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1. Introduction

Sets with non-integral Hausdorff dimension (2.6) are called fractals by Mandel-
brot. Such sets, when they have the additional property of being in some sense
either strictly or statistically self-similar, have been used extensively by Mandel-
brot and others to model various physical phenomena (c.f. [MB] and the references
there). However, these notions have not so far been studied in a general framework.

In this paper we set up a theory of (strictly) self-similar objects, in a subsequent
paper we analyse statistical self-similarity.

We now proceed to indicate the main results. The reader should refer to the
examples in 3.3 for motivation. We say the compact set K ⊂ Rn is invariant if
there exists a finite set S = {S1, . . . , SN} of contraction maps on K ⊂ Rn such
that

K =

N
⋃

i=1

SiK.

In such a case we say K is invariant with respect to S. Often, but not always, the
Si will be similitudes, i.e. a composition of an isometry and a homothety (2.3).

In [MB], and in the case the Si are similitudes, such sets are constructed by an
iterative procedure using an “initial” and a “standard” polygon. However, here we
need to consider instead the set S.

It turns out, somewhat surprisingly at first, that the invariant set K is deter-
mined by S. In fact, for given S there exists a unique compact set K invariant
with respect to S. Furthermore, K is the limit of various approximating sequences
of sets which can be constructed from S.

More precisely we have the following result from 3.1(3), 3.2.

(1) Let X = (X, d) be a complete metric space and S = {S1, . . . , SN} be a
finite set of contraction maps (2.2) on X. Then there exists a unique closed bounded

set K such that K =
⋃N

i=1 SiK. Furthermore, K is compact and is the closure of
the set of fixed points si1...ip

of finite compositions Si1 ◦ · · · ◦ Sip
of members of S.

For arbitrary A ⊂ X let S(A) =
⋃N

i=1 SiA, Sp(A) = S(Sp−1(A)). Then for
closed bounded A, Sp(A)→ K in the Hausdorff metric (2.4).

The compact set K in (1) is denoted |S|. |S| supports various measures in a
natural way. We have the following from 4.4.

(2) In addition to the hypotheses of (1), suppose ρ1, . . . , ρN ∈ (0, 1) and
∑N

i=1 ρi = 1. Then there exists a unique Borel regular measure µ of total mass 1

such that µ =
∑N

i=1 ρiSi#(µ). Furthermore spt(µ) = |S|.
The measure µ is denoted ‖S, ρ‖.
The set |S| will not normally have integral Hausdorff dimension. However, in

case (X, d) is Rn with the Euclidean metric, |S| can often be treated as an m-
dimensional object, m an integer, in the sense that there is a notion of integration
of C∞ m-forms over |S|. In the language of geometric measure theory (2.7), |S|
supports an m-dimensional integral flat chain. The main result here is 6.3(3).

Now suppose (X, d) is Rn with the Euclidean metric, and the Si ∈ S are simil-
itudes. Let Lip Si = ri (2.2) and let D be the unique positive number for which
∑N

i=1 r
D
i = 1. Then D is called the similarity dimension of S, a term coined by

Mandelbrot. In case a certain “separation” condition holds, namely the open set
condition of 5.2(1), one has the following consequences from 5.3(1) (see 2.6(1), (3)
for notation).

(3)

(i) D=Hausdorff dimension of |S| and 0 < HD(|S|) <∞,
(ii) HD(Si|S| ∩ Sj |S|) = 0 if i 6= j,
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(iii) there exist λ1, λ2 such that for all k ∈ |S|,
0 < λ1 ≤ θD

∗ (|S|, k) ≤ θ∗D(|S|, k) ≤ λ2 <∞,
(iv) ‖S, ρ‖ = [HD(|S|)]−1HDb|S| if ρi = rD

i .

A result equivalent to (3)(i) was first proved by Moran in [MP].
With a stronger separation condition we prove in 5.4(1) that for suitable m, |S|

meets no m-dimensional C1 manifold in a set of strictly positive Hm measure. In
the notation of [FH], |S| is purely (Hm,m) unrectifiable.

In the case of similitudes in Rn, it is possible to parametrise invariant sets by
points in a C∞ manifold (5.5).

My special thanks to F. J. Almgren, Jr., for making possible my stay at Princeton
University, for suggesting I begin this study, and for his continuing comments and
enthusiasm. I would also like to thank L. Simon for advice and for his invitation
to Melbourne University. Helpful suggestions came from members of the Princeton
and Melbourne seminars, especially R. Hardt, V. Scheffer and B. White.

Finally I wish to thank Benoit Mandelbrot, from whose ideas this paper devel-
oped.

2. Preliminaries

(X, d) is always a complete metric space, often Euclidean space Rn with the
Euclidean metric.

B(a, r) = {x ∈ X : d(a, x) ≤ r},
U(a, r) = {x ∈ X : d(a, x) < r}.

If A ⊂ X , then A is the closure of A, A◦ is the interior, ∂A is the boundary, and
Ac is the complement X ∼ A.

A C1 function is one whose first partial derivatives exist and are continuous. A
C∞ function is a function having partial derivatives of all orders.

A C1 manifold in Rn will mean a continuously differentiable embedded subman-
ifold having the induced topology from Rn.

A proper function is a function for which the inverse of every compact set is
compact.

2.1. Sequences of Integers. P = {1, 2, . . .} is the set of positive integers. N ∈ P,
N ≥ 2 is usually fixed.

(1) Ordered p-tuples are denoted 〈i1, . . . , ip〉, where usually each ij ∈ {1, . . . , N}.
We write α ≺ β if α, β are p-tuples with α an initial segment of β, i.e. α =
〈i1, . . . , ip〉 and β = 〈i1, . . . , ip, ip+1, . . . , ip+q〉 for some q ≥ 0. α � β means α ≺ β
and α 6= β.

(2) C(N), the Cantor set on N symbols, is the set of maps (i.e. sequences)
α : P → {1, . . . , N}. Thus C(N) =

∏∞
p=1{1, . . . , N}. We write αp for α(p). A

typical element of C(N) is often written α1 . . . αp . . . , or i1 . . . ip . . . . We extend the
notation α ≺ β to the case α = 〈i1, . . . , ip〉 and β = i1 . . . ipip+1 . . . iq . . . ∈ C(N).

(3) If i ∈ {1, . . . , N} and α = 〈i1, . . . , ip〉 is a p-tuple, then iα = 〈i, i1, . . . , ip〉 is
just concatenation of i and α. Similarly if α ∈ C(N) then iα = iα1 . . . αp−1αp . . . .
Likewise if β is a q-tuple and α is a p-tuple or α ∈ C(N) we form βα in the obvious
way.

The ith shift operator σi = C(N)→ C(N) is given by σi(α) = iα.

(4) C(N) is given the product topology (also called the weak topology) in-
duced from the discrete topology on each factor {1, . . . , N}. Thus a sub-basis of
open sets is given by sets of the form {α : αp = i} where p ∈ P, i ∈ {1, . . . , N}.
C(N) is compact.
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(5) By î1 . . . îp we mean the infinite sequence i1 . . . ipi1 . . . ip . . . i1 . . . ip . . . ∈
C(N). Thus i1 . . . ipîp+1 . . . îp+q may be regarded as the general rational element
of C(N).

(6) The set I will always be a finite set of finite ordered tuples (of not neces-
sarily equal length) from {1, . . . , N}.
Î = {α1 . . . αq . . . : αi ∈ I} ⊂ C(N), where we are concatenating finite ordered

tuples in the obvious way. Thus if I = {〈1〉, . . . , 〈N〉} then Î = C(N). If I =

{〈1, 2〉, 〈1〉} then 2α2 . . . αp . . . /∈ Î , etc.

(7) For α an ordered tuple, let α∗ = {β ∈ C(N) : α ≺ β}.
We say I is secure if for every β ∈ C(N) there exists α ∈ I such that α ≺ β.

This is equivalent to: for every p-tuple β with p = max{lengthα : α ∈ I}, there
exists α ∈ I such that α ≺ β. Since I is finite there is an obvious algorithm to
check if I is secure.

We say I is tight if for every β ∈ C(N) there exists exactly one α ∈ I such that
α ≺ β. Again one can always check, in a finite number of steps, if I is tight.

(8) Proposition

(i) The following are equivalent

(1) Î = C(N),
(2) C(N) =

⋃

α∈I α
∗,

(3) I is secure.
(ii) The following are equivalent:

(1) Each member of C(N) has a unique decomposition of the form α1 . . . αq . . . ,
with αi ∈ I,

(2) C(N) =
∨

α∈I α
∗ (disjoint union),

(3) I is tight.

Proof. In both cases the implications (i)⇒(ii)⇒(iii)⇒(i) are clear. �

(9) One can check that I is tight iff I is essential and satisfies the tree condi-
tion, in the sense of [OP, III].

2.2. Maps in Metric Spaces. If F : X → X , then we define the Lipschitz con-
stant of F by

LipF = sup
x6=y

d(F (x), F (y))

d(x, y)
.

Of course if LipF = λ, then d(F (x), F (y)) ≤ λd(x, y) for all x, y ∈ X , and moreover
LipF is the least such λ. We say F is Lipschitz if LipF <∞ and F is a contraction
if LipF < 1.

(1) It is a standard fact that every contraction map (in a complete metric
space) has a unique fixed point.

(2) Definition. Suppose S = {S1, . . . , SN} is a finite family of maps Si : X →
X . Then Si1...ip

= Si1 ◦ · · · ◦ Sip
.

2.3. Similitudes. S : X → X is a similitude if d(S(x), S(y)) = rd(x, y) for all
x, y ∈ X and some fixed r.

µr : Rn → Rn is the homothety µr(x) = rx (r ≥ 0).

τ b : Rn → Rn is the translation τ b(x) = x− b.

(1) Proposition. S : Rn → Rn is a similitude iff S = µr ◦ τ b ◦ O for some
homothety µr, translation τ b, and orthonormal transformation O.
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Proof. The “only if” is clear.
Conversely, let S be a similitude, LipS = r 6= 0. Let g(x) = r−1(S(x) − S(0)).

