},
(ii) T is the tangent plane to M at k,
(iii) g_{j} is one-one,
(iv) $\operatorname{Lip} g_{j} \leq 1+\varepsilon$, Lip $g_{j}^{-1} \leq 1+\varepsilon$,
(v) $d\left(g_{j}(x), x\right)<\varepsilon / 2$ for all $x \in f_{j}(T) \cap V$.

See for example [FH, 3.1.23]. But we do not know if $f_{j} M \in \mathcal{A}$. However, we can select an affine space A_{j} through k and k_{j} such that for all sufficiently large $j, f_{j}\left(A_{j}\right) \cap U$ and $f_{j}(T) \cap V$ are arbitrarily close in the topology on affine spaces introduced in (a). In particular there will exist $\psi_{j}: f_{j}\left(A_{j}\right) \cap U \rightarrow f_{j}(T) \cap V$ such that $\operatorname{Lip} \psi_{j}=\operatorname{Lip} \psi_{j}^{-1}=1$ and $d\left(\psi_{j}(x), x\right)<\varepsilon / 2$ for all $x \in f_{j}\left(A_{j}\right) \cap U$.

Notice that $f_{j}\left(A_{j}\right) \in \mathcal{A}$, since $f_{j}(k) \in f_{j}\left(A_{j}\right) \cap K_{i_{p(j)+1}} \subset A \cap \bar{O}_{i_{p}}$ and $f_{j}\left(k_{j}\right) \in$ $f_{j}\left(A_{j}\right) \cap K_{\alpha} \subset A \cap \bar{O}_{\alpha}$ for some $\alpha \neq i_{p(j)+1}$.

Finally $f_{j}(M) \in \mathcal{C}_{\varepsilon}$, where in the definition of $\mathcal{C}_{\varepsilon}, A$ is replaced by $f_{j}\left(A_{j}\right), f$ is replaced by $g_{j} \circ \psi_{j}$, and C is replaced by $f_{j}(M)$.
(2) Remark. In the terminology of [FH, 3.2.14], K is purely $\left(\mathcal{H}^{m}, m\right)$ unrectifiable. In this respect the interest of the present theorem lies in the fact that it establishes pure $\left(\mathcal{H}^{m}, m\right)$ unrectifiability for sets K such that $\mathcal{H}^{m}(K)=\infty$ (provided $m<D$). Unlike the examples in [FH, 3.3.19, 3.3.20] one cannot argue by using the structure theorems for sets having finite \mathcal{H}^{m} measure.

(3) Example.

(a) If $K=U K_{i}$ with the K_{i} disjoint, then the hypotheses of the theorem are easily seen to be satisfied if $m=1$, where O is as in $5.2(2)$ (a), and $U=O$. For $A \cap\left(U \sim \bigcup_{i=1}^{N} \bar{O}_{i}\right)=\emptyset$ iff $A \subset\left(U \sim \bigcup_{i=1}^{N} \bar{O}_{i}\right)^{c}=U^{c} \cup \bigcup_{i=1}^{N} \bar{O}_{i}$. But this latter cannot be true if $A \in \mathcal{A}$, since then A can be split into two disjoint non-empty components $A \cap U^{c}$ and $A \cap \bigcup_{i=1}^{N} \bar{O}_{i}$.
(b) From Example 3.3(2) let O be the interior of the triangle (a_{1}, a_{5}, a_{3}). Let $U \supset O$ be a slightly larger open set also satisfying the open set condition and such that $\partial U \cap \partial O=\left\{a_{1}, a_{5}\right\}$. Suppose $A \in \mathcal{A}$ where $m=1$. If $A \cap\left(U \sim \bigcup_{i=1}^{4} \bar{O}_{i}\right)=\emptyset$ then it is straightforward to show $\left\{a_{1}, a_{5}\right\} \subset A$. But then $\left(a_{2}, a_{4}\right) \subset A$, which contradicts $A \cap\left(U \sim \bigcup_{i=1}^{4} \overline{0}_{i}\right)=\emptyset$ since $\left(a_{2}, a_{4}\right) \subset U \sim \bigcup_{i=1}^{N} \bar{O}_{i}$.
(4) Remark. Let us strengthen the hypotheses in (1) by taking A to be a onedimensional affine subspace. Then Mattila [MaP] has shown the existence of an $\varepsilon>0$, depending only on \mathcal{S}, such that for any m-dimensional C^{1} manifold M, dim $(M \cap|\mathcal{S}|) \leq m-\varepsilon$.

