
Datasets and Familiarisation Exercises:

’Modern Regression, Classification and Multivariate

Exploration with R’

John Maindonald

August 29, 2011

The following provides guidance in gaining familiarity with selected datasets that are used in the
examples in the notes. At the same time, it suggests ways to start graphical exploration of data sets.
This is a good way to gain familiarity with code that can be used for producing graphs in R.

The first obvious step, in each case, is to look through the help page for the dataset. The str()

function will give summary information about the dataset. After that, you might like to try the plots
that are suggested.

1 A Brief Overview of R Graphics

Base Graphics (mostly 2-D):

Base graphics implements a relatively “traditional” style of graphics

Functions plot(), points(), lines(), text(), mtext(), axis(),
identify() etc. form a suite (plot points, lines, text, etc.)

Plot y vs x with(women, plot(height, weight)) # Older syntax

plot(weight ∼ height, data=women) # Graphics formula syntax

Caveat Some base graphics functions do not take a data parameter

Other Graphics

(i) lattice (trellis) graphics, using the lattice package,
(ii) the low-level grid package on which lattice is built.
(iii) ggplot2, which implements Wilkinson’s Grammar of Graphics
(iv) For 3-D graphics, note rgl, misc3d and tkrplot

1.1 Base graphics – plot() and allied base graphics functions

The following are alternative ways to plot y against x (obviously x and y must be the same length):

> plot(y ~ x) # Use a formula to specify the graph

> plot(x, y) # Horizontal ordinate, then vertical

Try

> plot((0:20)*pi/10, sin((0:20)*pi/10))

> plot((1:30)*0.92, sin((1:30)*0.92))

Is it obvious that these points lie on a sine curve? (To make this obvious, place the cursor over the
lower border of the graph sheet, until it becomes a double-sided arror. Drag the border in towards
the top border, making the graph sheet short and wide.)

1



1 A BRIEF OVERVIEW OF R GRAPHICS 2

The following plots cons (consumption) against temp (temperature), for data in the dataset Ice-
cream, from the Ecdat package.

> ## Code used for the plot

> library(Ecdat)

> data(Icecream)

> plot(cons ~ temp, data=Icecream)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30 40 50 60 70

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

temp

co
ns

Figure 1: Plot of cons (consumption) against
temp (temperature). Data are from the dataset
Icecream in the Ecdat package.

> ## Code used for the plot

> library(Ecdat)

> data(Icecream)

> plot(cons ~ temp, data=Icecream)

> NA

> ## The following is an alternative:

> with(Icecream, plot(temp, cons))

The points() function adds points to a plot. The lines() function adds lines to a plot1. The
text() function adds text at specified locations. The mtext() function places text in one of the
margins. The axis() function gives fine control over axis ticks and labels.

Newer plot methods

Above, I described the default plot method. The plot function is a generic function that has special
methods for “plotting” various different classes of object. For example, plotting an lm object (created
by the use of the lm() modeling function) gives diagnostic and other information that can help in the
interpretation of regression results.

Use of plot() with a data frame gives a scatterplot matrix, in which every column is plotted
against every other column. The plot method for a data frame is the function pairs(). The request
for a plot is passed to pairs(), which is the function that is finally responsible for plotting the
scatterplot matrix. Figure 2 is an example.

1Actually these functions differ only in the default setting for the parameter type. The default setting for points()

is type = "p", and for lines() is type = "l". Explicitly setting type = "p" causes either function to plot points, type
= "l" gives lines.



1 A BRIEF OVERVIEW OF R GRAPHICS 3

cons

80 85 90 95

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

30 40 50 60 70

0.
25

0.
35

0.
45

0.
55

●
●

●

●
●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

80
85

90
95

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

income

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●● ●

●

●

price

0.
26

0
0.

27
5

0.
29

0

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

● ● ●

●

●

0.25 0.35 0.45 0.55

30
40

50
60

70

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

0.260 0.275 0.290

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

temp

Figure 2: Scatterplot matrix for the four columns
of the Icecream data, as obtained using the de-
fault plot() method for data frames.

> ## Code used for the plot

> plot(Icecream)

> # Calls pairs(Icecream)

Interpereting Scatterplot Matrices:

For identifying the axes for each panel

- look across the row to the diagonal to iden-
tify the variable on the vertical axis.

- look up or down the column to the diagonal
to identify the variable on the horizontal
axis.