Then g is an isometry fixing 0.
Since

(x, y) =
1

2

[

‖x‖2 + ‖y‖2 − ‖x− y‖2
]

=
1

2

[

[d(0, x)]2 + [d(0, y)]2 − [d(x, y)]2
]

,

it follows g preserves inner products.
Let {ei : 1 ≤ i ≤ N} be an orthonormal basis for Rn. Then {g(ei) : 1 ≤ i ≤ N}

is also on orthonormal basis, and hence

g(x) =

n
∑

i=1

(

g(x), g(ei)
)

g(ei) =

n
∑

i=1

(x, ei) g(ei),

since g preserves inner products. It follows g is linear and so is an orthonormal
transformation.

Since

S(x) = rg(x) + S(0) = r
(

g(x) + r−1S(0)
)

,

it follows

S = µr ◦ τ−r−1S(0) ◦ g,
and we are done. �

(2) Remark. The same proof works in a Hilbert space to show that S is a
similitude iff S = µr ◦ τ b ◦O, where now O is a unitary transformation.

(3) Convention. For the rest of this paper, unless mentioned otherwise, all
similitudes are contractions.

(4) Returning to the case (Rn, d), let the similitude S have fixed point a,
let LipS = r, and let O be the orthonormal transformation given by O(x) =
r−1[S(x+ a)− a] (orthonormal since the origin is clearly fixed and O is clearly an
isometry, now use (1)).

Then

S(x+ a) = rO(x) + a,

so

S(x) = rO(x − a) + a,

and hence

S = τ
−1
a ◦ µr ◦O ◦ τ a = (τ−1

a ◦ µr ◦ τ a) ◦ (τ−1
a ◦O ◦ τ a),

so that S may be conveniently thought of as an orthonormal transformation about
a followed by a homothety about a. We write

S = (a, r, O)

and say that S is in canonical form. a and r are uniquely determined by S, and so
is O if r 6= 0.

If S1 = (a1, r1, O1), S2 = (a2, r2, O2), then S1 ◦ S2 = (a, r, O) where r = r1r2
and O = O1 ◦O2. However the expression for a is not as simple, a calculation gives

a = a2 + (I − r1r2O1O2)
−1(I − r1O1)(a2 − a1).
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2.4. Hausdorff Metric. If x ∈ X , A ⊂ X , define the distance between x and A
by

d(x,A) = inf{d(x, a) : a ∈ A}.
If A ⊂ X , ε > 0, define the ε-neighbourhood of A by

Aε = {x ∈ X : d(x,A) < ε}.
Thus A ⊂ Aε.

Let B be the class of non-empty closed bounded subsets of X . Let C be the class
of non-empty compact subsets.

Define the Hausdorff metric δ on B by

δ(A,B) = sup{d(a,B), d(b, A) : a ∈ A, b ∈ B}.
Thus δ(A,B) < ε iff A ⊂ Bε and B ⊂ Aε. It is easy to check that δ is a metric
on B.

It follows from [FH, 2.10.21] that (B, δ) is a complete metric space. It also follows
that if K ⊂ X is compact, then C ∩ {A : A ⊂ K} is compact.

Some elementary properties of δ which we will use are: let F : X → X , then

(i) δ(F (A), F (B)) ≤ Lip(F ) δ(A,B),
(ii) δ

(
⋃

i∈I Ai,
⋃

i∈I Bi

)

≤ supi∈I δ(Ai, Bi).

2.5. Measures.

(1) A measure µ on a set X is a map µ : P(X) = {A : A ⊂ X} → [0,∞] such
that

(i) µ(∅) = 0,

(ii) µ
(

⋃∞
i=1 Ei

)

≤∑∞
i=1 µ(Ei), Ei ⊂ X .

It follows A ⊂ B implies µ(A) ≤ µ(B). Thus µ is what is often called an outer
measure. One says A is measurable iff µ(T ) = µ(T ∩A) + µ(T ∼ A) for all T ⊂ X .
The family of measurable sets forms a σ-algebra. µ is a finite measure if µ(X) <∞.
If A ⊂ X , µbA is the measure defined by µbA(E) = µ(A ∩E).

From now on, X = (X, d) is a complete metric space. One says that µ is Borel
regular iff all Borel sets are measurable and for each A ⊂ X there exists a Borel
set B ⊃ A with µ(A) = µ(B). If µ is finite and Borel regular, it follows from [FH,
2.2.2.] that for arbitrary Borel sets E ⊂ X ,

(i) µ(E) = sup {µ(K) : E ⊃ K closed},
(ii) µ(E) = inf {µ(V ) : E ⊂ V open}.

(2) We define the support of µ to be the closed set

sptµ = X ∼
⋃

{V : V open, µ(V ) = 0}.
Define the mass of µ by

M(µ) = µ(X).

Define M to be the set of Borel regular measures having bounded support and
finite mass.

Define
M1 = {µ ∈M : M(µ) = 1}.

For a ∈ X define δa = [[a]] ∈M1 by δa(A) = 1 if a ∈ A, δa(A) = 0 if a /∈ A.

(3) Let BC(X) = {f : X → R : f is continuous and bounded on bounded subsets}.
For µ ∈ M, φ ∈ BC(X), define µ(φ) =

∫

φ dµ. Then µ : BC → [0,∞), µ is linear,
and µ is positive (i.e. φ(x) ≥ 0 for all x implies µ(φ) ≥ 0).

If f : X → X is continuous and sends bounded sets to bounded sets (e.g. if f
is Lipschitz), then we define f# :M→M by f#µ(E) = µ(f−1(E)). Equivalently
f#µ(φ) = µ(φ ◦ f). Notice that M(f#µ) = M(µ).
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We define the weak topology on M by taking as a sub-basis all sets of the form
{µ : a < µ(φ) < b}, for arbitrary real a < b and arbitrary φ ∈ BC(X). It follows
µi → µ in the weak topology iff µi(φ)→ µ(φ) for all φ ∈ BC(X).

2.6. Hausdorff Measure.

(1) Let the real number k ≥ 0 be fixed. For every δ > 0 and E ⊂ X we define

Hk
δ (E) = inf

{ ∞
∑

i=1

αk2−k(diam Ei)
k : E ⊂

∞
⋃

i=1

Ei, diam Ei ≤ δ
}

Hk(E) = lim
δ→0
Hk

δ (E) = sup
δ≥0
Hk

δ (E).

Hk(E) is called the Hausdorff k-dimensional measure of E. A reference is [FH,
2.10.3]. αk is a suitable normalising constant. If k is an integer, αk = Lk{x ∈ Rk :
|x| ≤ 1}. For arbitrary k we define αk = Γ( 1

2 )k/Γ(k
2 + 1). The particular value of

αk for non-integer k will not be important. The value of Hk(E), but not that of
Hk

δ (E), remains unchanged if we restrict the Ei to be open (or closed, or convex).
Hk is a Borel regular measure, but Hk is not normally finite on bounded sets.

If X = Rn then Hn = Ln. H0 is counting measure. If f : A ⊂ Rm → Rn is C1

and one-one, then Hm(f(A)) =
∫

A J(f) dLm, where J(f) is the Jacobian. Thus

Hk agrees with usual notions of k-dimensional volume on “nice” sets in case k is
an integer.

If F : X → X is Lipschitz, then Hk(F (A)) ≤ (LipF )kHk(A). If F is a similitude,
F#Hk = (LipF )−kHk.

For each E ⊂ X there is a unique real number k, called the Hausdorff dimension
of E, written dimE, such that Hα(E) =∞ if α < k, Hα(E) = 0 if α > k. Hk(E)
can take any value in [0,∞].

(2) Suppose S : X → X is a similitude with LipS = r. Then HkbS(A) =
rkS#(HkbA). For (HkbS(A))(E) = Hk(S(A) ∩ E) = Hk(S(A ∩ S−1(E))) =
rkHk(A ∩ S−1(E)) = rk(HkbA)(S−1(E)) = rkS#(HkbA)(E).

(3) The lower (upper) k-dimensional density of the set A at the point x is
defined respectively to be

θk
∗(A, x) = lim inf

r→0

Hk(A ∩B(x, r))

αkrk

θ∗k(A, x) = lim sup
r→0

Hk(A ∩B(x, r))

αkrk
.

If they are equal, their common value is called the k-dimensional density of A at
x, and is written θk(A, x).

Likewise, for µ a measure on X we define

θk
∗(µ, x) = lim inf

r→0

µ(B(x, r))

αkrk
,

θ∗k(µ, x) = lim sup
r→0

µ(B(x, r))

αkrk
,

and θk(µ, x) to be their common value if both are equal. Thus θk
∗(A, x) = θk

∗(HkbA, x),
and similarly for θ∗k, θk.

Upper densities turn out to be more important than lower densities. The main
results we will need are that for µ ∈ M,

(i) θ∗k(µ, a) ≥ λ for all a ∈ A implies Hk(A) ≤ λ−1µ(A),
(ii) θ∗k(µ, a) ≤ λ for all a ∈ A implies Hk(A) ≥ 2−kλ−1µ(A).
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In particular if 0 < µ(A) <∞, and the upper density is bounded away from 0 and
∞, this enables us to establish that 0 < Hk(A) < ∞. For a reference see [FH,
2.10.19 (1), (3)].

2.7. Geometric Measure Theory. We will briefly sketch the ideas from geo-
metric measure theory needed for §6. A complete treatment is [FH], in particular
Chapter 4, and a good exposition of the main results is in [FH1]. At a number of
places we have found it convenient to abbreviate the standard notation.

(1) Suppose m ≥ 0 is a positive integer. A set E ⊂ Rn is m-rectifiable iff
E is Hm -measurable, Hm(E) < ∞, and there exist m-dimensional C1 manifolds
{Mi}∞i=1 in Rn such that Hm

(

E ∼ ⋃∞
i−1 Mi

)

= 0. (Here we differ somewhat from
the convention of [FH]). For Hm a.a. x ∈ E the tangent spaces at x to distinct Mi

containing x are equal. Let
←→
E x be this tangent space where it exists.

(2) Suppose now we are given

(1) a bounded m-rectifiable set E with m ≥ 1,
(2) a multiplicity function θ, i.e. an Hm-measurable function θ with domain E

and range a subset of the positive integers, such that
∫

E
θ dHm <∞,

(3) an orientation
−→
T , i.e. an Hm-measurable function

−→
T with domain E such

that for Hm a.a. x ∈ E,
−→
T (x) is one of the two simple unit m-vectors

associated with
←→
E x.

With the above ingredients we define a linear operator on C∞ m-forms φ by

T (φ) =

∫

E

θ(x)
〈−→
T (x), φ(x)

〉

dHm.