In the same paper, Mattila also shows that under the hypotheses of 5.3(1), if $m \geq D$, then there are only two possibilities; either K lies in an m-dimensional affine subspace or $\mathcal{H}^{D}(|\mathcal{S}| \cap M)=0$ for every m-dimensional C^{1} manifold M.
5.5. Parameter Space. The orthogonal group $\mathbf{O}(n)$ of orthonormal transformations of \mathbf{R}^{n} is an $n(n-1) / 2$ dimensional manifold [FH, 3.2.28(1)], and hence the set of similitudes $S=(a, r, O)$ in \mathbf{R}^{n} corresponds to an $n(n-1) / 2+(n+1)=$ $\left(n^{2}+n+2\right) / 2$ dimensional manifold. Thus every invariant set generated by some $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ of similitudes in \mathbf{R}^{n} corresponds to a point in an $N\left(n^{2}+n+2\right) / 2$ dimensional manifold, which we call the parameter space. Oppenheimer [OP] has made a systematic computer analysis of a part of $N=n=2$.

6. Integral Flat Chains

In this section we will see how integral flat chains, which will not normally be rectifiable, arise naturally in the context of self-similarity. In particular, the Koch curve of $3.3(2)$ supports a 1-dimensional integral flat chain in a natural way, and $|\mathcal{S}|$ in Example 3.3(3) supports a 2-dimensional integral flat chain provides $D<3$ (with D defined in 6.2(2)).

We make the convention that all currents we consider are integral flat chains, or chains for short.

We need to introduce a new metric, but first we need a lemma on the \mathcal{F}-metric.

6.1. The \mathcal{F}-metric.

(1) Lemma. Suppose $1 \leq m \leq n-1, T$ is a (not necessarily rectifiable) m-cycle, and $\gamma=\gamma(m, n)$ is the isoperimetric constant of 2.7(5).
(i) If $\mathcal{F}(T)<\gamma^{-m}, T=\partial A+R$, and $\mathcal{F}(T)=\mathbf{M}(A)+\mathbf{M}(R)$, then $R=0$.
(ii) If $\mathcal{F}(T) \leq \gamma^{-m}$, then $T=\partial A$ for some A such that $\mathbf{M}(A)=\mathcal{F}(T)$.

Proof. (i) We first remark that any T can be written as $T=\partial A+R$ with $\mathcal{F}(T)=$ $\mathbf{M}(A)+\mathbf{M}(R)$, as noted in 2.7(5).

Assume the hypotheses of (i). If $R=0$ we are done, so suppose $R \neq 0$. Since $\partial R=\partial T=0$, and $\mathbf{M}(R) \leq \mathcal{F}(T)<\gamma^{-m}$, there is an m-cycle D such that $R=\partial D$ and $\mathbf{M}(D) \leq \gamma[\mathbf{M}(R)]^{m+1 / m}$ by $2.7(5)$. Hence $\mathbf{M}(D)<\mathbf{M}(R)$, since $[\mathbf{M}(R)]^{1 / m} \leq[\mathcal{F}(T)]^{1 / m}<\gamma^{-1}$. But then $T=\partial(A+D)$ and $\mathbf{M}(A+D) \leq$ $\mathbf{M}(A)+\mathbf{M}(D)<\mathbf{M}(A)+\mathbf{M}(R)=\mathcal{F}(T)$, a contradiction.
(ii) Suppose $\mathcal{F}(T) \leq \gamma^{-m}$ and let $T=\partial A+R$ with $\mathcal{F}(T)=\mathbf{M}(A)+\mathbf{M}(R)$. Then the same argument as for (i) shows that $R=\partial D$ with $\mathbf{M}(D) \leq \mathbf{M}(R)$. Hence $T=\partial(A+D)$ and $\mathbf{M}(A+D) \leq \mathbf{M}(A)+\mathbf{M}(D) \leq \mathbf{M}(A)+\mathbf{M}(R)=\mathcal{F}(T)$. Thus $\mathbf{M}(A+D)=\mathcal{F}(T)$, and so we are done.
(2) We see the necessity of the condition $\mathcal{F}(T) \leq \gamma^{-m}$ in the following example. Let T_{r} be a 1-cycle supported on $\{x:|x|=r\} \subset \mathbf{R}^{2}$ with $\mathbf{M}\left(T_{r}\right)=2 \pi r$. Let A_{r} be the rectifiable 2-current supported on $\{x:|x| \leq r\} \subset \mathbf{R}^{2}$ such that $\partial A_{r}=T$ and $\mathbf{M}\left(A_{r}\right)=\pi r^{2}$. Using the fact $\gamma(1,2)=4 \pi$ [FH 4.5.14] and the constancy theorem [FH 4.1.7], one can show that if $r \leq 2$, then $\pi r^{2}=\mathbf{M}\left(A_{r}\right)=\mathcal{F}\left(T_{r}\right)$. If $r>2$, then again by [FH 4.1.7] $\partial C=T_{r}$ implies $C=A_{r}$ and so $\mathbf{M}(C)=\pi r^{2}$ (unless we allow C to have non-bounded support, in which case $\mathbf{M}(C)=\infty$). But $\pi r^{2}>2 \pi r=\mathbf{M}\left(T_{r}\right) \geq \mathcal{F}\left(T_{r}\right)$.