Each below diagonal panel is the mirror image of the corresponding above diagonal panel.
The function scatterplotMatrix() (alias spm() in the car package offers enhanced scatterplots.

This will be introduced below.

1.2 Lattice graphics

Lattice Graphics:

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original implementation)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For lattice, graphics formulae are, except in a few special cases, mandatory.

Lattice (trellis) graphics functions allow the use of the layout on the page to reflect meaningful
aspects of data structure. Different levels of a factor may appear in different panels. Or they may
appear in the same panel, distinguished by color and/or symbol. If lines or smooth curves are added,
there is a different line or curve for each different group.

Using lattice graphics, the equivalent of plot(cons temp, data=Icecream) is:

> library(lattice)

> gph <- xyplot(cons ~ temp,

data = Icecream)

> # gph is then a trellis object

> plot(gph)

Figure 3 shows the result:



1 A BRIEF OVERVIEW OF R GRAPHICS 4

temp

co
ns

0.25

0.30

0.35

0.40

0.45

0.50

0.55

30 40 50 60 70

●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 3: Lattice equivalent of Figure 1, obtained
using the function xyplot().

> ## Code used for the plot

> library(lattice)

> gph <- xyplot(cons ~ temp,

data = Icecream)

> # gph is then a trellis object

> plot(gph)

> NA

Plotting lattice objects: Lattice functions re-
turn trellis objects. If returned to the command
line, the command plot() is invoked, and the
graph is plotted. Here, we first created the graph-
ics object gph, then used plot(gph) to obtain the
graph, in a separate step.

NB: An alternative to plot(gph) is print(gph);
the result is the same.

The function trellis.device() can be used to open a new texttttrellis graphics device. The
function trellis.par.set() can be used to control stylistic features. (color, plot characters, line
type, etc.).

Trellis objects can be created even if no device is open. Such objects can be updated. Objects are
plotted (by this time, a device must be open), either when output from a lattice function goes to the
command line (thus implicitly invoking the print() command), or by the explicit use of print().

By successively updating a trellis graphics object, it can be built up and/or modified in steps.
Additionally, it is possible to add to a ‘printed” or displayed graphics page.

The lattice equivalent of pairs() is the function splom(). For example:

> xyplot(~ Icecream, data = Icecream)

Remember, however. If you are sourcing a file that is designed to plot the graph, or plotting from
inside a function, you must use some equivalent of:

> gph <- xyplot(~ Icecream, data = Icecream)

> plot(gph)

Lattice plots come into their own when plots are required that reflect groups in the data, or that
show multiple variables side by side. Consider the dataset Computers (Ecdat). Here is summary
information about the columns:

> library(Ecdat)

> data(Computers)

> str(Computers)

'data.frame': 6259 obs. of 10 variables:

$ price : num 1499 1795 1595 1849 3295 ...

$ speed : num 25 33 25 25 33 66 25 50 50 50 ...

$ hd : num 80 85 170 170 340 340 170 85 210 210 ...

$ ram : num 4 2 4 8 16 16 4 2 8 4 ...

$ screen : num 14 14 15 14 14 14 14 14 14 15 ...

$ cd : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 2 1 1 1 ...

$ multi : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...

$ premium: Factor w/ 2 levels "no","yes": 2 2 2 1 2 2 2 2 2 2 ...

$ ads : num 94 94 94 94 94 94 94 94 94 94 ...

$ trend : num 1 1 1 1 1 1 1 1 1 1 ...



1 A BRIEF OVERVIEW OF R GRAPHICS 5

CD drive?), multi (is a multi-media kit included?), and premium (is the manufacturer a ”premium”
firm, i.e., IBM or COMPAQ?)

The following (Figure 4) plots price against hd (size of hard drive), for each combination of cd and
multi. Within panels, points are distinguished by whether or not the machine is from a “premium”
manufacturer.

hd

pr
ic

e

1000

2000

3000

4000

5000

0 500 1000 1500 2000

 : cd no
 : multi no

 : cd yes
 : multi no

 : cd no
 : multi yes

0 500 1000 1500 2000

1000

2000

3000

4000

5000

 : cd yes
 : multi yes

no yes

Figure 4: Plot
of price against
hd (size of hard
drive), for each
combination of cd

and multi. Within
panels, points are
distinguished by
whether or not
the machine is
from a “premium”
manufacturer.