This generalises the notion of integration over an oriented manifold. The set
of all such operators is called the set of m-dimensional rectifiable currents. A 0-
dimensional rectifiable current is defined to be a linear operator T on C∞ functions
(i.e. 0-forms) such that

T (φ) =

r
∑

i=1

λiφ(ai),

where r ≥ 0, λ1, . . . , λr are integers, and a1, . . . , ar ∈ Rn. Thus T corresponds to
a finite number of points with integer multiplicities. T is written

∑r
i=1 λi[[ai]].

The set of m-dimensional rectifiable currents forms an abelian group in a natural
way. It is denoted Rm.

(3) For each T ∈ Rm, m ≥ 1, we define a linear operator ∂T on C∞ (m− 1)-
forms by Stokes formula:

∂T (φ) = T (dφ).

If T corresponds to a compact oriented manifold with boundary, then ∂T corre-
sponds to the oriented boundary. Clearly ∂∂T = 0. However it is not necessarily
true that ∂T ∈ Rm−1. Accordingly we define the abelian group of m-dimensional
integral currents by

Im = {T ∈ Rm : ∂T ∈ Rm−1} if m ≥ 0,

I0 = R0.

Clearly Im ⊂ Rm. For m ≥ 1, ∂ : Im → Im−1, and is a group homomorphism.
We can also enlarge Rm to the abelian group of m-dimensional integral flat

chains, or m-chains for short, defined by

Fm = {R+ ∂S : R ∈ Rm, S ∈ Rm+1}.
In the natural way ∂ is extendible to a group homomorphism ∂: Fm → Fm−1 if
m ≥ 1.
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(4) For T ∈ Rm we define the mass of T by

M(T ) =

∫

E

θ dHm if m ≥ 1,

M

( r
∑

i=1

λi[[ai]]

)

=

r
∑

i=1

|λi|.

One can extend the definition of M to Fm, but then one has [FH, 4.2.16].

Rm = Fm ∩ {T : M(T ) <∞},
Im = Rm ∩ {T : M(∂T ) <∞}.

One now defines the integral flat “norm” on Fm by

F(T ) = inf{M(R) + M(S) : T = R+ ∂S},
and the integral flat metric by

F(T1, T2) = F(T1 − T2).

Figure 2.1 F(T1, T2) = F(T1 − T2).

Thus T1 and T2 of Figure 2.1 are close in the F-metric since there exist R and S
of small mass such that T1− T2 = R+ ∂S. ∂ is continuous in the F-metric, indeed
F(∂T1, ∂T2) ≤ F(T1, T2).

(5) The m-dimensional integral flat chains generalise the notion of an oriented
m-dimensional C1 manifold, but retain many of the desirable properties and at the
same time are closed under various useful operations.

Thus Fm is a complete metric space under F [FH, 4.1.24]. The infimum in the
definition of F is always realised [FH, 4.2.18].

Convergence in M implies convergence in F , but certainly not conversely. If
Tj → T in F , then M(T ) ≤ lim inf M(Tj).

For integral currents there is the important compactness theorem [FH, 4.2.17]:
if K ⊂ Rn is compact and c <∞, then

{T ∈ Im : M(T ) < c, M(∂T ) < c, spt T ⊂ K}
is compact in the F-topology. For T ∈ Fm we define spt T , the support of T , to be
the intersection of all closed sets C such that spt φ ∩ C = ∅ implies T (φ) = 0.

If T ∈ Fm, m ≥ 1, and ∂T = 0 (or if T ∈ F0), we say T is an m-dimensional
integral flat cycle or m-cycle for short. If m ≥ 1, it follows by a cone construction
[FH, 4.1.11] that T = ∂S for some S ∈ Fm+1. Furthermore, one has the isoperi-
metric inequality [FH, 4.2.10]: for m ≥ 1 there is a constant γ = γ(m,n) depending
only on m and n, such that if T ∈ Im and ∂T = 0, then T = ∂S for some S ∈ Im+1

with M(S) ≤ γM(T )m+1/m.
If T ∈ Fm and T = ∂S for some S ∈ Fm+1, we say T is an m-dimensional

integral flat boundary, or m-boundary for short. Thus if m ≥ 1, every m-cycle is an
m-boundary.

(6) If T ∈ Fm and f : Rn → Rn is Lipschitz and proper, then one defines
f#T ∈ Fm [FH, 4.1.14, 4.1.24]. In case T corresponds to an oriented manifold and
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f is C1, then f#T corresponds to the oriented image of T under f , with appropriate
multiplicities if f is not one-one.

The properties of f#T we will need are:

(a) f#∂T = ∂f#T ;
(b) f : Fm → Fm, is linear, and is continuous in the F-metric;
(c) if Lipf = r and T ∈ Fm, then M(f#T ) ≤ rmM(T ) and F(f#T ) ≤

max{rm, rm+1}F(T );
(d) spt f#T ⊂ f(sptT ).

(7) One can generalise from the integral flat chains to the so-called flat chains,
and even more generally to the currents of de Rham. However, one loses the useful
geometric properties of the integral flat chains. For a full treatment of all these
subjects see [FH].

3. Invariant Sets

We follow the notation of 2.2, and the other subsections of 2 as necessary. S =
{S1, . . . , SN} is a set of contraction maps on the complete metric space (X, d).
Lip Si = ri. si1...ip

is the fixed point of Si1...ip
.

We show the existence and uniqueness of a compact set invariant with respect
to S, and discuss its properties.

We suggest the reader considers Examples 3.3 for motivation.

3.1. Elementary Proof of Existence and Uniqueness, and Discussion of

Properties.

(1) For arbitrary A ⊂ X let S(A) =
⋃N

i=1 Si(A). Let S0(A) = A, S1(A) = S(A),
Sp(A) = S(Sp−1(A)) for p ≥ 2. We will often use the notation Ai1...ip

= Si1...ip
(A).

Notice Sp(A) =
⋃

i1,...,ip
Ai1...ip

. Notice also that diam (Ai1...ip
) ≤ ri1 · . . . ·rip

diam

(A)→ 0 as p→∞, provided A is bounded.

(2) Definition. A is invariant (with respect to S) if A = S(A).

(3) Theorem and Definitions.

(i) There is a unique closed bounded set K which is invariant with respect to

S. Thus K =
⋃N

i=1 Ki. Moreover K is compact.

(ii) Ki1...ip
=

⋃N
ip+1=1Ki1...ipip+1 .

(iii) K ⊃ Ki1 ⊃ · · · ⊃ Ki1...ip
⊃ · · · , and

⋂∞
p=1 Ki...ip

is a singleton whose
member is denoted ki1...ip.... K is the union of these singletons.

(iv) kî1...̂ip
= si1...ip

, and in particular si1...ip
∈ K (recall 2.1(5)). Also ki1...ip... =

limp→∞ si1...ip
, and in particular this limit exists.

(v) K is the closure of the set of fixed points of the Si1...ip
.

(vi) Sj1...jq
(Ki1...ip

) = Kj1...jq i1...ip
, Sj1...jq

(ki1...ip...) = kj1...jq i1...ip....
(vii) The coordinate map π : C(N) → K given by π(α) = kα is a continuous

map onto K.
(viii) If A is a non-empty bounded set, then d(Ai1 ...ip

, ki1...ip...)→ 0 uniformly as
p→∞. In particular Sp(A)→ K in the Hausdorff metric.

(4) Proof of Uniqueness . We first remark that (i) and (viii) are established
in 3.2 independently of the following.



FRACTALS AND SELF SIMILARITY 11

Assume now that K is a closed bounded set invariant with respect to S, and
observe the following consequences.

K =

N
⋃

i=1

Si(K) =
⋃

i,j

Si(SjK) =
⋃

i,j

Sij(K) =
⋃

i,j

Kij

. . .

=
⋃

i1,...,ip

Ki1...ip
.

Similarly

Ki1...ip
= Si1...ip

(K) = Si1...ip

( N
⋃

ip+1=1

Sip+1(K)

)

=
N
⋃

ip+1=1

Si1...ip+1(K) =
N
⋃

ip+1=1

Ki1...ipip+1 .

Thus K ⊃ Ki1 ⊃ Ki1i2 ⊃ · · · ⊃ Ki1...ip
⊃ · · · , and since diam (Ki1...ip

) as p→ ∞,
⋂

pKi1...ip
is a singleton (by completeness of X) whose unique member we denote

ki1...ip.... Thus we have established (ii) and (iii) under the given assumptions on K.
The first part of (vi) is immediate, since

Sj1...jq
(Ki1...ip

) = Sj1...jq
(Si1...ip

(K)) = Sj1...jqi1...ip
(K) = Kj1...jqi1...ip

.

The second part follows, since

Sj1...jq
(ki1...ip...) ∈ Sj1...jq

∞
⋂

p=1

Kj1...ip
=

∞
⋂

p=1

Kj1...jq i1...ip
= kj1...jq i1...ip....

Since Si1...ip
(kî1 ...̂ip

) = kî1...̂ip
by the above, it follows kî1 ...̂ip

is the unique fixed

point si1...ip
of Si1...ip

. It follows both si1...ip
, ki1...ip... ∈ Ki1...ip

, and hence since
limp→∞ diam (Ki1...ip

) = 0, that limp→∞si1...ip
= ki1...ip.... This establishes (iv),

and (v) follows from (iv). Notice we have established the uniqueness of K (since K
is the union of singletons, each of which is the limit of a certain sequence of fixed
points of the Si1...ip

).
To establish (vii), and hence that K is compact (being the continuous image

of a compact set), let π be as in (vii). Suppose α = 〈α1 . . . αp . . . 〉 ∈ C(N) and
ε > 0. Then π(α) = kα1...αp... and so there is a q such that Kα1...αq

⊂ {x ∈ K :
d(x,π(α)) < ε}. Since Kα1...αq

is the image of the open set {β : βi = αi if i ≤ q},
it follows π is continuous.

To prove (viii) suppose A is non-empty and bounded. Then

d(Ai1...ip
, ki1...ip...) = d(Si1...ip

(A), Si1...ip
(kip+1...))

≤ ri1 · . . . · rip
d(A, kip+1...

)

≤ ri1 · . . . · rip
sup{d(a, b) : a ∈ A, b ∈ K}

≤ Constant(max1≤i≤Nri)
p

→ 0 as p→∞.
All that remains now is to prove the existence of a closed bounded invariant set.