6.2. The \mathcal{C}-metric.

(1) Definition. Let B be an $(m-1)$-boundary, $m \geq 1$. Then \mathcal{C}_{B} is the set of m-chains given by

$$
\mathcal{C}_{B}=\left\{R \in \mathcal{F}_{m}: \partial R=B\right\} .
$$

(2) Definition. For $R, S \in \mathcal{C}_{B}$ let

$$
\mathcal{C}(R, S)=\inf \left\{\mathbf{M}(A): A \in \mathcal{R}_{m+1}, R-S=\partial A\right\}
$$

We now see that \mathcal{C} is a complete metric on \mathcal{C}_{B} with the useful transformation result (3)(i).
(3) Lemma. Let B be an $(m-1)$-boundary, $m \geq 1$.
(i) If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a proper Lipschitz map and Lip $f=r$, then $\mathcal{C}\left(f_{\#} R, f_{\#} S\right) \leq$ $r^{m+1} \mathcal{C}(R, S)$.
(ii) $\mathcal{F}(R, S) \leq \mathcal{C}(R, S)$, and $\mathcal{F}(R, S)=\mathcal{C}(R, S)$ if $\mathcal{F}(R, S) \leq \gamma^{-m}$.
(iii) \mathcal{C} is a complete metric on \mathcal{C}_{B}. The \mathcal{C} - and \mathcal{F}-topologies agree on \mathcal{C}_{B}.
(iv) The infimum in the definition of $\mathcal{C}(R, S)$ is realised for some $A \in \mathcal{R}_{m+1}$.

Proof. (i) is immediate from 2.7(6)(c).
The first assertion in (ii) is immediate, and the second follows from 6.1(1)(i).
To see that $\mathcal{C}(R, S)<\infty$ let $\mathcal{F}(R, S)=\lambda<\infty$ and by 2.7(6)(c) choose $f=\boldsymbol{\mu}_{r}$ such that $\mathcal{F}\left(\boldsymbol{\mu}_{r \#} R, \boldsymbol{\mu}_{r \#} S\right) \leq \gamma^{-m}\left(\boldsymbol{\mu}_{r}\right.$ is defined in 2.3). Then $\mathcal{C}\left(\boldsymbol{\mu}_{r \#} R, \boldsymbol{\mu}_{r \#} S\right) \leq$ γ^{-m} and so by (i) $\mathcal{C}(R, S) \leq r^{-(m+1)} \gamma^{-m}$. The other properties of a metric are easily verified, noting in particular that if $\mathcal{C}(R, S)=0$ then $\mathcal{F}(R, S)=0$ and so $R=S$.

The \mathcal{C} - and \mathcal{F}-topologies clearly agree on \mathcal{C}_{B}. Since a sequence is \mathcal{C}_{B}-Cauchy iff it is \mathcal{F}-Cauchy, \mathcal{C}_{B} is closed in \mathcal{F}_{m} in the \mathcal{F}-metric, and \mathcal{F} is a complete metric on \mathcal{F}_{m}, it follows \mathcal{C} is a complete metric on \mathcal{C}_{B}.