Note how an initial basic graph was created, which was then updated to:

- add a key: auto.key=list(columns=2)

- use different symbols for the different groups: par.settings = simpleTheme(pch=c(1,3)

- make points somewhat transparent (alpha=0.25)

- include the names of the conditioning columns as a prefix to the strip labels: strip=strip.custom(strip.names=c(TRUE,TRUE))

> ## Code used for the plot

> gph <- xyplot(price ~ hd | cd * multi,

groups=premium,

data=Computers)

> gph1 <- update(gph, auto.key=list(columns=2),

par.settings = simpleTheme(pch=c(1,3), alpha=0.25),

strip=strip.custom(strip.names=c(TRUE,TRUE)))

> plot(gph1)

> NA



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 6

The graphics formula

In price ' hd | cd * multi, the columns cd and multi are conditioning columns. The | is the
conditioning symbol; what follows specifies the column(s) on which the plot is to be conditioned.

The argument groups=premium specifies that points are to be distinguished within panels, accord-
ing as to whether the machine was not (No) or was (Yes) from a premium manufacturer.

2 Useful types of graph, for initial exploration

2.1 Scatterplots

Before plotting any graphs, one wants to know what data the columns hold. Commonly, columns will
be one of:

• numeric, with enough distinct values that the data can be treated as continuous

• numeric, with a small number of values that code for unordered or ordered categories

• character

• factor – which is a common way to store character data. What is stored are integers 1, 2, . . . .
Associated with the factor (as an “attribute”) is a table that translates 1 to the first factor level,
2 to the second level, and so on.

Before we do the analyses that will be described, it is helpful to have basic information on the
columns in the data, including information on relationships between explanatory variables. The rattle
GUI is very helpful in this respect. If you load a data frame into rattle, it will display basic information
on each column.

Basically, we’d like to ensure, if we can, that:

• all columns have a distribution that is reasonably well spread out over the whole range of values,
i.e., we want to avoid having most values squashed together at one end of the range, with a
small number of very small or very large values occupying the remaining part of the range

• relationships between columns (which, except for the relationship with the outcome variable we
prefer to be weak) are roughly linear.

Where values are concentrated at one end of the range, the small number (perhaps one or two) of
values that lie at the other end of the range will, in a straight line regression with that column as the
only explanatory variable, be a leverage point. When it is one explanatory variable among several,
those values will have an overly large say in determining the coefficient for that variable.

The commonest situation is where positive (or non-zero) values are squashed together in the lower
part of the range, with a tail out to the right. The distribution is then described as skewed to the
right. Often, in these circumstances, a logarithmic transformation will remove much or all of the
skew. Where transformations can be used to ensure that values in all columns are reasonably spread
out over the whole of their range, it will then often turn out that relationships between variables are
approximately linear.

The dataset mammals MASS furnishes an extreme example. Figure 5A shows the scatterplot for
the raw data, while Figure 5B shows the scatterplot for the logged data.

> ## Code used for graph

> library(MASS)

> opar <- par(fig=c(0, 0.5, 0,1), mar=c(3.6,3.6,2.1,1.6), mgp=c(2.5,.5,0))

> plot(brain ~ body, data=mammals, pty="s")

> mtext(side=3, line=0.5, adj=0, "A: Unlogged data")

> par(fig=c(0.5, 1, 0, 1), new=TRUE)

> plot(brain ~ body, data=mammals, log="xy", pty="s")

> mtext(side=3, line=0.5, adj=0, "B: Log scales on both axes")

> NA



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 7

●●●

●

●●●●●●●●●●●●●●

●

●

●
●

●●●●●

●
●●

●

●

●

●
●
●●●●●●

●

●
●●
●
●
●●●●●●●●

●
●

●
●●●●

0 1000 3000 5000

0
10

00
30

00
50

00

body

br
ai

n

A: Unlogged data

●

●

●

●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1e−02 1e+00 1e+02 1e+041e
−

01
1e

+
01

1e
+

03

body
br

ai
n

B: Log scales on both axes

Figure 5: Brain weight (g) versus Body weight (kg), for 62 species of mammal. Panel A shows the
unlogged data, while Panel B uses log scales, for both axes. Notice that the scales are labeled in the
original (unlogged) units.