But notice that we know from (v) what this set must be.

(5) Proof of Existence. First we need to establish the following lemma.
Lemma. If {S1, . . . , SN} is a set of contraction maps on a complete metric

(X, d), and si1...ip
is the fixed point of Si1...ip

= Si1 ◦ · · ·◦Sip
then for each sequence

i1 . . . ip . . ., limp→∞ si1...ip
exists.
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Proof. Let λ = max1≤i,j≤N d(si, sj), and let R = λ(1 − r)−1 where r = max{ri =
Lip(Si) : 1 ≤ i ≤ N}.

Then
⋃N

i=1 B(si, rR) ⊂ ⋂N
i=1 B(si, R) = C, say. For if d(si, x) ≤ rR then

d(sj , x) ≤ λ + rR = λ + rλ(1 − r)−1 = λ(1 − r)−1 = R. Thus SiC ⊂ C for
i = 1, . . . , N , and so C ⊃ Si1(C) ⊃ Si1i2(C) ⊃ · · · ⊃ Si1...ip

(C) ⊃ · · · , i.e. C ⊃
Ci1 ⊃ Ci1i2 ⊃ · · · ⊃ Ci1...ip

⊃ · · · . But the fixed point si1...ip
must lie in Si1...ip

(C),
and so since diam(Si1...ip

(C)) → 0 as p → ∞ and the Si1...ip
(C) are closed, it

follows limp→∞ si1...ip
exist and is the unique member of

⋂∞
p=1 Si1...ip

(C).

For α ∈ C(N) let sα = limp→∞ sα1...αp
, and let K = {sα : α ∈ C(N)}. Then

Si(sα) = siα, since Si(sα) ∈ Si(
⋂∞

p=1 Cα1...αp
) =

⋂∞
p=1 Ciα1...αp

3 siα (notice that it

is not normally true that Si(sα1...αp
) = (siα1...αp

)). Thus K =
⋃N

i=1 Si(K) = S(K),
i.e. K is invariant with respect to S.

It remains to prove that K is compact. Define π : C(N) → K by π(α) = sα.
Since diam (K) is bounded (being a subset of C in the previous lemma) it follows
precisely as in the proof of (vii) that π is continuous and hence that K is compact.
This gives the existence of (i) and completes the proof of the theorem. �

(6) Definition. The compact set invariant under S is denoted by |S|.
(7) Non-compact invariant sets. There are always non-bounded invariant

sets, Rn being a trivial example.
For any A, S(A) = A implies S(Ā) = Ā. Thus if A is bounded and invariant,

then so is Ā, and hence Ā = |S| by (3)(i). For example, S 1
2
(0, 1) = (0, 1) where S 1

2

is as in 3.3(1).

(8) The following observation is useful. Suppose A is a set such that S(A) ⊂ A.
Then clearly A ⊃ S(A) ⊃ S2(A) ⊃ · · · ⊃ Sp(A) ⊃ · · · . If furthermore A is closed
and non-empty, then K(= |S|) ⊂ A, and Ki1...ip

⊂ Ai1...ip
for all i1, . . . , ip.

To see this latter, choose a ∈ A. Then by (3)(viii) for each fixed i1, . . . , ip, . . .,
ki1...ip... = limp→∞ Si1...ip

(a) ∈ A. Hence K ⊂ A. Applying Si1...ip
to both sides,

Ki1...ip
⊂ Ai1...ip

.

(9) If
∑N

i=1 ri < 1, then K is totally disconnected. For given a, b ∈ K select p

such that λ
(
∑

i1,...,ip
ri ·. . . ·rip

)

= λ
(
∑N

i=1 ri
)p
< d(a, b), where λ = diamK. Since

K =
⋃

ip,...,ip
Ki1...ip

, and diamKi1...ip
= ri · . . . · rip

λ, it follows by an elementary

argument that a and b are in distinct components of K.

3.2. Convergence in the Hausdorff Metric. We remark that this Section is
independent of 3.1(3), (4).

Let B be the family of closed bounded subsets of X , C the family of compact
subsets. Clearly S : B → B and S : C → C. We have

(1) Theorem. S is a contraction map on B (respectively C) in the Hausdorff
metric.

Proof.

δ
(

S(A),S(B)
)

= δ(
⋃

i

Si(A),
⋃

i

Si(B))

≤ max1≤i≤N δ(Si(A), Si(B))

≤ (max1≤i≤Nri)δ(A,B).

Existence and uniqueness of a closed bounded invariant set |S| follow from the
contraction mapping principle. Since C is a closed subset of B, it follows that
|S| ∈ C. �
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Remark added subsequent to publication: As pointed out by a number of people,
since A ∈ B does not imply Si(A) closed, one should replace Si(A) by its closure
in the definition of S(A), when S operates on B. This new map S has a unique
fixed point in B, which must then agree by uniqueness with the fixed point of S
operating on C.

3.3. Examples.

(1) Cantor Set. In the notation of 2.3 let

Sr = {S1(r), S2(r)}, Si(r) : R→ R,

S1(r) = (0, r, I), S2(r) = (1, r, I),

where I is the identity map.

Figure 3.1 The classical Cantor set C.

If r = 1
3 , then Sr(C) = C where C is the classical Cantor set, and so |S 1

3
| = C.

We have sketched C, more precisely S3([0, 1]), in Figure 3.1. Notice the numbering
system for the various components Ci1...ip

.

If 0 < r < 1
2 , then |Sr| is a generalised Cantor set. It is standard, and a

consequence of 5.3(1)(ii), that dim |Sr| = log 2/log( 1
r ).

If 1
2 ≤ r < 1, then Sr([0, 1]) = [0, 1], and hence |Sr | = [0, 1]. Thus different Sr

can generate the same set. In this connection see 4.1.

(2) Koch Curve. We refer to Figure 3.2. Let a1, a2, a3, a4, a5 be as shown.
Let S = {S1, S2, S3, S4} where Si : R2 → R2 is the unique similitude mapping −−→a1a5

to −−−−→aiai+1 and having positive determinant (i.e. no reflections).

Figure 3.2 The Koch curve K.

Let K = |S|. Actually Figure 3.2 shows the approximation S4([a1, a5]) to K.
Notice how one finds the components of K, e.g. K331. Si has the fixed point si = kî;
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s1 = a1, s4 = a5, and s2, s3 are shown. Similarly Sij = Si ◦ Sj has the fixed point
sij = kîĵ , where s23 is shown.

One can visualise Sp(A) =
⋃

i1,...,ip
Ai1...ip

→ K as p → ∞, for arbitrary

bounded A (e.g. A a singleton).
Now let S ′ = {S′

1, S
′
2}, where S′

i is the unique similitude mapping −−→a1a5 to −−→a1a3

(i = 1), −−→a3a5 (i = 2), having negative determinant (i.e. the S ′
i include a reflection

component). Then it follows S ′(K) = K and hence |S ′| = K. For S′
1 ◦ S′

1 = S1,
S′

1 ◦ S′
2 = S2, S

′
2 ◦ S′

1 = S3, S
′
1 ◦ S′

2 = S4, hence (S ′)2 = S, hence |S ′| is fixed by S,
hence |S ′| = |S| by uniqueness. Thus as in (2), different S can generate the same
set.

(3) Let M ⊂ Rn be an oriented m-dimensional manifold with oriented bound-
ary N as in Figure 3.3. Let S = {S1, . . . , SN} where Si : Rn → Rn are contraction

maps such that
∑N

i=1 Si(N) = N , taking into account orientation and after allow-
ing cancellation of portions of manifolds having opposite orientation. Obviously
such S are easy to find.

Figure 3.3 M ⊂ R3, M has the boundary N . Consider the case
where M and N do not lie in a plane.

|S| will normally have dimension > m, and so cannot be an m-dimensional
manifold, yet in some sense |S| is an m-dimensional object with oriented boundary
N . We make this precise in §6, where under mild restrictions on the Si, |S| becomes
an integral flat m-chain having N as its boundary.

3.4. Remark. The following gives a curious characterisation of line segments:

A compact connected set A ⊂ Rn is a line segment iff A = S(A) for some S =

{S1, . . . , SN} where N ≥ 2 , the Si are similitudes, LipSi = ri, and
∑N

i=1 ri = 1.

Proof. One direction is trivial.
Conversely, suppose A = S(A) with S as above. Let diamA = d(p, q) where

p, q ∈ A. By projecting A onto the line segment pq, one sees that H1(A) ≥ diamA.
If A 6= pq, by taking the nearest point retraction π of A onto a suitably thin solid
ellipsoid having p and q as extremal points, one finds H1(A) 	 H1(π(A)). But
H1(π(A)) ≥ diamA as we just saw, and so H1(A) 	 diamA unless A = pq. One
can check H1(A) ≤ diamA by a covering argument, and so the required result
follows. �

The above was in response to a query of B. Mandelbrot concerning characteri-
sations of the line — his query in turn arose from some rather vague remarks in a
work of Liebniz. F. J. Almgren Jr. suggested a shortening of the original proof.
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3.5. Parametrised Curves.

(1) Suppose S = {S1, . . . , SN} has the property that

a = s1 = fixed point of S1,

b = sN = fixed point of SN ,

Si(b) = Si+1(a) if 1 ≤ i ≤ N − 1,

(for example, 3.3(2)). Then one can define a continuous f : [0, 1]→ |S|, with Image
(f) = |S|, in a natural way.

For this purpose, fix 0 = t1 < t2 < · · · < tN+1 = 1. Define gi : [ti, ti+1]→ (0, 1)
for 1 ≤ i ≤ N by

gi(x) =
x− ti
ti+1 − ti

.

Let

F = F(a, b) = {f : [0, 1]→ X : f is continuous, f(0) = a, f(1) = b}.
Define S(f) for f ∈ F by

S(f)(x) = Si ◦ f ◦ gi(x) for x ∈ [ti, ti+1], 1 ≤ i ≤ N.
Define a metric P on F by

P(f1, f2) = sup{|f1(x)− f2(x)| : x ∈ [0, 1]}.
P is clearly a metric, and is furthermore complete since the uniform limit of con-
tinuous functions is continuous.

(2) Proposition. S is well-defined, S : F → F , and S is a contraction map in
the metric P.

