### **Topics over Time:**

### A Non-Markov Continuous-Time Model of Topical Trends

Paper by Xuerui Wang and Andrew McCallum

Presented by Linda Buisman

## Overview

- Motivation
- Approach
- Results
- Analysis
- Conclusion

# Motivation

- Information retrieval & text mining
- Text is highly-dimensional
- Topic models
  - Discover summaries of documents
  - □ Reduce dimensions
  - Model co-occurrences of words
    - mouse, cat, Tweety → cartoons
    - mouse, keyboard → computer supplies
- Topics over time
  - □ Co-occurrences are dynamic
  - □ Additional modality time
    - united, states, war @ 1850 → Mexican-American War
    - united, states, war @ 2006 → War in Iraq

### Modelling time

### Earlier approaches

- Discretize
  - Fixed interval size does not fit all topics
- Markov model
  - State at time t+1 depends on t, but not earlier

### Solution

- Treat time as a continuous variable
- □ Time is a parameter in a Bayesian network

## **Bayesian network**

- Generative model
  - □ vs discriminative (SVM, NN, ...)
- Bayes' rule:
- Bayesian network
  - Directed graph of parameters
- A connected to B:

Probability of B conditionally depends on A

- Generation step
  - Estimate conditional probabilities for all (hidden) parameters
- Goal

 $\Box$  Predict probability of hypothesis H being true for observation X

$$P(H \mid X) = \frac{P(X \mid H) \times P(H)}{P(X)}$$

### **Topics-over-time model**

- Based on an earlier topic model LDA
- "Bag-of-words" approach
  - □ Word count in a document is significant
  - Position and order are not significant
- Timestamp of document becomes another parameter
- Generate Bayesian network from existing documents
  - Exact inference computationally infeasible
  - □ Use approximate inference
- Goal
  - □ Predict the probability of a document belonging to topic T

# Model



Diagram from Wang & McCallum

#### Known parameters:

w word t timestamp

φ

Ψ

θ

#### Hidden parameters:

- z topic associated with word
  - distribution of words for topic
  - distribution of time for topic
  - distribution of topics for document

### Results

Words



Distribution of topic over time

**Diagram from Wang & McCallum** 

# Comparison with basic LDA

Confuses Mexican War with WWI



Diagram from Wang & McCallum

Confuses Panama Canal with other activities in Central America

# Analysis

- Generative vs discriminative methods
  Discriminative usually faster
  - Accuracy depends on application
  - □ Generative model offers more information
    - E.g. not just topic(s) of a document, but also:
      - Predict time-stamp, given a document
      - Distribution of topics over time

# Analysis (cont)

### Limitations and simplifications

- "Bag-of-words" instead of word sequences or phrases
  - Computer science vs computer, science
- □ No account of position within document
  - Title, introduction, body, footnote

# Analysis (cont)

### General and flexible approach

### Possible extensions

- Add time to Group-Topic and Author-Recipient models
- □ Capture changes in group formation over time

# Conclusion

- TOT = LDA + time modality
- Improves the detection of topics
- Adds other features
- Extensible
- No ground-breaking innovation
  - Rather, a useful addition to an existing method