2.2 Scatterplot matrices

The hills2000 data frame (DAAG) has four columns: dist: climb (total height gained, in feet), dist
(distance, in miles on the map), time (record time, in hours, for males), and timef (record time, in
hours, for females). This dataset is a good candidate for a scatterplot matrix, as in Figure 6.

dist

1000 3000 5000 7000

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●● ●

●

● ●
●●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●●●

●

●●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12 14

0
10

20
30

40

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●

●●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

10
00

30
00

50
00

70
00

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

climb
●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
● ●●●●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●
●●●

●

●
●●
●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●●●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●
●● ●

●

●
●●

● ●●●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

time

0
2

4
6

8

●●
●●
●●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●●●

●

●
●●
●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

0 10 20 30 40

0
2

4
6

8
10

12
14

●●
● ●●●●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●
●●●

●

●
●●●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●●●●●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●● ●

●

●
●●● ●●●
●

●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

0 2 4 6 8

●●
●●●

●●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●●●

●

●
●●●●●●
●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

timef

Figure 6: Scatterplot matrix for the
four columns of the hills2000 data.

> ## Code is:

> library(DAAG)

> plot(hills2000)

> ## NB: The plot method for data frames

> ## calls the function pairs()



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 8

The car package has a more sophisticated version of scatterplot matrix (Figure 7). The function is
scatterplotMatrix(), which can be abbreviated to spm(). We will turn off the option to fit a line,
and instead fit a curve.

dist

1000 3000 5000 7000

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●● ●

●

● ●
●●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●

●●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12 14

0
10

20
30

40

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●

●●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

10
00

30
00

50
00

70
00

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

climb

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
● ●●●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●●●

●

●
●●
●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●● ●

●

●
●●

● ●●●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

time

0
2

4
6

8

●●
●●
●●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●●●

●

●
●●
●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

0 10 20 30 40

0
2

4
6

8
10

12
14

●●
● ●●●●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●
●●●

●

●
●●●●●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●●●●●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●● ●

●

●
●●● ●●●
●

●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

0 2 4 6 8

●●
●●●

●●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●●●

●

●
●●●●●●
●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

timef

Figure 7: Scatterplot matrix for the
four columns of the hills2000 data,
as obtained using the spm() (or scat-
terplotMatrix()) function in the car
package.

Code is:

> library(car)

> spm(hills2000, smooth=TRUE,

reg.line=NA)

> NA

2.3 Density plots

The function spm() showed density plots in the diagonal. The density is an extimate of the relative
number (proportion) of points per unit interval. We can do the density plots separately from the
scatterplot. A good function for this purpose is densityplot() from the lattice package:

dist + climb + time + timef

D
en

si
ty

0.
00

0.
05

0.
10

0 10 20 30 40 50

●●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

dist

0e
+

00
2e

−
04

4e
−

04

0 2000 4000 6000 8000

●●●●●●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ● ●● ●●● ●●● ● ●● ● ●●● ● ●● ●●● ●● ● ●● ●●

climb

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8

●●●●●●● ●● ●● ●● ●●●●● ●●● ●● ●●●●● ●●●●●●●● ● ●●● ●●●●●● ●●● ●● ● ●● ●●

time

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15

●●●●●●● ●● ●●●● ●●●● ●●●●● ●●●●● ●●●●●●●●● ●●● ●●●●●● ●●● ●●● ●● ●●

timef

Figure 8: Density plots for the four
columns of the hills2000 data, as ob-
tained using the densityplot() func-
tion in the lattice package. The ar-
gument from=0 specifies a sharp cut-
off at zero, desirable as values must be
positive. The individual data values
are shown along the x-axis.

Code is:



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 9

> library(lattice)

> gph <- densityplot(~ dist + climb + time + timef,

from=0,

data=hills2000,

scales="free",

outer=TRUE)

> NA

Figure 9 shows the density plots for the logged data:

dist + climb + time + timef

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

10^0.010^0.510^1.010^1.510^2.0

●●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●●●●● ●●● ●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

dist

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

10^2.5 10^3.0 10^3.5 10^4.0

●●●● ● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●●● ● ●● ●●● ●●● ● ●● ● ●●● ● ●● ●●● ●● ● ●● ●●

climb

0.
0

0.
5

1.
0

1.
5

10^−1.0 10^0.0 10^1.0

●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●●●●● ●● ●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

time

0.
0

0.
5

1.
0

1.
5

10^−1.0 10^0.0 10^1.0

●●● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

timef

Figure 9: Density plots of the log-
arithms of the four columns of the
hills2000 data.