Proof. S is well-defined and S(f) ∈ F if f ∈ F , since Si ◦ f ◦ gi(ti+1) = Si ◦
f(1) = Si(b) = Si+1(a) = Si+1 ◦ f(0) = Si+1 ◦ f ◦ gi+1(ti+1) for 1 ≤ i ≤ N − 1,
S1 ◦f ◦ g1(0) = S1 ◦f(0) = S1(a) = a, and SN ◦f ◦ gN (1) = SN ◦f(1) = SN (b) = b.

Now suppose x ∈ [ti, ti+1] and f1, f2 ∈ F . Then

|S(f1)(x)− S(f2)(x)| = |Si ◦ f ◦ gi(x) − Si ◦ f2 ◦ gi(x)|
≤ LipSi |f1(gi(x)) − f2(gi(x))|
≤ LipSi P(f1, f2).

Hence P(S(f1),S(f2)) ≤ rP(f1, f2), where r = max{LipSi : 1 ≤ i ≤ N}. It follows
S is a contraction map. �

(3) Theorem. Under the hypotheses on S in (1), there is a unique g ∈ F such
that S(g) = g. Furthermore Image (g) = |S|.

Proof. The existence of a unique such g follows from (2).
By construction, Image S(f) = S(Imagef) for every f ∈ F . If S(g) = g, this

implies Image g = S(Image g), and hence Image g = |S| by 3.1(3)(i). �

(4) It is often possible to parametrise other invariant sets |S| ⊂ R by maps
g : {x ⊂ Rm : |x| ≤ 1} → Rn for suitable m, for example m = 2 in 3.3(3). But
if m > 1 there is a lot of arbitrariness in the selection of the particular parametric
map g. It is often better to treat |S| as an intrinsic “m-dimensional” object in Rn

via the notion of an m-dimensional integral flat chain, c.f. 2.7, and 6.
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4. Invariant Measures

4.1. Motivation. A motivation for this section is the following. In 3.3(1), (2) we
saw examples of different families of contractions generating the same set. Yet the
Sr of 3.3(1) seem to be different from one another in a way that S and S ′ of 3.3(2)
are not. We make this precise in 4.4(6).

Another motivation is that it will be easier to “use” invariant sets if we can
impose additional natural structure on them, in this case a measure.

4.2. Definitions. (X, d) is a complete metric space, S = {S1, . . . , SN} is a family of
contraction maps. Additionally, we assume the existence of a set ρ = {ρ1, . . . , ρN}
with ρi ∈ (0, 1) and

∑N
i=1 ρi = 1. In 5 we will see that in case the Si are similitudes

with Lip Si = ri, it is natural to take ρi = rD
i , where D is the similarity dimension

of S, 5.1(3).
We refer back to 2.5 for terminology on measure.

(1) Definition. If ν ∈ M let (S, ρ)(ν) =
∑N

i=1 ρiSi#ν. Thus (S, ρ)(ν)(A) =
∑N

i=1 ρiν(S
−1
i (A)). Let (S, ρ)0(ν) = ν, (S, ρ)1(ν) = (S, ρ)(ν), and (S, ρ)p(ν) =

(S, ρ)((S, ρ)p−1(ν)) for p ≥ 2. Let

νi1...ip
= ρi1 · . . . · ρip

Si1...ip#(ν).

(2) Notice (S, ρ)p(ν) =
∑

i1,...,ip
νi1...ip

. Also M((S, ρ)(ν)) = M(ν) and so

M((S, ρ)p(ν)) = M(ν) for all p. In particular, (S, ρ) :M1 →M1.

(3) Definition. ν is invariant (with respect to (S, ρ)) if (S, ρ)(ν) = ν.

4.3. The L metric. We introduce a metric L on M1 (see 2.5(2)) similar to the
one introduced by Almgren in [AF, 2.6], but modified in a way which enables 4.4(1)
to hold.

(1) Definition. For µ, ν ∈M1 let

L(µ, ν) = sup{µ(φ)− ν(φ) | φ : X → R,Lip φ ≤ 1}.
Notice that φ of the definition is a member of BC(X), and notice also that there

is no restriction on sup{φ(x) : x ∈ X}.
In checking that L is indeed a metric, the only part which is not completely

straightforward is verifying L(µ, ν) < ∞. So suppose spt µ ∪ spt ν ⊂ B(a,R).
Then for Lip φ ≤ 1,

µ(φ) − ν(φ) = µ
(

φ− φ(a) + φ(a)
)

− ν
(

φ− φ(a) + φ(a)
)

= µ
(

φ− φ(a)
)

− ν
(

φ− φ(a)
)

, since µ(φ(a)) = ν(φ(a))

≤ µ(R) + ν(R)

= 2R.

One can check that the L metric topology and the weak topology coincide on
H1 ∩ {µ : spt µ is compact}.

Finally notice that L(δa, δb) = d(a, b).

4.4. Existence and Uniqueness.

(1) Theorem.

(i) (S, ρ) :M1 →M1 is a contraction map in the L metric.
(ii) There exists a unique µ ∈ M1 such that (S, ρ)µ = µ. If ν ∈ M1 then

(S, ρ)p(ν) → µ is the L metric, and hence in the topology of convergence
with respect to each compactly supported continuous function.
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Proof. (ii) follows immediately from (i).
To establish (i), suppose Lip φ ≤ 1 and let r = max1≤i≤N ri. Then for µ, ν ∈

M1,

(S, ρ)(µ)(φ) − (S, ρ)(ν)(φ) =

N
∑

i=1

(ρiSi#µ)(φ) −
N

∑

i=1

(ρiSi#ν)(φ)

=
N

∑

i=1

ρi(µ(φ ◦ Si)− ν(φ ◦ Si))

=

N
∑

i=1

ρir(µ(r−1φ ◦ Si)− ν(r−1φ ◦ Si))

≤
N

∑

i=1

ρirL(µ, ν) = rL(µ, ν),

since Lip (r−1φ ◦ Si) ≤ r−1 · 1 · ri ≤ 1. �

(2) Definition. The unique measure invariant with respect to (S, ρ) is denoted
‖S, ρ‖.

(3) Definition. Let τ be the product measure on C(N) induced by the measure
ρ(i) = ρi on each factor {1, . . . , N}.

(4) Theorem.

(i) ‖S, ρ‖ = π#τ , where π : C(N)→ K is the coordinate map of 3.1(3)(vii).
(ii) spt ‖S, ρ‖ = |S|.

Proof. (ii) follows from (i) and 3.1(3)(vii).
To establish (i) let σi : C(N) → C(N) be the ith shift operator 2.1(3). Clearly

π ◦ σi = Si ◦ π and τ is ({σ1, . . . , σN}, ρ) invariant. Hence
∑

ρiSi#(π#τ) =
∑

ρiπ#(σi#τ) = π#

∑

ρi(σi#τ) = π#τ , and so by uniqueness π#τ = ‖S, ρ‖. �

(5) Remarks.

(1) It follows from 4(ii) that ‖S, ρ‖ has compact support.
(2) There are unbounded invariant measures, in particular and trivially, Ln on

Rn.
(3) If ν is invariant, so is λν for any positive constant λ. Requiring ‖S, ρ‖ ∈ M1

is simply a normalisation requirement.

(6) Example. Referring back to 3.3(1), let ρ = { 1
2 ,

1
2} and write µr for ‖Sr, ρ‖.

We will show µr 6= µs for 1
2 ≤ r < s < 1. In 5.3(iii) we see that µr = Hrb‖Sr‖ for

0 < r ≤ 1
2 .

Suppose 1
2 ≤ r < s < 1. Take A ⊂ [0, 1− s). Then S2(r)

−1(A) ∩ [0, 1] = ∅ and

hence µr(S2(r)
−1(A)) = ∅ since spt µr ⊂ [0, 1]. It follows µr(A) = 1

2µr(S1(r)
−1(A)) =

1
2µr(rA). Similarly µs(A) = 1

2µs(sA). If µr = µs = µ, say, it follows µ(sA ∼ rA) =
0. Choosing A = [0, 1− s), this contradicts spt µ = [0, 1].

4.5. Different Sets of Similitudes Generating the Same Set. For I a finite
set as in 2.1(6), let SI = {Sα : α ∈ I}. Then |SI | = {kβ : β ∈ Î}, as follows by

applying 3.1(3)(iii), (iv) to SI . From 2.1(8)(i), Î = I iff I is secure. Thus |SI | = |S|
if I is secure, and if the coordinate map π is one-one, then |SI | = |S| iff I is secure.
A similar result was first shown in [OP].

Let ρI : I → (0, 1) be given by ρI(〈i1, . . . , ip〉) = ρ(i1) · . . . · ρ(ip). Then if
I is tight, by using 2.1(8)(ii), one can check

∑

α∈I ρI(α) = 1, and furthermore
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‖SI , ρI‖ = ‖S, ρ‖ as follows from 4.4(4) and 3.1(3). Finally, if π is one-one, then
‖SI , ρI‖ = ‖S, ρ‖ iff I is tight.

5. Similitudes

5.1. Self-Similar Sets. We continue the notation of §3 and §4.

(1) Definition. K is self-similar (with respect to S) if

(1) K is invariant with respect to S, and
(2) Hk(K) > 0, Hk(Ki ∩Kj) = 0 for i 6= j, where k = dimK.

Thus (ii) is a kind of “minimal overlap” condition, and rules out the examples in
3.3(1) with 1

2 < r < 1. However, it is still rather weak. For example, if S = {S1, S2},
Si : R2 → R2, S1(re

iθ) = (
√

2)−1rei(θ−π/4) and S2(1+reiθ) = 1+(
√

2)−1rei(θ+π/4),
then |S| is a continuous image of [0, 1] with a dense set of self-intersections, see [OP,
D=2, L=0] or [LP, Figure 3]. In [LP, page 374] it is shown H2(|S|) = 1

4 , and so
dim |S| = 2 and |S| is self-similar in the above sense by (4)(ii).

A more useful notion of self-similarity may be a condition analogous to the open
set condition below, which we will see implies |S| is self-similar, but allows us to
“separate out” the components |S|i.

(2) Convention. For the rest of this section we restrict to the case S is a
family of similitudes. (X, d) will be Rn with the Euclidean metric, although other
conditions suffice. Hk is Hausdorff k-dimensional measure. Lip (Si) = ri.