To prove (iv) suppose $\mathcal{C}(R, S)=\lambda$ and let $T_{j} \in \mathcal{R}_{m+1}, \partial T_{j}=R-S, \mathbf{M}\left(T_{j}\right) \rightarrow \lambda$. Let $\mathbf{B}(0, r)$ be some ball large enough to include spt $(R-S)$, and let $f: \mathbf{R}^{n} \rightarrow$ $\mathbf{B}(0, r)$ be a retraction map with Lipschitz constant 1. Let $T_{j}^{\prime}=f_{\#} T_{j}$. Then spt $T_{j}^{\prime} \subset \mathbf{B}(0, r)$ and $\mathbf{M}\left(T_{j}^{\prime}\right) \leq \mathbf{M}\left(T_{j}\right)$ by $2.7(6)$. We can apply the compactness theorem of $2.7(5)$ to $T_{j}^{\prime}-T_{1}^{\prime}$ and extract a convergent subsequence with limit $A-T_{1}^{\prime}$, say. From $2.7(6)$ it follows $\mathbf{M}(A) \leq \lambda$ and hence $\mathbf{M}(A)=\lambda$. Furthermore $\partial A=$ $R-S$, and so A is the required current.
6.3. Invariant Chains. Suppose $\mathcal{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ are proper contraction maps on \mathbf{R}^{n}, not necessarily similitudes.
(1) Definition. For any k-chain T, we let $\mathcal{S}(T)=\sum_{i=1}^{N} S_{i \#}(T)$; also $\mathcal{S}^{0}(T)=$ $T, \mathcal{S}^{1}(T)=\mathcal{S}(T), \mathcal{S}^{p+1}(T)=S\left(S^{p}(T)\right)$ if $p \geq 1$.

From 2.7(6), $\mathcal{S}: \mathcal{F}_{k} \rightarrow \mathcal{F}_{k}$ and is a continuous linear operator which commutes with ∂.
(2) Suppose now that Lip $S_{i}=r_{i}$, and let D be specified by $\sum_{i=1}^{N} r_{i}^{D}=1$ as in $5.1(3)$, but recall that here the S_{i} are not necessarily similitudes. Let m be the unique integer given by $m \leq D<m+1$. Now suppose $m \geq 1, B$ is an ($m-1$)-boundary, and $\mathcal{S}(B)=B$. As examples consider 3.3(2) with $m=1$ and $B=[[(1,0)]]-[[(0,0)]]$, or $3.3(3)$ with $m=2$ and $B=N$. Finally let $\theta=\sum_{i=1}^{N} r_{i}^{m+1}$ and note that $\theta<1$.
(3) Theorem. Under the hypotheses of (2) the following hold
(i) \mathcal{S} is a contraction map on \mathcal{C}_{B} in the \mathcal{C}-metric.
(ii) There is a unique m-chain $T \in \mathcal{C}_{B}$ such that $\mathcal{S}(T)=T$.
(iii) If $R \in \mathcal{C}_{B}$, then $\mathcal{S}^{p}(R) \rightarrow T$ in the \mathcal{F}-metric (and \mathcal{C}-metric).
(iv) If $R \in \mathcal{C}_{B}$ and $\mathcal{S}(R)-R=\partial A$ with $a \in \mathcal{R}_{m+1}$ (which is always possible by 6.2(3)) then $A_{0}=\sum_{p=0}^{\infty} \mathcal{S}^{p}(A) \in \mathcal{R}_{m+1}$ with convergence in the \mathbf{M}-norm, and $T=R+\partial A_{0}$.

Proof. First note that for any $D \in \mathcal{F}_{m+1}$,

$$
\begin{aligned}
\mathbf{M}(\mathcal{S}(D)) & =\mathbf{M} \sum_{i=1}^{N} S_{i \#} D \leq \sum_{i=1}^{N} \mathbf{M}\left(S_{i \#} D\right) \\
& \leq \sum_{i=1}^{N} r_{i}^{m+1} \mathbf{M}(D)(\text { by } 2.7(6)(\mathrm{c}))=\theta \mathbf{M}(D)
\end{aligned}
$$