Code is:

> library(lattice)

> gph <- densityplot(~ dist + climb + time + timef,

data=hills2000,

scales=list(x=list(relation="free", log=10),

y="free"),

outer=TRUE)

> NA

Two alternatives to density plots are:

• dotplots, using the lattice function dotplot(). These show the points spread out along a line;

• boxplots, using the lattice function bwplot(). A box that marks off the limits between the lower
and upper quartile has a line across it that marks the median. Whiskers extend out either side
of the box, commonly chosen so that for a normal distribution 1% of points would on average
lie outside of this range. Points that lie out beyond the whiskers are plotted individually.

Figures 10A and 10B show, respectively, dotplot and boxplot summaries of the data:



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 10

A: Dotplots

0 10 20 30 40

●●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

dist
2000 4000 6000

●●●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ● ●● ●●● ●●● ● ●● ● ●●● ● ●● ●●● ●● ● ●● ●●

climb
0 2 4 6 8

●●●●●●● ●● ●● ●● ●●●●● ●●● ●● ●●●●● ●● ●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●

time
0 5 10

●●●●●●● ●● ●● ●● ●●●● ●●● ●● ●●●●● ●●●●●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●● ●●

timef

B: Boxplots

0 10 20 30 40

● ●●

dist
2000 4000 6000

● ● ●●● ●

climb
0 2 4 6 8

● ●●●●

time
0 5 10

● ●●●●

timef

Figure 10: Dotplots
(Panel A) and box-
plots (Panel B) for
the four columns of
the hills2000 data.
Both plots use func-
tions from the lat-

tice package.

> ## Code for Panel A

> library(latticeExtra)

> gdot <-

dotplot(~ dist + climb + time + timef,

data=hills2000, outer=TRUE,

scales=list(x=list(relation="free")),

layout=c(1,4), xlab="",

main=list(expression(plain("A: Dotplots")),

x=0.05, just="left"))

> plot(gdot)

> ## Code for Panel B

> gbw <-

bwplot(~ dist + climb + time + timef,

data=hills2000, outer=TRUE,

scales=list(x=list(relation="free")),

layout=c(1,4), xlab="",

main=list(expression(plain("B: Boxplots")),

x=0.05, just="left"))

> plot(gbw)

Boxplots are helpful for showing skewness, or the presence of outliers. Here, the data are very
clearly skewed to the right.

worldRecords: DAAG

Enter help(worldRecords) to view the help page for this dataset. Hereafter, it will be taken for
granted that you know to look at the help page.



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 11

In the following, type the code that follows the ’>’ prompt.

> library(DAAG)

> # NB: Datasets in the DAAG package are available once the package

> # has been attached.

> # Other packages, e.g., Ecdat, may require use of data() to make

> # a dataset available.

> ## Show summary information about the data

> str(worldRecords)

'data.frame': 40 obs. of 5 variables:

$ Distance : num 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 ...

$ roadORtrack: Factor w/ 2 levels "road","track": 2 2 2 2 2 2 2 2 2 2 ...

$ Place : chr "Athens" "Cassino" "Atlanta" "Pretoria" ...

$ Time : num 0.163 0.247 0.322 0.514 0.72 ...

$ Date : Date, format: "2005-06-14" "1983-05-22" ...

> ## Plot data

> plot(Time ~ Distance, data=worldRecords)

cricketer: DAAG

Code will be given without output

> library(DAAG) ## Not needed, if you typed library(DAAG) earlier

> ## Show summary information about the data

> str(cricketer)

nihills: DAAG

This dataset has record times for Northern Ireland mountain races, for males and females separately.

> ## Check the contents of the various columns

> str(nihills)

'data.frame': 23 obs. of 4 variables:

$ dist : num 7.5 4.2 5.9 6.8 5 4.8 4.3 3 2.5 12 ...

$ climb: int 1740 1110 1210 3300 1200 950 1600 1500 1500 5080 ...

$ time : num 0.858 0.467 0.703 1.039 0.541 ...

$ timef: num 1.064 0.623 0.887 1.214 0.637 ...

> ## Scatterplot matrix -- Plot each column against each other column

> plot(nihills)

> ## Bells and whistles scatterplot matrix

> scatterplotMatrix(nihills, smooth=TRUE, reg.line=NA,

col=c("black","gray40"))

A note on scatterplot matrices

A scatterplot matrix, which plots every column against every other column and shows the result in the
layout used for correlation matrices, is useful for an initial look at the data. The scatterplot matrix
is a graphical counterpart of the correlation matrix.