Let γ(t) =
∑N

i=1 r
t
i . Then γ(0) = N and γ(t) ↓ 0 as t → ∞, and hence there is

a unique D such that
∑N

i=1 r
D
i = 1.

(3) Definition. If
∑

rD
i = 1, D is called the similarity dimension of S.

We will see in 5.3(1) that D often equals the Hausdorff dimension of |S|.
For the rest of this section ρ = {ρ1, . . . , ρN} where ρi = rD

i , and so ρ is de-
termined by S. We write ‖S‖ for ‖S, ρ‖, and often write K for |S| and µ for
‖S‖.

Note that
∑

i1,...,ip
rD
i1
· . . . · rD

i1
=

(

∑N
i=1 r

D
i

)p

= 1, a fact we use frequently.

Finally we take r1 ≤ r2 ≤ · · · ≤ rN , so that r1 = min {ri : 1 ≤ i ≤ N},
rN = max {ri : 1 ≤ i ≤ N}.

(4) Proposition. Let K = |S|, dim K = k. Then

(i) HD(K) <∞ and so k ≤ D (this is true for arbitrary contractions Si).
(ii) 0 < Hk(K) <∞ implies (K is self-similar iff k = D).

Proof. (i) K =
⋃

i1,...,ip
Ki1...ip

and
∑

i1,...,ip
(diam Ki1...ip

)D =
∑

i1,...,ip
rD
i1 · . . . ·

rD
ip

(diam K)D = (diam K)D. Since diam Ki1...ip
≤ rp

N diam K → 0 as p→∞, we

are done.

(ii) Suppose 0 < Hk(K) < ∞ and K is self-similar, so that Hk(Ki ∩Kj) = 0

if i 6= j. Then Hk(K) =
∑N

i=1Hk(Ki) =
∑N

i=1 r
k
i Hk(K), hence

∑

rk
i = 1, hence

D = k.
Conversely, suppose 0 < HD(K) < ∞. Then HD(K) ≤ ∑N

i=1HD(Ki) =
∑N

i=1 r
D
i HD(K). Since

∑N
i=1 r

D
i = 1, HD(K) =

∑N
i=1HD(Ki) and so it is standard

measure theory that HD(Ki ∩Kj) = 0 if i 6= j. �

5.2. Open Set Condition. Recall convention 5.1(2).

(1) Definition. S satisfies the open set condition if there exists a non-empty
open set O such that

(i)
⋃N

i=1 SiO ⊂ O,
(ii) SiO ∩ SjO = ∅ if i 6= j.
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(2) Examples. (a) Suppose we already have a non-empty closed set C satis-
fying (i) and (ii) of (1) with O replaced by C. Let d = mini6=j d(SiC, SjC), and
select ε so riε < d/2 for i = 1, . . . , N . Then S satisfies the open set condition with
O =

⋃

x∈C B(x, ε). To see this observe that

SiO =
⋃

x∈C

SiB(x, ε) =
⋃

x∈C

B(Six, riε) =
⋃

y∈SiC

B(y, riε).

Hence SiO ∩ SjO = ∅ if i 6= j and furthermore SiO ⊂ O. This situation applies to
3.3(1), 0 < r < 1

2 , with the non-empty closed set [0, 1].
(b) Suppose there is a closed set C with non-empty interior such that

(1) SiC ⊂ C if i = 1, . . . , N ,
(2) (SiC)◦ ∩ (SjC)◦ = ∅ if i 6= j.

Then the open set condition holds with O = C◦. This situation applies in 3.3(1),
(2) with C the closed convex hull of |S|, i.e. C = [0, 1] for 3.3(1) and C is the
triangle (a1, a5, a3) for 3.3(2).

(3) Elementary consequences. Suppose S satisfies the open set condition
with O. Note that Si1...ip

commutes with the topological operators −,◦ , ∂,c. In

particular (Oi1...ip
)− = (O−)i1...ip

, and so we can write Ōi1...ip
unambiguously.

Then

(i) O ⊃ Oi1 ⊃ Oi1i2 ⊃ · · · ⊃ Oi1i2...ip
⊃ · · · ;

(ii) Ki1...ip
⊂ Ōi1...ip

;
(iii) Kj1...jp

∩ Oi1...ip
= ∅ if (j1, . . . , jp) 6= (i1, . . . , ip);

(iv) if I is tight (2.1(7)), then the Oα, α ∈ I, are mutually disjoint.

Thus (ii) and (iii) say that Oi1...ip
“isolates” Ki1...ip

from the Kj1...jp
for (j1, . . . , jp) 6=

(i1, . . . , ip).

Proof. (i) and (ii) follow immediately from 3.1(8).
For (iii), suppose (j1, . . . , jp) 6= (i1, . . . , ip). But Kj1...jp

⊂ Ōj1 ...jp
, and Ōj1 ...jp

∩
Oi1...ip

= ∅ since Oj1...jp
∩ Oi1...ip

= ∅.
For (iv), suppose I is tight, α, β ∈ I , and α 6= β. Let p be the greatest integer

(perhaps 0) for which there is a sequence 〈i1, . . . , ip〉 with 〈i1, . . . , ip〉 ≺ α and
〈i1, . . . , ip〉 ≺ β. Since I is tight there exist ip+1 6= jp+1 such that 〈i1, . . . , ip, ip+1〉 ≺
α, 〈i1, . . . , ip, jp+1〉 ≺ β. But then Oα ⊂ Oi1...ipip+1 , Oβ ⊂ Oi...ipjp+1 by (1), and so

Oα ∩Oβ ⊂ Si1...ip
(Oip+1 ∩ Ojp+1) = ∅.

�

5.3. Existence of Self Similar Sets.

(1) Theorem. Suppose S satisfies the open set condition. Then

(i) there exist λ1, λ2 such that

0 < λ1 ≤ θD
∗ (K, k) ≤ θ∗D(K, k) ≤ λ2 <∞ for all k ∈ K,

(ii) 0 < HD(K) < ∞ and so K is self-similar by 5.1(4)(ii). In particular dim
K = D,

(iii) ‖S‖ = [HD(K)]−1HDbK.

Proof.

(a) Lemma. Suppose 0 < c1 < c2 <∞ and 0 < ρ <∞. Let {Ui} be a family of
disjoint open sets. Suppose each Ui contains a ball of radius ρc1 and is contained
in a ball of radius ρc2. Then at most (1 + 2c2)

nc−n
1 of the Ūi meet B(0, ρ).
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For suppose Ūi, . . . , Ūk meet B(0, ρ). Then each of Ūi, . . . , Ūk is a subset of
B(0, (1 + 2c2)ρ). Summing the volumes of the k corresponding disjoint spheres of
radius ρc1, we see that

kαnρ
ncn1 ≤ αn(1 + 2c2)

nρn,

and hence k ≤ (1 + 2c2)
nc−n

1 .

(b) For the rest of the proof let O be the open set asserted to exist by the
open set condition.

Let µ = ‖S‖. We will first prove that there exist constants κ1, κ2 such that

0 < κ1 ≤ θD
∗ (µ, k) ≤ θ∗D(µ, k) ≤ κ2 <∞

for all k ∈ K.
First note that

µ(Ki1...ip
) ≥ µi1...ip

(Ki1...ip
) = rD

i1 · . . . · rD
ip
µ(S−1

i1...ip
Ki1...ip

)

= rD
i1 · . . . · rD

ip
µ(K) = rD

i1 · . . . · rD
ip
.

Let k = ki1...ip... and consider B(k, ρ). Choose the least p such that Ki1...ip
⊂

B(k, ρ). Then ri1 · . . . · rip
(diam K) ≥ ρr1 (recalling r1 ≤ · · · ≤ rN ). Hence

µB(k, ρ)

αDρD
≥ µ(Ki1...iρ

)

αDρD
≥
rD
i1
· . . . · rD

ip

αDρD
≥ rD

1

αD(diamK)D
.

Hence θD
∗ (µ, k) ≥ rD

1 α
−1
D (diamK)−D for k ∈ K.

We now show that θ∗D(µ, k) is uniformly bounded away from ∞ for k ∈ K.
Suppose O contains a ball of radius c1 and is contained in a ball of radius c2. For

each sequence j1 . . . jq . . . ∈ C(N) select the least q such that r1ρ ≤ rj1 · . . . ·rjq
≤ ρ.

Let I be the set of 〈j1, . . . , jq〉 thus selected, and notice that I is tight (2.1(7)).
From 5.2(3) it follows {Oj1...jq

: 〈j1, . . . , jq〉 ∈ I} is a collection of disjoint open
sets. Moreover, each such Oj1...jq

contains a ball of radius rj1 · . . . · rjq
c1 and hence

of radius r1ρc1 and is contained in a ball of radius rj1 · . . . · rjq
c2 and hence of

radius ρc2. It follows from (a) that at most (1 + 2c2)
n(r1c1)

−n of the Ōj1...jq
,

〈j1, . . . , jq〉 ∈ I, meet B(k, ρ). Hence at most (1 + 2c2)
n(r1c1)

−n of the Kj1...jq
,

〈j1, . . . , jq〉 ∈ I , meet B(k, ρ).
Now spt(µj1...jq

) = Kj1...jq
by 4.4(4)(ii). By 4.5

µ =
∑

〈j1,...,jq〉∈I

µj1...jq
.

Finally M(µj1...jq
) = rD

j1 · . . . · rD
jq
≤ ρD for 〈j1, . . . , jq〉 ∈ I .

Hence
µB(k, ρ)

αDρD
≤ (1 + 2c2)

n

rn
1 c

n
1

· ρD

αDρD
=

(1 + 2c2)
n

αDrn
1 c

n
1

.

It follows θ∗D(µ, k) ≤ (1 + 2c2)
n(αDr

n
1 c

n
1 )−1.

(c) (ii) now follows from 2.6(3).

(d) Since K is self-similar, HD(Ki ∩KJ) = 0 if i 6= j, and so

HDbK =

N
∑

i=1

HDbKi =

N
∑

i=1

rD
i Si#(HDbK)

by 2.6(2).

Letting τ = [HD(K)]−1HDbK, it follows that τ =
∑N

i=1 r
D
i Si#(τ), and that

M(τ) = 1. By uniqueness, τ = µ, proving (iii).