We now show (i). If $R \in \mathcal{C}_{B}$ then $\mathcal{S}(R) \in \mathcal{C}_{B}$ since $\partial(\mathcal{S}(R))=\mathcal{S}(\partial R)=\mathcal{S}(B)=$ B. Next suppose by $6.2(3)(\mathrm{iv})$ that $R_{1}-R_{2}=\partial C$ with $C_{\mathcal{B}}\left(R_{1}, R_{2}\right)=\mathbf{M}(C)$. Then

$$
\mathcal{S}\left(R_{1}-R_{2}\right)=\mathcal{S}(\partial C)=\partial(\mathcal{S}(C))
$$

and $\mathbf{M}(\mathcal{S}(C)) \leq \theta \mathbf{M}(C)$. Hence $\mathcal{C}_{B}\left(\mathcal{S}\left(R_{1}\right), \mathcal{S}\left(R_{2}\right)\right) \leq \theta \mathcal{C}_{B}\left(R_{1}, R_{2}\right)$.
(ii) and (iii) follow immediately, using 6.2(3).

To establish (iv), suppose $R \in \mathcal{C}_{B}, \mathcal{S}(R)-R=\partial A, A \in \mathcal{R}_{m+1}$. Then $\mathbf{M}\left(\mathcal{S}^{p}(A)\right) \leq \theta \mathbf{M}\left(\mathcal{S}^{p-1}(A)\right)$ and so $\mathbf{M}\left(\mathcal{S}^{p}(A)\right) \leq \theta^{p} \mathbf{M}(A)$. Thus $A_{0}=\sum_{p=0}^{\infty} \mathcal{S}^{p}(A)$ converges in the M-norm. Thus A_{0} is a chain of finite mass and hence rectifiable by $2.7(4)$. Finally
$\partial A_{0}=\sum_{p=0}^{\infty} \partial \mathcal{S}^{p}(A)=\sum_{p=0}^{\infty} \mathcal{S}^{p}(\partial A)=\sum_{p=0}^{\infty} \mathcal{S}^{p}(\mathcal{S}(R)-R)=\lim _{p \rightarrow \infty}\left(\mathcal{S}^{p}(R)-R\right)=T-R$.
(4) We can often take particularly simple chains for R and A in (3)(iv). For example in $3.3(2)$ we can take $R=\left[\left[a_{1}, a_{5}\right]\right]$ and $A=\left[\left[a_{2}, a_{3}, a_{4}\right]\right]$ to be the obvious oriented simplices [FH, 4.1.11].
(5) Again taking the hypotheses of (2), let $T \in \mathcal{C}_{B}$ be given by (3). Now spt $T=\operatorname{spt} \mathcal{S}(T) \subset \bigcup_{i=1}^{N} \operatorname{spt} S_{i} \# T \subset \bigcup_{i=1}^{N} S_{i}(\operatorname{spt} T)=\mathcal{S}(\operatorname{spt} T)$. Thus $\mathcal{S}^{p}(\operatorname{spt} T) \uparrow$ as $p \rightarrow \infty$, and since the limit in the Hausdorff metric is $|\mathcal{S}|$ it follows spt $T \subset|\mathcal{S}|$. It is easy to construct examples, where due to "cancellation", spt $T \varsubsetneqq|\mathcal{S}|$.

References

[AF] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. 87 (1968), 321-391.
[FH] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[FH1] H. Federer, Colloquium lectures on geometric measure theory, Bull. Am. Math. Soc 84 (1978), 291-338.
[LP] P. Lévy, Les courbes planes ou gauches et les surfaces composées de parties semblables au tout, Journal de l'Ecole Polytechnique Série III 7-8 (1938), 227-291. Reprinted in "Oeuvres de Paul Lévy" Vol. II, (D. Dugué, P. Deheuvels \& M. Ibéro, Eds.) pp. 331-394, Gauthier Villars, Paris, Bruxelles and Montréal, 1973.
[MB] B. Mandelbrot, Fractals, Form, Chance, and Dimension, Freeman, San Francisco, 1977.
[MJ] J. M. Marstrand, The (ϕ, s) regular subsets of n space, Trans. Am. Math. Soc. 113 (1964), 369-392.
[MM] M. E. Munroe, Measure and Integration, 2nd edition, Addison-Wesley, Reading, MA, 1971.
[MP] P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc. 42 (1946), 15-23.
[MaP] P. Matilla, On the structure of self-similar fractals, (preprint).
[OP] P. E. Oppenheimer, Constructing an Atlas of Self Similar Sets, B.A. Thesis, Princeton, 1979.

The Australian National University, Canberra, ACT, 2600, Australia
Received March 3, 1980; Revised October 16, 1980