For identifying the axes for each panel

• look along the row to the diagonal to identify the variable on the vertical axis.



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 12

Sugar yield data
weight trt

1 82.00 Control
2 97.80 Control
3 69.90 Control
4 58.30 A

. . .

Table 1: The table has the first few lines of the
data frame sugar.

• look up or down the column to the diagonal to identify the variable on the horizontal axis.

Note that the data are positively skewed, i.e., there is a long tail to the right, for all variables. For
such data, a logarithmic transformation often gives more nearly linear relationships.

roller: DAAG

The data has lawn depression for various weights of lawn roller. Type help(roller) to see the help
page for this dataset.

Here, code is shown without output.

> library(DAAG)

> ## Show summary information about the data

> str(roller)

> ## Plot depression against weight

> plot(depression ~ weight, data=roller)

sugar: DAAG package

The sugar data frame (DAAG package) compares the amount of sugar obtained from an unmodified
wild type plant with the amounts from three different types of genetically modified plants. Table 1
shows the first few lines of data.

The code used to fit the model is:

> library(DAAG) # sugar is in DAAG package

> ## Examine data

> sugar

weight trt

1 82.0 Control

2 97.8 Control

3 69.9 Control

4 58.3 A

5 67.9 A

6 59.3 A

7 68.1 B

8 70.8 B

9 63.6 B

10 50.7 C

11 47.1 C

12 48.9 C

> ## Summary information about data

> str(sugar)

'data.frame': 12 obs. of 2 variables:

$ weight: num 82 97.8 69.9 58.3 67.9 59.3 68.1 70.8 63.6 50.7 ...

$ trt : Factor w/ 4 levels "Control","A",..: 1 1 1 2 2 2 3 3 3 4 ...



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 13

cuckoos: DAAG package

Type help(cuckoos) to see the help page for this dataset. A good plot for these data is:

> ## Get details of data

> str(cuckoos)

'data.frame': 120 obs. of 4 variables:

$ length : num 21.7 22.6 20.9 21.6 22.2 22.5 22.2 24.3 22.3 22.6 ...

$ breadth: num 16.1 17 16.2 16.2 16.9 16.9 17.3 16.8 16.8 17 ...

$ species: Factor w/ 6 levels "hedge.sparrow",..: 2 2 2 2 2 2 2 2 2 2 ...

$ id : num 21 22 23 24 25 26 27 28 29 30 ...

> ## Plot data

> dotplot(species ~ length+breadth, data=cuckoos, outer=TRUE,

scale=list(x=list(relation="free")))

The length+breadth part of the formula results in separate plots (the argument outer=TRUE ensures
plots in separate panels) for each of length and breadth.

A note on factors: The names for the different values that a factor can take are the “levels”.

> levels(cuckoos$species) # column 'species' from the data frame 'cuckoos'

[1] "hedge.sparrow" "meadow.pipit" "pied.wagtail" "robin"

[5] "tree.pipit" "wren"

Internally, factors are stored as integer values. The column species of the data frame cuckoos is
a factor that has 6 levels. A lookup table is used to associate levels with these integer values.

Electricity: Ecdat package

Here, and subsequently for the most part, code will be shown without output.
In the Ecdat package, datasets do not automatically become available when you use library(Ecdat)

to attach the package. Hence the use of data(Electricity) in the code that follows:

> library(Ecdat)

> data(Electricity) # For datsets in the 'Ecdat' package, use

> # data() as required to make datasets available.

> ## Get details of columns in the data frame

> str(Electricity)

> ## Examine scatterplot matrix

> plot(Electricity)

An alternative that gives more information is:

> library(car)

> scatterplotMatrix(Electricity, smooth=TRUE, reg.line=NA,

col=c("black","gray40"))

Be sure to look at the help page for Electricity (help(Electricity)) to get details of the
variables.



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 14

Crime: Ecdat package

> library(Ecdat)

> data(Crime)

> str(Crime)

You can try

> plot(Crime)

Because however there are so many columns, this may not be satisfactory. Density plots for the
columns that have continuous variables are however perfectly feasible:

> library(lattice)

> contnums <- (1:ncol(crime))[-c(1:2,11:12)]

> formCont <- formula(paste("~", paste(names(Crime)[contnums], collapse="+")))

> densityplot(formCont, data=Crime, outer=TRUE,

scales=list(x=list(relation="free"), y=list(relation="free")))

Wages: Ecdat package

Here, code is shown without output.