(e) From (iii), θD
∗ (K, k) = θD

∗ (HDbK, k) = [HD(K)]−1θD
∗ (µ, k), and similarly

for θ∗D . (i) now follows from (b). �
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(2) Remarks. Result (i) says that K is rather uniformly spread out in the
dimension k. But on the other hand, by a result of Marstrand [MJ], the inequality
between the upper and lower densities cannot be replaced by an equality if D is
non-integral.

Result (ii) is due to Moran [MP].

5.4. Purely Unrectifiable Sets. We continue our assumptions that (X, d) is Rn

with the Euclidean metric and that S is a family of similitudes.

(1) Theorem. Suppose S satisfies the open set condition with both the open set
O and the open set U , where O ⊂ U . Suppose furthermore that whenever A is an
m-dimensional affine subspace of Rn for which A∩ Ōi 6= ∅ and A∩Ōj 6= ∅ for some

i 6= j, then A ∩
(

U ∼ ⋃N
i=1 Ōi

)

6= ∅. Then for any m-dimensional C1 manifold M

in Rn, Hm(M ∩ |S|) = 0.

Proof. We proceed in stages.

(a) Let

A = {A : A is an m-dimensional affine space with

A ∩ Ōi 6= ∅, A ∩ 0̄j 6= ∅ for some i 6= j}.
(see Figure 5.1.)

Figure 5.1

Let g : A → (0,∞) be defined by

g(A) = sup

{

r : B(a, r) ⊂ U ∼
N
⋃

i=1

Ōi for some a ∈ A
}

.

By the hypotheses of the theorem, 0 < g(A) <∞. We want to show that:

g is uniformly bounded away from 0.

To do this we define a topology on A and prove that A is compact and g is lower
semi-continuous (i.e. g(A0) > λ implies g(A) > λ for all A sufficiently close to A0).
The required result then follows.

Let Om be the set of m-dimensional subspaces through the origin, give Om its

usual compact topology as a subset of Rn2

, and let Rn × Om have the product
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topology. The map (a,O) 7→ a + O is a map from Rn × Om onto the set of m-
dimensional affine spaces in Rn, we give this set the induced topology. Since A is
the image of a closed bounded (hence compact) set, it is compact.

Next suppose g(A0) > λ, A0 ∈ A. Select a0 ∈ A0 and λ0 > λ such that

B(a0, λ0) ⊂ U ∼ ⋃N
i=1 Ōi. For all A sufficiently close to A0, d(a0, A) < λ0 − λ.

Select a ∈ A such that d(a0, a) < λ0−λ. Then B(a, λ) ⊂ B(a0, λ0) ⊂ U ∼
⋃N

i=1 Ōi.
Hence g(A) > λ. Thus g is lower semi-continuous. The required result follows.

(b) For each ε > 0, let

Cε =
{

C : C is an m-dimensional C1 manifold in Rn, and for some

A ∈ A there exists a C1 map f : A ∩ U → C such that

(i) f is one-one,

(ii) Lip f ≤ 1 + ε, Lip f−1 ≤ 1 + ε,

(iii) d(f(x), x) < ε for all x ∈ A ∩ U
}

.

We will show:

there exist ε > 0, δ > 0 such that

Hm

(

C ∩
(

U ∼
N
⋃

i=1

Ōi

)

)

> δ for all C ∈ Cε.

Suppose by (a) that g(A) > λ > 0 for all A ∈ A. Fix ε so 0 < ε < λ/3.
Suppose C ∈ Cε with f and A as in the definition of Cε. Select a ∈ A such that

B(a, λ) ⊂ U ∼ ⋃N
i=1 Ōi.

Since d(f(a), a) < ε it follows B(f(a), λ−ε) ⊂ B(a, λ) and hence B(f(a), λ−ε) ⊂
U ∼ ⋃N

i=1 Ōi. But one can check that f(A∩B(a, λ− 3ε)) ⊂ C ∩B(f(a), λ− ε). It
follows that

Hm

(

C ∩
(

U ∼
N
⋃

i=1

Ōi

)

)

≥
∫

A∩B(a,λ−3ε)

J(f) dHm ≥ αm(λ− 3ε)m(1 + ε)−m,

where J(f) is the Jacobian of f . This gives the required result.

(c) Now assume that the hypotheses of the theorem hold and that Hm(M ∩
K) 6= 0 for some C1 manifold M , where K = |S|. We will deduce a contradiction.

First note that θm(M ∩K, k) = 1 for some k ∈M ∩K [FH, 3.2.19] since M ∩K
is (Hm,m)-rectifiable. Alternatively the corresponding result for θm in Rm [MM,
page 184] can readily be lifted back to the manifold M be means of the area formula

Hm(f(A)) =

∫

A

J(f)dLm for C1 diffeomorphisms f : A→ Rn, A ⊂ Rm.

In the following we will need to be a little careful, since due to “overlap” it is
possible that for fixed p, an arbitrary member of K may belong to more than one
Ki1...ip

.
Since k is a point of non-zero m-dimensional density for M ∩K, it follows that

there is a sequence kj → k as j →∞, k 6= kj ∈M∩K. By passing to a subsequence
we may suppose all kj ∈ Ki1 for some i1, which we fix. By passing to a subsequence
again we may suppose all kj ∈ Ki1i2 for some i2 which we also fix. Repeating this
argument and then diagonalising, we extract a subsequence kj → k and a sequence
i1 . . . ij . . . , such that kj ∈ Ki1...ij

for all j. Moreover k = ki1 ...ij ....
For each j let p(j) be the least integer p such that kj ∈ Ki1...ip

, kj /∈ Ki1...ipip+1 ,
and notice p(j) ≥ j, so p(j)→∞ as j →∞.

Now θm(M ∩ K, k) = 1, and θm(M,k) = 1 since M is a C1 manifold, hence
θm(M ∼ K, k) = 0. Select R ≥ diam U , so that diam Ui1...ip(j)

< Rri1 · . . . · rip(j)
.



FRACTALS AND SELF SIMILARITY 23

We have

(α) lim
j→∞

Hm
(

(M ∼ K) ∩B(k,Rri1 · . . . · rip(j)
)
)

αm(Rri1 · . . . · rip(j)
)m

= 0.

To simplify notation we write p for p(j). See Figure 5.2.

Figure 5.2

Now
(M ∼ K)∩B(k,Rri1 · . . . · rip

)

⊃ (M ∼ K) ∩ Ui1...ip

= M ∩ (Ui1...ip
∼ K)

= M ∩ (Ui1...ip
∼ Ki1...ip

) by 5.2(3)(iii)

⊃M ∩ (Ui1...ip
∼

N
⋃

α=1

Ōi1...ipα ) by 5.2(3)(ii).

Hence

(β)

Hm
(

(M ∼ K) ∩B(k,Rri1 · . . . · rip(j)
)
)

αm(Rri1 · . . . · rip(j)
)m

≥
Hm

(

M ∩
(

Ui1...ip(j)
∼ ⋃N

α=1 Ōi1...ip(j)α

)

)

αm(Rri1 · . . . · rip(j)
)m

=
Hm

(

fj(M) ∩
(

U ∼ ⋃N
α=1 Ōα

)

)

αmRm
,

where fj = S−1
ip(j)
◦ · · · ◦S−1

i1
is an “explosion” map. Here we are using the fact that

fj(Ui1...ip(j)
) = U , fj(Ōi1...ip(j)α) = Ōα, and Hm(fj(A)) = r−m

ip(j)
· . . . · r−m

i1
Hm(A)

for arbitrary A.
But for sufficiently large j we will show that fj(M) ∈ Cε. From (b) this shows the

expression in (β) is bounded away from 0 for all sufficiently large j, contradicting
(α). Thus our original assumption that Hm(M ∩K) 6= 0 is false.

To see that fj(M) ∈ Cε for all sufficiently large j we first observe that in analogy
with the definition of Cε, we have for all sufficiently large j a C1 map gj : fj(T )∩V →
fj(M) where

(i) V is a fixed open neighbourhood of Ū ,
(ii) T is the tangent plane to M at k,
(iii) gj is one-one,

(iv) Lip gj ≤ 1 + ε, Lip g−1
j ≤ 1 + ε,
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(v) d(gj(x), x) < ε/2 for all x ∈ fj(T ) ∩ V .

See for example [FH, 3.1.23]. But we do not know if fjM ∈ A. However, we
can select an affine space Aj through k and kj such that for all sufficiently large
j, fj(Aj) ∩ U and fj(T ) ∩ V are arbitrarily close in the topology on affine spaces
introduced in (a). In particular there will exist ψj : fj(Aj) ∩ U → fj(T ) ∩ V such

that Lip ψj = Lip ψ−1
j = 1 and d(ψj(x), x) < ε/2 for all x ∈ fj(Aj) ∩ U .

Notice that fj(Aj) ∈ A, since fj(k) ∈ fj(Aj) ∩Kip(j)+1
⊂ A ∩ Ōip

and fj(kj) ∈
fj(Aj) ∩Kα ⊂ A ∩ Ōα for some α 6= ip(j)+1.

Finally fj(M) ∈ Cε, where in the definition of Cε, A is replaced by fj(Aj), f is
replaced by gj ◦ ψj , and C is replaced by fj(M). �

(2) Remark. In the terminology of [FH, 3.2.14], K is purely (Hm,m) unrec-
tifiable. In this respect the interest of the present theorem lies in the fact that it
establishes pure (Hm,m) unrectifiability for sets K such that Hm(K) = ∞ (pro-
vided m < D). Unlike the examples in [FH, 3.3.19, 3.3.20] one cannot argue by
using the structure theorems for sets having finite Hm measure.

(3) Example.

(a) If K = UKi with the Ki disjoint, then the hypotheses of the theorem are
easily seen to be satisfied if m = 1, where O is as in 5.2(2)(a), and U = O. For

A ∩
(

U ∼ ⋃N
i=1 Ōi

)

= ∅ iff A ⊂
(

U ∼ ⋃N
i=1 Ōi

)c
= U c ∪ ⋃N

i=1 Ōi. But this latter
cannot be true if A ∈ A, since then A can be split into two disjoint non-empty

components A ∩ U c and A ∩⋃N
i=1 Ōi.

(b) From Example 3.3(2) let O be the interior of the triangle (a1, a5, a3). Let
U ⊃ O be a slightly larger open set also satisfying the open set condition and such

that ∂U ∩ ∂O = {a1, a5}. Suppose A ∈ A where m = 1. If A ∩
(

U ∼ ⋃4
i=1 Ōi

)

= ∅
then it is straightforward to show {a1, a5} ⊂ A. But then (a2, a4) ⊂ A, which

contradicts A ∩
(

U ∼ ⋃4
i=1 0̄i

)

= ∅ since (a2, a4) ⊂ U ∼
⋃N

i=1 Ōi.

(4) Remark. Let us strengthen the hypotheses in (1) by taking A to be a one-
dimensional affine subspace. Then Mattila [MaP] has shown the existence of an
ε > 0, depending only on S, such that for any m-dimensional C1 manifold M , dim
(M ∩ |S|) ≤ m− ε.

In the same paper, Mattila also shows that under the hypotheses of 5.3(1), if
m ≥ D, then there are only two possibilities; either K lies in an m-dimensional
affine subspace or HD(|S| ∩M) = 0 for every m-dimensional C1 manifold M .

5.5. Parameter Space. The orthogonal group O(n) of orthonormal transforma-
tions of Rn is an n(n − 1)/2 dimensional manifold [FH, 3.2.28(1)], and hence the
set of similitudes S = (a, r, O) in Rn corresponds to an n(n − 1)/2 + (n + 1) =
(n2 + n + 2)/2 dimensional manifold. Thus every invariant set generated by some
S = {S1, . . . , SN} of similitudes in Rn corresponds to a point in an N(n2 +n+2)/2
dimensional manifold, which we call the parameter space. Oppenheimer [OP] has
made a systematic computer analysis of a part of N = n = 2.

6. Integral Flat Chains

In this section we will see how integral flat chains, which will not normally be
rectifiable, arise naturally in the context of self-similarity. In particular, the Koch
curve of 3.3(2) supports a 1-dimensional integral flat chain in a natural way, and
|S| in Example 3.3(3) supports a 2-dimensional integral flat chain provides D < 3
(with D defined in 6.2(2)).

We make the convention that all currents we consider are integral flat chains, or
chains for short.

We need to introduce a new metric, but first we need a lemma on the F-metric.
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6.1. The F-metric.

(1) Lemma. Suppose 1 ≤ m ≤ n−1, T is a (not necessarily rectifiable) m-cycle,
and γ = γ(m,n) is the isoperimetric constant of 2.7(5).

(i) If F(T ) < γ−m, T = ∂A+R, and F(T ) = M(A) + M(R), then R = 0.
(ii) If F(T ) ≤ γ−m, then T = ∂A for some A such that M(A) = F(T ).

Proof. (i) We first remark that any T can be written as T = ∂A+R with F(T ) =
M(A) + M(R), as noted in 2.7(5).

Assume the hypotheses of (i). If R = 0 we are done, so suppose R 6= 0. Since
∂R = ∂T = 0, and M(R) ≤ F(T ) < γ−m, there is an m-cycle D such that
R = ∂D and M(D) ≤ γ[M(R)]m+1/m by 2.7(5). Hence M(D) < M(R), since
[M(R)]1/m ≤ [F(T )]1/m < γ−1. But then T = ∂(A + D) and M(A + D) ≤
M(A) + M(D) < M(A) + M(R) = F(T ), a contradiction.

(ii) Suppose F(T ) ≤ γ−m and let T = ∂A + R with F(T ) = M(A) + M(R).
Then the same argument as for (i) shows that R = ∂D with M(D) ≤M(R). Hence
T = ∂(A +D) and M(A +D) ≤M(A) + M(D) ≤M(A) + M(R) = F(T ). Thus
M(A+D) = F(T ), and so we are done. �

(2) We see the necessity of the condition F(T ) ≤ γ−m in the following exam-
ple. Let Tr be a 1-cycle supported on {x : |x| = r} ⊂ R2 with M(Tr) = 2πr. Let
Ar be the rectifiable 2-current supported on {x : |x| ≤ r} ⊂ R2 such that ∂Ar = T
and M(Ar) = πr2. Using the fact γ(1, 2) = 4π [FH 4.5.14] and the constancy
theorem [FH 4.1.7], one can show that if r ≤ 2, then πr2 = M(Ar) = F(Tr). If
r > 2, then again by [FH 4.1.7] ∂C = Tr implies C = Ar and so M(C) = πr2

(unless we allow C to have non-bounded support, in which case M(C) =∞). But
πr2 > 2πr = M(Tr) ≥ F(Tr).

6.2. The C-metric.

(1) Definition. Let B be an (m− 1)-boundary, m ≥ 1. Then CB is the set of
m-chains given by

CB = {R ∈ Fm : ∂R = B}.
(2) Definition. For R,S ∈ CB let

C(R,S) = inf{M(A) : A ∈ Rm+1, R− S = ∂A}.
We now see that C is a complete metric on CB with the useful transformation

result (3)(i).

(3) Lemma. Let B be an (m− 1)-boundary, m ≥ 1.

(i) If f : Rn → Rn is a proper Lipschitz map and Lip f = r, then C(f#R, f#S) ≤
rm+1C(R,S).

(ii) F(R,S) ≤ C(R,S), and F(R,S) = C(R,S) if F(R,S) ≤ γ−m.
(iii) C is a complete metric on CB. The C- and F-topologies agree on CB.
(iv) The infimum in the definition of C(R,S) is realised for some A ∈ Rm+1.

Proof. (i) is immediate from 2.7(6)(c).
The first assertion in (ii) is immediate, and the second follows from 6.1(1)(i).
To see that C(R,S) < ∞ let F(R,S) = λ < ∞ and by 2.7(6)(c) choose f = µr

such that F(µr#R,µr#S) ≤ γ−m (µr is defined in 2.3). Then C(µr#R,µr#S) ≤
γ−m and so by (i) C(R,S) ≤ r−(m+1)γ−m. The other properties of a metric are
easily verified, noting in particular that if C(R,S) = 0 then F(R,S) = 0 and so
R = S.

The C- and F-topologies clearly agree on CB . Since a sequence is CB-Cauchy iff
it is F-Cauchy, CB is closed in Fm in the F-metric, and F is a complete metric on
Fm, it follows C is a complete metric on CB .
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To prove (iv) suppose C(R,S) = λ and let Tj ∈ Rm+1, ∂Tj = R−S, M(Tj)→ λ.
Let B(0, r) be some ball large enough to include spt (R − S), and let f : Rn →
B(0, r) be a retraction map with Lipschitz constant 1. Let T ′

j = f#Tj . Then

spt T ′
j ⊂ B(0, r) and M(T ′

j) ≤ M(Tj) by 2.7(6). We can apply the compactness
theorem of 2.7(5) to T ′

j−T ′
1 and extract a convergent subsequence with limit A−T ′

1,

say. From 2.7(6) it follows M(A) ≤ λ and hence M(A) = λ. Furthermore ∂A =
R− S, and so A is the required current. �

6.3. Invariant Chains. Suppose S = {S1, . . . , SN} are proper contraction maps
on Rn, not necessarily similitudes.

(1) Definition. For any k-chain T , we let S(T ) =
∑N

i=1 Si#(T ); also S0(T ) =
T , S1(T ) = S(T ), Sp+1(T ) = S(Sp(T )) if p ≥ 1.

From 2.7(6), S : Fk → Fk and is a continuous linear operator which commutes
with ∂.

(2) Suppose now that Lip Si = ri, and let D be specified by
∑N

i=1 r
D
i = 1

as in 5.1(3), but recall that here the Si are not necessarily similitudes. Let m
be the unique integer given by m ≤ D < m + 1. Now suppose m ≥ 1, B is an
(m − 1)-boundary, and S(B) = B. As examples consider 3.3(2) with m = 1 and

B = [[(1, 0)]]−[[(0, 0)]], or 3.3(3) withm = 2 andB = N . Finally let θ =
∑N

i=1 r
m+1
i

and note that θ < 1.

(3) Theorem. Under the hypotheses of (2) the following hold

(i) S is a contraction map on CB in the C-metric.
(ii) There is a unique m-chain T ∈ CB such that S(T ) = T .
(iii) If R ∈ CB, then Sp(R)→ T in the F-metric (and C-metric).
(iv) If R ∈ CB and S(R)−R = ∂A with a ∈ Rm+1 (which is always possible by

6.2(3)) then A0 =
∑∞

p=0 Sp(A) ∈ Rm+1 with convergence in the M-norm,
and T = R+ ∂A0.

Proof. First note that for any D ∈ Fm+1,

M(S(D)) = M

N
∑

i=1

Si#D ≤
N

∑

i=1

M(Si#D)

≤
N

∑

i=1

rm+1
i M(D) (by 2.7(6)(c)) = θM(D).

We now show (i). If R ∈ CB then S(R) ∈ CB since ∂(S(R)) = S(∂R) = S(B) =
B. Next suppose by 6.2(3)(iv) that R1−R2 = ∂C with CB(R1, R2) = M(C). Then

S(R1 −R2) = S(∂C) = ∂(S(C)),

and M(S(C)) ≤ θM(C). Hence CB(S(R1),S(R2)) ≤ θCB(R1, R2).
(ii) and (iii) follow immediately, using 6.2(3).
To establish (iv), suppose R ∈ CB , S(R) − R = ∂A, A ∈ Rm+1. Then

M(Sp(A)) ≤ θM(Sp−1(A)) and so M(Sp(A)) ≤ θpM(A). Thus A0 =
∑∞

p=0 Sp(A)
converges in the M -norm. Thus A0 is a chain of finite mass and hence rectifiable
by 2.7(4). Finally

∂A0 =
∞
∑

p=0

∂Sp(A) =
∞
∑

p=0

Sp(∂A) =
∞
∑

p=0

Sp(S(R)−R) = lim
p→∞

(Sp(R)−R) = T −R.

�

(4) We can often take particularly simple chains for R and A in (3)(iv). For
example in 3.3(2) we can take R = [[a1, a5]] and A = [[a2, a3, a4]] to be the obvious
oriented simplices [FH, 4.1.11].
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(5) Again taking the hypotheses of (2), let T ∈ CB be given by (3). Now spt

T = spt S(T ) ⊂ ⋃N
i=1 spt Si#T ⊂

⋃N
i=1 Si(spt T ) = S(spt T ). Thus Sp(spt T ) ↑

as p→∞, and since the limit in the Hausdorff metric is |S| it follows spt T ⊂ |S|.
It is easy to construct examples, where due to “cancellation”, spt T $ |S|.
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