> library(Ecdat)

> data(Wages)

> str(Wages)

> library(lattice)

> splom(Wages[, c(1,2,10,12)], alpha=0.4)

Use splom() (lattice) rather than plot() because this makes it easier to adjust the transparency;
the argument alpha does this. Set alpha to be any value between 0 (full transparancy) and 1 (totally
opaque).

bronchit: SMIR package

Again, code is shown without output.

> library(SMIR); data(bronchit)

> data(bronchit)

> str(bronchit)

> library(lattice)

> xyplot(poll ~ cig, groups=r, auto.key=list(columns=2),

xlab="# cigarettes per day", ylab="Pollution",

data=bronchit)

nassCDS: DAAG package

Code is shown without output.

> library(DAAG)

> str(nassCDS)

Fair: : Ecdat package

> library(Ecdat)

> data(Fair)

> str(Fair)



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 15

fgl: MASS

> library(MASS)

> # NB: Datasets in the MASS package are available once the package

> # has been attached.

> ## Show summary information about the data

> str(fgl)

> ## Show scatterplot matrix

> plot(fgl)

> # See the note below on scatterplot matrices

Here is a more informative type of scatterplot matrix:

> library(car)

> scatterplotMatrix(fgl, smooth=TRUE, reg.line=NA,

col=c("black","gray40"))

> ## For versions of the car package prior to 2.0-0, specify

> ## scatterplot.matrix(fgl, smooth=TRUE, reg.line=NA,

> ## col=c("black","gray40"))

> ## The first colour is used for lines, and the second for points.

Note that scatterplotMatrix can be abbreviated to spm().
Try also a plot that uses separate colours and characters for different groups in the data. The

default colour palette is not very satisfactory. Hence the alternative used here.

> library(lattice) # Makes available the seven lattice colours

> scatterplotMatrix(~ . | type, smooth=TRUE, reg.line=NA, data=fgl,

col=trellis.par.get()$superpose.symbol$col)

The graphics formula ~ . | type causes all of the columns except type to be used for the rows
and columns of the scatterplot matrix. Different colours and symbols are used for the different types.

The first colour is used for the lines. The second and subsequent colours are used for the points,
i.e., for the six different types. With so many columns of data, this is not a very satisfactory plot.

We can readily show all the distributions on one page

For this we use the lattice function densityplot():

> library(lattice)

> densityplot(~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, groups=type, data=fgl, outer=TRUE,

scales=list(x=list(relation="free"), y=list(relation="free")),

auto.key=list(columns=3))

diabetes: : mclust package

Code is shown without output.

> library(mclust)

> data(diabetes)

> str(diabetes)

> scatterplotMatrix(~ glucose +insulin+sspg | class, smooth=TRUE,

reg.line=NA, data=diabetes,

col=brewer.pal(n=4, name="Set1"))



2 USEFUL TYPES OF GRAPH, FOR INITIAL EXPLORATION 16

spam7: : DAAG package

> library(DAAG)

> str(spam7)

> bwplot(yesno ~ crl.tot + dollar + bang + money + n000 + make,

outer=TRUE, data=spam7, scales=list(x=list(relation="free")))

> densityplot(~ crl.tot + dollar + bang + money + n000 + make,

groups=yesno, outer=TRUE, data=spam7,

scales=list(x=list(relation="free"), y=list(relation="free")))

> ## Try also (this is not a very satisfactory plot)

> spm(~ crl.tot + dollar + bang + money + n000 + make | yesno, data=spam7)

Because the data are so highly skew, boxplots are a much more satisfactory form of display than
density plots. For the same reason, the scatterplot matrix is an unsatisfactory form of display.

germandata: : nws package

Code is shown without output.

> library(nws)

> data(germandata)

> str(germandata)

> sapply(germandata, range) # Check range of values in each column

> scatterplotMatrix(~ X6 + X12 + jitter(X5) + jitter(X5.1) + X67 | X1.2,

smooth=TRUE, reg.line=NA, data=germandata,

col=brewer.pal(n=4, name="Set1"))

Further data sets may be added to the list later.


